
Nonperturbative Quantum Effects 2000

PROCEEDINGS

From Fully-Packed Loops to Meanders: Exact

Exponents

P. Di Francesco,

Service de Physique Théorique, C.E.A. Saclay,
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Abstract:We address the meander problem “enumerate all topologically inequivalent configurations

of a closed nonselfintersecting plane curve intersecting a given line through a fixed number of points”.

We show that meanders may be viewed as the configurations of a suitable fully-packed loop statistical

model defined on a random surface. Using standard results relating critical singularities of a lattice

model to its gravitational version on random surfaces, we predict the meander configuration exponent

α = (29 +
√
145)/12 and many other meandric exponents.

1. Introduction

In these notes we will be mainly dealing with

the so-called meander problem, stated as follows:

“Find the number Mn of all topologically in-

equivalent configurations of a closed nonselfin-

tersecting plane curve (road) intersecting a given

line (river) through a fixed number 2n of points

(bridges)”. This is an old problem: it can prob-

ably be traced back to some work by Poincaré

(1911), and reemerged in various contexts since:

as mathematical recreation [1], as folding prob-

lem [2] [3], in relation to the 16th Hilbert prob-

lem [4], in the theory of invariants of 3-manifolds

[5], in computer science [6], in abstract algebraic

terms [7] [8], and in its own right [9] [10].

Our main motivation is the study of the fold-

ing problem of polymer chains. Such a polymer

is ideally described by a chain of identical line

segments attached by their ends, which serve as

hinges between adjacent segments. We will dis-

tinguish between closed and open polymers ac-

cording to whether the chain forms a loop or is

open with two free ends. We will be addressing

the compact self-avoiding folding of such objects,

namely study the various ways in which the poly-

mer can be completely folded onto one of its seg-

ments.

To distinguish between the various ways of

open

closed

Figure 1: Two compactly folded polymers and the

corresponding meanders. The first example is a

closed polymer with 8 segments, and corresponds to

a meander of order 8. The second example is an

open polymer with 6 segments, and corresponds to a

semi-meander of order 7.

compactly folding a closed polymer, we will rep-

resent the folded objects as meanderswith 2n bridges.

To visualize the relation between compactly folded

closed polymers and meanders, it is simplest to

imagine we draw a line perpendicular to the seg-

ments forming the folded polymer with a total of

2n intersections (each segment intersects the line

once), and then separate the various segments

(see Fig.1).

In the case of an open polymer with say n−1
segments, let us attach one of its ends to say a

wall or a support (see Fig.1), so as to prevent the
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polymer from winding around that end. Start-

ing from a compactly folded configuration, let

us again draw this time a circle that intersects

each of the n − 1 segments once, and also in-
tersects the support once. Extending the poly-

mer so as to let it form a half-line with its free

end as origin, we form a planar configuration of

a non-selfintersecting loop (road) crossing a half-

line (river with a source) through n points. These

configurations considered up to smooth deforma-

tions preserving the topology are called semi-

meanders of order n. The total number of semi-

meanders of order n is denoted by M̄n.

The approach developed in this note was first

exposed in [11]: we will actually view meanders

as configurations of a certain two-dimensional sta-

tistical model, formed by covering say the square

lattice with fully-packed loops of two colors (one

color for roads and one for rivers), but instead

of defining the model on a fixed lattice, we de-

fine it on random surfaces of genus zero and fixed

area, materialized by connected planar tetrava-

lent graphs with fixed numbers of vertices. Me-

anders will be recovered by demanding that there

be only one loop of each color in the relevant con-

figurations.

Replacing the square lattice by a statistical

sum over tetravalent graphs is a well-known pro-

cess in physics: it amounts to the coupling of the

critical two-dimensional statistical model at hand

(here the fully packed two-color loop model) with

two-dimensional quantum gravity. By noticing

that our two-color fully-packed loop model on

the square lattice is described in the continuum

limit by a certain conformal theory, we will be

able to use the known dictionary translating the

scaling data of the conformal model into critical

properties of its gravitational version, leading in

particular to the exact singular behavior of the

meander generating function, translated into the

following meander number asymptotics

Mn ∼ C R2n

nα
α =

29 +
√
145

12
(1.1)

The number α is called the meander configura-

tion exponent.

