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Abstract: Schrődinger cat states built from quantum superpositions of left or right Luttinger

fermions located at different positions in a spinless Luttinger liquid are considered. Their decoherence

rates are computed within the bosonization approach using as environments the quantum electromag-

netic field or two or three dimensional acoustic phonon baths. Emphasis is put on the differences

between the electromagnetic and acoustic environments.
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1. Introduction

Because of the recent advances in microelectronic

technology, it is now possible to probe the quan-

tum regime of electron transport in solids. Many

exotic manifestations of quantum coherence ap-

pear in mesoscopic experimental devices : for ex-

ample Aharonov-Bohm effects such as permanent

currents in a mesoscopic ring and conductance

oscillations as a function of the external mag-

netic field, but also the reduction of shot noise in

quantum point contacts [1].

Nevertheless, real systems often involve im-

purities or interaction with an external environ-

ment. In a quantum system, as explain by Zurek

[2], interaction of a quantum system with an ex-

ternal environment destroys quantum coherence.

Therefore, the following question naturally arises

in condensed matter systems : can we use these

ideas to understand the crossover between the

quantum transport regime where interference ef-

fects play a dominant role and the classical trans-

port regime which we are used to? The problem

of electron decoherence in metals at zero temper-

ature is indeed an active area of research both

from the theoretical and experimental point of

view. Recent experiments claim to observe a sat-

uration of the dephasing time τφ at very low tem-

peratures [3]. Strong discussions among theorists

arose from these observations. The heart of the

debate, summarized for example in Mohanty’s

contribution [4], is to determine whether the con-

ventional theory of dephasing in Fermi liquids [5,

6] could explain the saturation of τφ or whereas

one should reconsider the theory completely [7].

Whereas these authors consider weakly disordered

conductors in the diffusive regime, we shall present

a model for studying the decay of Schrődinger cat

states in 1D ballistic conductors.

Our line of thought is very close to the one

used in atomic physics, for example in works

[8] on decoherence experiments in cavity QED

[9]. In atomic physics, decoherence is extremely

well controlled and simplified models such as the

Caldeira-Leggett model [10] apply directly. On

the contrary, mesoscopic conductors are complex

interacting systems. Nevertheless, 1D ballistic

conductors can be described by an effective 2D

Conformal Field Theory: the Luttinger Liquid

CFT [11]. In this effective theory, interactions

between electrons are described by means of an

electrostatic short-ranged potential. Obviously,

within the approximation of a linear dispersion

relation for particle-hole excitations, the Luttinger

effective theory contains no source for decoher-

ence. This Luttinger CFT provides a bosonic de-

scription of the low energy spectrum of the whole

interacting electron fluid. An external quantum

environment is necessary to introduce decoher-

ence: we have considered the quantized electro-
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magnetic field and a 2D or 3D bath of longitudi-

nal phonons.

This point of view throws a different light on

the question of decoherence by taking into ac-

count the electron fluid as a whole and studying

the coupling of this many-body system to the ex-

ternal reservoirs. It is well suited to the 1D case

because of interactions which break the Fermi liq-

uid picture. The orthogonality catastrophe [12]

ruins any attempt based on a quasi-particle ap-

proach. Moreover, because of the drastic effects

of interactions in 1D fermion systems, electro-

magnetic or acoustic radiation emitted by one

part of the system and absorbed by another part

may alter considerably the strongly correlated

electron state. These remarks motivated our ap-

proach. Following general ideas of Stern, Aharonov

and Imry [13], we have computed the decoher-

ence rate of Schrődinger cat states built from

localized excitations (e.g the so-called Luttinger

fermions) introduced at different places in the

system or at the same place but moving in dif-

ferent directions (left and right moving compo-

nents). As expected, we have found that such

linear superpositions decay into statistical mix-

tures even at zero temperatures. This is the main

result of this paper and it means that a 1D pure

ballistic conductor exhibits decoherence at abso-

lute zero in the sense of Schrődinger cat states

decay.