Similarly to (1.1), we will derive the following

large n asymptotics of the semi-meander num-

bers

M̄n ∼ C̄ R̄
n

nᾱ
(1.2)

where it is expected that R̄ = R [10] and the

semi-meander configuration exponent reads [11]

ᾱ = 1 +
1

24

√
11(
√
5 +
√
29) (1.3)

2. The fully-packed loop model for

meanders

2.1 Fully-packed loop gas on the square

lattice

a b

Figure 2: A typical Fully-Packed loop configura-

tion on the square lattice. Assuming doubly periodic

boundary conditions, there are 6 black loops (solid

line) and 4 white ones (dashed lines). Up to rota-

tions, the vertices of the model are of the two types

(a) “crossing” or (b) “avoiding”.

The fully-packed loop model’s configurations are

defined by assigning to each edge of the two-

dimensional square lattice either of two colors

(say black or white, represented as solid or dashed

lines in Fig. 2, also referred to as 1 and 2 in the

following) in such a way that each vertex has

exactly two black and two white incident edges.

Up to obvious rotations, this gives rise to the

only two vertex configurations depicted in Fig. 2

in which the black and white lines either avoid

or cross each other. Note that with say periodic

boundary conditions the black and white lines

form loops on the lattice.

The fully-packed loop model is then further

defined by assigning a weight n1 per black loop

and n2 per white one, so that for instance the

partition function reads

ZFPL(n1, n2) =
∑

fully−packed loop
configurations

nL11 nL22 , (2.1)

where Li denote the total numbers of loops of

each color i = 1, 2. The model with partition

2
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function (2.1) is usually called the FPL2(n1, n2)

model.

The loop weights ni may be rephrased into

local Boltzmann weights as follows. Let us assign

to each black or white loop an arbitrary orienta-

tion, and attach to each vertex a local Boltzmann

weight eiπ(ε1e1+ε2e2)/4 where εj = 1 if the ori-

ented loop of color j makes a left turn, εj = 0

if it goes straight, and εj = −1 if it makes a
right turn. Summing over all possible orienta-

tions of all loops, we get a factor 2 cos πej per

loop of color j, therefore we reproduce the de-

sired loop weights by setting n1 = 2 cos πe1 and

n2 = 2 cos πe2.

2.2 Conformal field theory description

D

C

B

A

Figure 3: A typical configuration of the FPL2 model

together with the bicoloration of its vertices (checker-

board of filled (•) and empty (◦) dots). We have
added the corresponding dictionary that allows to

map the loop configurations onto A,B,C,D label-

ings of the edges.

The FPL2(n1, n2) model is known to be criti-

cal for 0 ≤ ni ≤ 2 [12], and is described in the
continuum limit by a simple conformal field the-

ory based on free scalar fields. To identify these,

it is useful to rephrase the model as a (three-

dimensional) height model as follows. Starting

from an oriented fully-packed black and white

loop configuration, we first bicolor the vertices

of the square lattice, say with alternating filled

(•) and empty (◦) dots. Then we use the dic-
tionary of Fig. 3 to assign one of the four la-

bels A,B,C,D to each colored and oriented edge.

With this convention, it is clear that edges of

typeABAB... alternate along black loops, whereas

edges of type CDCD... alternate along white loops,

and that each vertex has one incident edge of

each type A,B,C,D. It is clear that the four-

labeling with A,B,C,D is in one-to-one corre-

spondence with the coloring and orientation of

edges of the FPL model. In particular, the ori-

entation of a given black or white loop is reversed

if we interchange the A and B or C and D labels

along the loop.

h

h+Dh+A

h h

h+B

h

h+C

Figure 4: Rules determining the change of the

height variable across labeled edges. We adopt the

Ampère convention that the height is increased (resp.

decreased) by the edge value if the arrow of the edge

points to the left (resp. right). The edge labels must

be interpreted as three-dimensional vectors with the

respective values A, −B, C, −D

The above colors allow for defining a dual

vector height variable on the center of each face

of the lattice. Indeed, viewing as vectors the

A,B,C,D labeling of the edges of the lattice,

let us arbitrarily fix the height to be zero on

a given face of the lattice, and define it on all

faces by successive use the rules of Fig. 4 for

the transition from a face to any of its neighbors.