More precisely, we have shown that the elec-

tromagnetic decoherence time is much larger, al-

though not infinite, than the natural time as-

sociated with the Luttinger system. We have

also shown that the acoustic decoherence is much

stronger than the electromagnetic one. This dif-

ference comes from the fact that many bosonic

modes of the Luttinger liquid have an efficient

acoustic radiation rate in contrast to the elec-

tromagnetic case. In the acoustic case, decoher-

ence takes place over a much shorter time scale

than dissipation in contrast to the electromag-

netic case.

This paper is organized as follows: the model

and the Feynman-Vernon and Keldysh basic tools

are briefly recalled in section 2. The CFT de-

scription of the Luttinger liquid is reviewed in

section 3. Our results concerning decoherence in

the Luttinger liquid are presented in section 4.

Comparison with other work and possible exten-

sions are discussed in the conclusion.

2. Electron systems coupled to ex-

ternal reservoirs (QED or phonons)

Studying an out of equilibrium quantum system

consists in computing its density matrix evolu-

tion. An approach to this problem has been given

long ago in the context of perturbative field the-

ory by Keldysh [14]. For a matter system coupled

to an external reservoir, we are interested in the

evolution of the reduced density matrix for the

matter system. Integrating over the reservoir’s

degrees of freedom gives a non-local Feynman-

Vernon influence functional [15].

It is convenient to choose the Coulomb gauge,

in which dynamical degrees of freedom of the

quantum electromagnetic field (transverse pho-

tons) are decoupled from the Coulomb interac-

tion. The latter is taken into account through

the effective Luttinger CFT description for the

matter system. Integrating out transverse pho-

tons gives the electromagnetic Feynman-Vernon

influence functional. It can be evaluated in terms

of Keldysh’s Green function of the EM field is

Gaussian in terms of the current density (for the

EM field initially at thermal equilibrium).

Within the elastic approximation, coupling

to acoustic phonons can be treated along the

same line. They create a potential proportional

to the compression rate of the bulk material and

their dynamics is described by a quadratic ac-

tion. The resulting phonon influence functional

is a Gaussian in terms of the electric charge den-

sity

In a generic electron system, the environ-

ment influence functional a priori contains quar-

tic fermion terms. Thanks to bosonization and

neglecting environment-induced umklapp processes,

the influence functional is Gaussian (although

non local) in terms of the bosonic field under-

lying the Luttinger CFT. This trick makes the

problem exactly solvable. It is worth mention-

ning here that bosonization techniques also exist

in 2D and 3D and could, although they are not

exact, be used to analyze these cases.
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3. Effective CFT for the Luttinger

Liquid

We consider a system of spinless interacting elec-

trons on a 1D circle of length L. As was shown

by Haldane [11] low energy properties of gapless

systems can be described using an effective the-

ory with only two parameters: a renormalized

Fermi velocity vS and a dimensionless interact-

ing constant α. This 1D effective description

can conveniently be formulated in terms of a 2D

Conformal Field Theory [16] (CFT), the Hilbert

state of which can be decomposed according to a

Û(1)R × Û(1)L symmetry algebra. The electric
charge and current densities are linearily related

to these modes. Therefore, coupling the Lut-

tinger liquid to the electromagnetic of acoustic

environment boils down to a set of independent

harmonic oscillators, each of them being linearly

coupled to a bath of quantum oscillators. This

problem is known under the name of Quantum

Brownian Motion (QBM) [17].

Irreducible highest weight states of the sym-

metry algebra are associated with vertex oper-

ators indexed by (n,m) ∈ (Z/2) × Z such that
2n ≡ m (mod 2). Physically 2n is the total

charge and mevS/Lα is the total current circling

around the system. The l 6= 0 modes are called
hydrodynamic in reference to Wen’s pioneering

work [18] on edge states in the FQHE. The Lut-

tinger parameter is related to the filling fraction

by αν = 1.

From the 1D point of view, the original fermion

operators renormalize (orthogonality catastrophe)

to specific vertex operators. For example the

left (resp. right) moving renormalized fermion

operators ψ†R (resp. ψ†L) corresponds to V1/2,1
(resp. V1/2,−1). In the case of a FQH fluid,
edge fermions carrying unit charge on one of the

two edges appear in the spectrum: V1/2,ν−1 and

V1/2,−ν−1 . In contrast to them, the Luttinger
fermions carry a fractional charge on each edge

qR = (1 + ν)/2 and qL = (1− ν)/2 for V1/2,1.
Elementary excitations of the Luttinger liq-

uid can be created using these vertex operators.

States created this way are nothing but coherent

states. Since the evolution of coherent states in

QBM can be exactly computed [19], so can the

evolution of any superposition of these elemen-

tary excitations in the Luttinger liquid.

4. Mutual decoherence of elementary

excitations in a Luttinger liquid

4.1 Statement of the problem

The Schrődinger cat states considered here are

superpositions of left or right moving moving Lut-

tinger fermions at different places around the cir-

cle:

|ψRR(0)〉 = 1√
2

(
ψ†R(σ1)|0〉+ ψ†R(σ2)|0〉

)
(4.1)

|ψRL(0)〉 = 1√
2

(
ψ†R(σ1)|0〉+ ψ†L(σ2)|0〉

)
(4.2)

When coupled to an environment, this Schrődinger

cat is expected to decohere into a statistical mix-

ture. Here, two questions will be addressed: what

is the strength of the decoherence process and on

which time scale does it take place?

Let us recall that in QED’s case, the relevant

coupling constant is

g = 4π
αQED

α
.
(vS
c

)2
(4.3)

whre αQED is the fine structure constant, c the

speed of light. In the acoustic case

gph(L) =
D2

αρMLd−1 h̄ c3S
(4.4)

where cS is the sound velocity, ρM the volumic

mass andD the typical electron/phonon coupling

energy.

4.2 Evolution of zero modes

The zero modes evolution at finite temperature

contains two features : (1) a dynamical renor-

malization of the Luttinger liquid’s parameters,

(2) a decoherence factor.

(1) The velocity and interacting parameters

of the Luttinger liquid get renormalized as v′S =
vS . ζ and α

′ = α/ζ. The the renormalization

constant ζ depends on time and equal to:

ζ(t)2 = 1 +
c

πvS

∫ +∞
0

I0(ω)
(
sin(ωt)

ωt
− 1
)
dω

ω
(4.5)

3
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The renormalization effect is of course strongly

cut-off dependent through the bath’s spectral den-

sity for zero modes I)0(ω). The dimensionless
coupling constant appearing in the here is

αQED
α

. vS
c
'

10−5.

(2) The EM decoherence factor between two

different highest weight states |n,m〉 and |n′,m′〉
of the LL is given by e−d(t)(m−m

′)2/α where :

d(t) =
ct2

L

∫ +∞
0

dω I0(ω) coth
(
βh̄ω

2

)
1− cos(ωt)
(ωt)2

.

(4.6)

Decoherence takes place in a time of the order of

the UV cutoff time and then reaches an asymp-

totic value:

d(+∞) =
∫ +∞
0

c

Lω2
I0(ω) coth

(
βh̄ω

2

)
dω

(4.7)

Since acoustic zero modes couple to the total

charge of the Luttinger system, the acoustic de-

coherence factor between states |n,m〉 and |n′,m′〉
is found to be exp (−2αd(t)(n− n′)2)) where d(t)
is obtained by using the acoustic spectral density

and sound velocity cS instead of their electro-

magnetic counterparts. The Luttinger parame-

ters α and vS also get renormalized but only vSα

is renormalized.

In both cases, the final decoherence exponent

is proportional to the square of the difference be-

tween the total current (resp. charge), quanti-

ties which measure the “distance” between the

two quantum states. Besides this, the zero mode

decoherence exponent is of order of the coupling

constant to the environment. Let us notice that

a Schrődinger cat obtained by superposing the

same excitation of the Luttinger liquid at two

different positions along the ring has all its deco-

herence due to hydrodynamic modes !

4.3 Spatial dependence of decoherence

The Caldeira-Legett model has local evolution

kernels and can therefore be solved in closed form.

For Luttinger hydrodynamic modes, this is not

the case (except for the l = 1 modes in the

electromagnetic case or in the 2D acoustic case).