Note that it is necessary to impose the condition

A+B+C+D = 0 to ensure that the heights are

consistently defined around each vertex. We may

therefore assume in all generality thatA,B,C,D

are actually four vectors in IR3 with vanishing

sum; let us take for definiteness A,B,C,D to be

the four unit vectors pointing from the center of

a tetrahedron towards its vertices. The heights

are then clearly three-dimensional, as linear com-

binations of A,B,C,D. In the continuum limit,

it was argued that the three-dimensional height

variable turns into a three-dimensional scalar field.

Moreover the symmetries of the model completely

fix the form of the action for these fields and

the corresponding field theory is conformal, with

central charge cFPL(n1, n2) = 3−6( e
2
1

1−e1 +
e22
1−e2 ),

with ej as above.

3. From fully-packed loop gas to me-

anders

3.1 Meanders: the coupling to gravity

To finally get to meanders, we must consider

the coupling of the FPL2(n1, n2) model to two-

dimensional quantum gravity, by allowing the

3
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square lattice to fluctuate into arbitrary four-

valent graphs. Then for each such graph the

fully-packed loop model is still defined by col-

oring the edges black or white and allowing only

the vertices a and b of Fig. 2. Each colored

loop is then weighted by the appropriate nj fac-

tor j = 1, 2.

If we try to go through the steps of the previ-

ous section, namely to transform the model into

a height model, we stumble on the issue of bi-

colorability of the vertices on the random four-

valent graphs. Indeed, not all graphs are vertex-

bicolorable. So the coupling to gravity stricto

sensu (sum over arbitrary four-valent graphs) will

destroy this property and affect the degrees of

freedom of the model.

h+A

h h

h-A

h

h+C

h

h-C

Figure 5: Rules determining the change of the

height variable across labeled edges in the non-

bicolored case. These rules are identical to those of

Fig. 4, with the further restriction that B = −A
and D = −C, allowing to ignore the bicoloration of
vertices.

Indeed, having lost the bicolorability of vertices,

it is no longer possible to distinguish between A

and B labels on one hand, and C and D on the

other. We may still define an edge-labeling of

the graph in one-to-one correspondence with ori-

ented colored fully-packed loop configurations on

the graph, but with vectors A,B,C,D. satisfy-

ing the two constraintsA+B = 0 andC+D = 0,

and picking sayA andC to be two perpendicular

unit vectors in IR2. The correspondence between

color/orientation and A,C labels reads as in Fig.

5. As in Eq. (2.1), the model is further com-

pleted by attaching weights nj to each loop of

color j = 1, 2. We may now define a height vari-

able on the centers of the faces of the graph, by

use of the previous rules. The main difference is

that the height now lives in two dimensions (the

plane generated byA andC). This ”dimensional

reduction” results in a reduction c→ c−1 of the
central charge of the underlying conformal the-

ory, namely

c(n1, n2) = 2− 6( e21
1− e1 +

e22
1− e2 ) (3.1)

The partition function of the fully-packed model

coupled to quantum gravity, referred to as the

GFPL2(n1, n2) model, reads in genus zero

ZGFPL (n1, n2;x, y) =
∑

four−valent planar
graphs Γ

1
|Aut(Γ)| ×

×∑FPL configs.
on Γ

nL11 n
L2
2 x

Va(Γ)yVb(Γ) (3.2)

where the sum extends over all the genus zero

four-valent graphs Γ, and |Aut(Γ)| is the order
of the symmetry group of Γ, while we have also

denoted by Va, Vb the total numbers of vertices

of type a and b defined in Fig. 2 in the particu-

lar loop configuration, namely we have weighted

each crossing of a black and a white loop by x

and each avoiding by y. When x = y, these are

interpreted as the cosmological constant, as the

total number of vertices Va + Vb of Γ is also the

area of the corresponding dual random surface.