Nevertheless, if the coupling to the bath is weak

enough (γL << vS), a Breit-Wigner approxima-

tion can be performed. This is equivalent to us-

ing an effective Caldeira-Leggett model in order

to estimate the decoherence properties of all Lut-

tinger modes.

Within the Caldeira-Legett model, and pro-

vided the system is weakly damped, the decoher-

ence factor e−D(t) of a Schrodinger cat based on
two coherent states can be computed in terms

of the dissipation rate γ and the coherent state’s

parameters α and β:

D(t) =
|α− β|2
2

(1− e−γt) (4.8)

The decoherence rate is therefore given by a very

simple formula:

τ−1Dec = γ.
|α− β|2
2

(4.9)

The t → +∞ limit of decoherence is indepen-
dent of temperature but the decoherence time

will scale with temperature according to the fac-

tor tanh (h̄ωl/2kBT ) (ωl is the mode’s eigenfre-

quency).

The decoherence rates for the lth hydrody-

namic modes are of the form (τE = L/c):

8π2∆n,m .
Il(ωl)
ωlτE

. F (σ1, σ2) (4.10)

where Il(ωl)
ωlτE

takes into account the bath’s spec-

tral density and the geometrical factor is given

by (σ12 = σ1 − σ2):

F(R/R) = sin
2

(
lπσ12

L

)

F(R/L) = 1 +
m2 − 4n2α2
m2 + 4n2α2

cos

(
2πlσ12
L

)

Here ∆n,m is the conformal dimension of the ver-

tex operator Vn,m(σ). The appearance of an odd

dependence – in term of σ12 – in the R/L de-

coherence rate is understood by noticing that an

appropriate parity operation transforms the R/L

Schrődinger cat into an L/R one. Therefore R/L

decoherence rate is invariant into simultaneous

changes σ1 ↔ σ2 and nm 7→ −nm. Not surpris-
ingly, the decoherence time of aR/R Schrődinger

cat diverges when σ12 → 0. This result is obvious
since in this limit, we have a single excitation.

4
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4.4 Decoherence time estimations: QED’s

case

In this case, the Il(ωl)/(ωlτE) factor is equal to:

g

2π2
.

(
2πvS
c

)2(l−1)
.
l2(l + 1)

(2l+ 1)!

Since vS/c ' 10−3, decoherence times for the l
and l+1 modes are related by a typical factor of

106. This argument shows that the l = 1 modes

dominate the decoherence process. Physically,

higher Luttinger modes contribute to higher elec-

tric and magnetic multipoles, for which radiative

dissipation is known to be weaker. The decoher-

ence rate of the l = 1 mode is nothing but the

electromagnetic relaxation time (τL = L/vS):

γ τL ' 16π
3

αQED

α

(vS
c

)2
' 10−8 (4.11)

4.5 Decoherence time estimations: acous-

tic case

We have shown that all l 6= 0 modes can be con-
sidered as weakly damped. But in contrast to

the electromagnetic case, these damping rates do

not decrease with increasing l. Although in some

cases the coupling constant gph(L) is very small,

“decoherence repartition” effects between modes

plays a much more important role here than in

QED’s case since one has to sum up over many

mode contributions to decoherence.

The total decoherence exponent in the lin-

ear regime is obtained by summing contributions

over all the modes up to the Debye frequency.

Since we sum over a large number of modes, the

decoherence time rapidly decreases when σ12cS �
avS , a spectacular effect due to cS � vS . Roughly

speaking, the Luttinger fermion has the time to

circle many times around the loop before emitted

phonons escape whereas it barely has the time to

move in the electromagnetic case. This “averag-

ing effect” explains why the dependence in the

initial relative position is much weaker for acous-

tic than for electromagnetic decoherence. The

maximal inverse decoherence rate at zero temper-

ature can be expressed in the limit LcS � avS :

τL . γ
(R/R) = ∆n,m

g
(d)
ph (a)

4d−2πd

(
cS

vS

)2
L

a
(4.12)

The temperature dependence is very weak (re-

member we are typically working in situations

where ωDτL > 105 and kBT ' h̄vS/L). To be

precise, it goes like (kBΘD = h̄ωD):

γ(R/R)(T )− γ(R/R)(0)
γ(R/R)(0)

'
(
T

ΘD

)d
(4.13)

In opposition with the photon bath case, the to-

tal acoustic decoherence time scales as L−1 in
units of L/vS.

4.6 Asymptotic decoherence

Applying previous results to the electromagnetic

decoherence (l = 1 modes), asymptotic decoher-

ence exponents can be computed. They have the

same spatial dependance than the decoherence

rates. The typical asymptotic value is simply

proportional to ∆n,m. Again, this number can be

viewed as measuring the “distance” between the

two quantum states which built our Schrődinger

cat. Using vertex operator with small values

of m and n in our Schrődinger cats produces

mesoscopically separated coherent states in each

mode.

In the acoustic case (two dimensional phonon

bath), contributions of all relevant modes should

be summed. As before, the σ12 dependence dis-

appears as soon as σ12 � avS/cS. Introducing

τ∗ = 2π2τLvS/(cSgac(a)), the sum over all Lut-
tinger modes up to the cut-off frequency can be

evaluated:

d(R/R)(t)

d(R/R)(∞) =
d(R/L)(t)

d(R/L)(∞) = 1 +
e−t/τ

∗ − 1
(t/τ∗)

(4.14)

where d(R/R)(∞) = d(R/L)(∞) = ∆n,m cSL/(vSa).
For the continuum approximation to be valid, we

have assumed that L/a � vS/cS and therefore

d(R/R)(∞) � 1. This also implies that most of
the decoherence process is accomplished within

the previously computed acoustic decoherence time

2τ∗/d(R/R)(∞)� τ∗.

5. Conclusion and discussion

5.1 Related works

Within the bosonization framework, the pioneer-

ing work [20] by Martin and Loss investigates

the question of equilibrium permanent currents
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induced by fluctuations of the quantized electro-

magnetic field. They have shown that coupling

the Luttinger liquid to QED leads to a renor-

malization of the Luttinger liquid parameters.

Our discussion of dynamical and therefore non-

equilibrium aspects of the coupled Luttinger &

QED system shows how this renormalization ap-

pears dynamically. Let us mention that coupling

a Luttinger liquid to one dimensional phonons

also renormalizes the Luttinger liquid parame-

ters and drives a 1D Fermi liquid to a non Fermi

liquid fixed point [21, 22]. But a 1D phonon

bath does not introduce any intrinsic decoher-

ence in the Luttinger liquid since it does not

have enough modes. That’s why 2D and 3D

phonon baths are considered in this paper and we

have shown that these baths have enough modes

to kill Schrődinger cat states. Finally, let us

mention the work by Castro-Neto, Chamon and

Nayak [23] who have studied equilibrium correla-

tion functions in an infinite open Luttinger liquid

coupled to an environment.

5.2 Perspectives

In the present work, the environment was as-

sumed to be initially at equilibrium but, one could

imagine changing the state of the environment,

taking into account an external radiation. In-

creasing the incoming radiation power within the

range of resonant frequencies should increase de-

coherence of Schrődinger cat states (enhancement

of dissipation by stimulated emission of radia-

tion). With such environmental states, one ex-

pects to meet also the problem of “decoherence

repartition” between all the modes of the Lut-

tinger system (even in the electromagnetic case).

Although this makes computations much harder

to control, it may lead to more interesting be-

haviors. Altshuler et al. [24] suggested that the

non-equilibrium noise or an external microwave

radiation could explain the saturation observed

in Mohanty and Webb’s experiments. Let us say

that our approach, which only deals with ballistic

conductors, also enables to study the influence of

non-equilibrium noise. It can therefore provide

an insight of the interplay between zero point

fluctuations of the electromagnetic field and pos-

sible external non-equilibrium noise.

These considerations may be interesting from

an experimental point of view since the QED de-

coherence effect is very slow (compared to L/vS).

As pointed out to us by L. Saminadayar, it seems

to be possible to put a Ghz-range generator in

an experiment and then study the variation of

decoherence sensitive quantities. Although this

perspective seems quite interesting, such experi-

ments are quite difficult to perform. In particu-

lar, although the generator can be quite precisely

controled, it is harder to control the electromag-

netic noise experienced by the correlated electron

gas.
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