To generate meanders, we must now extract

from (3.2) the configurations with only one black

and one white loop, that will respectively play

the role of the river and the road. This is done

by taking the limit n1, n2 → 0 in (3.2), resulting
in

ZGFPL(x, y) =
ZGFPL(n1,n2;x,y)−1

n1n2

∣∣∣∣
ni=0

=
∑

n,p≥0
n+p≥1

x2nyp

2(2n+p)µ2n,p (3.3)

where we have denoted by µ2n,p the total num-

ber of tangent meanders with 2n crossings and

p tangency points, i.e. configurations of a non-

selfintersecting circuit (road) crossing a line (river)

through 2n points (bridges=a-type vertices) and

touching the river p times (tangent contacts=b-

type vertices). The usual meander numbers de-

fined in [3] correspond to only crossings and no

tangent points and read Mn = µ2n,0.

h

h+A

h-C

h

h-C

hh+A

h

SW

NE

SW

NE

Figure 6: A type b vertex of the FPL2 gravitational

model, together with its dual height configuration.

We note that the NE and SW heights are identical.

We may therefore undo the vertex as shown.

4
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The meanders are therefore generated by the

function (3.3) for y = 0. Let us now show that

the universality class of the tangent meanders is

the same as that of meanders. In the transfor-

mation into a (two-dimensional) height model,

the “tangency” vertex b of Fig. 2 corresponds

to the arrangements of heights on the adjacent

faces of Fig. 6. We notice that in the case of the

“tangency” vertex b, the NE and SW heights are

identical, irrespectively of the orientations of the

two loops. This means that as far as the height

variable is concerned this vertex may be simply

removed as shown. We conclude that the b ver-

tex of the model is irrelevant, i.e. the parameter

y does not drive the model out of the universality

class of meanders.

As a consequence, we expect the following

asymptotics for N = 2n+p large of the partition

function µN (x, y) for tangent meanders with a

total N of bridges and tangency points:

µN (x, y) =
∑

n,p≥0
2n+p=N

x2nypµ2n,p ∼ C(x, y)R(x, y)
N

Nα

(3.4)

where the configuration exponent α is indepen-

dent of x and y for x > 0 and y ≥ 0. In particu-
lar, when y = 0, α is identified with the meander

configuration exponent (1.1).

To conclude this section, thus far we have

determined that the universality class of mean-

ders is that of a conformal field theory coupled

to quantum gravity, with central charge (3.1) at

n1 = n2 = 0, namely c(0, 0) = −4.

3.2 Field theory description of meandric

numbers

The coupling of a conformal field theory with

central charge c ≤ 1 to two-dimensional quantum
gravity has a simple field-theoretical description

in terms of the Liouville field describing the con-

formal classes of metrics of the surfaces. This has

led to a number of results, including the precise

determination of various critical exponents. In-

deed, the gravitational theory (say on genus zero

surfaces) displays a critical behavior as a func-

tion of the cosmological constant x. In particu-

lar, there exists a finite value xc of x at which the

(connected) partition function behaves as Z(x) ∼

(xc − x)2−γ(c) where the string susceptibility ex-
ponent γ is related to the central charge c through

[13]

γ(c) =
c− 1−√(1− c)(25− c)

12
(3.5)

When applied to the GFPL2(0, 0) model of the

previous section (with c = −4), we find that

γ ≡ γ(−4) = −5 +
√
145

12
(3.6)

Applying this to the series expansion of the parti-

tion function ZGFPL(x) =
∑
n≥1

x2n

4n Mn, we de-

duce the asymptotic behavior

Mn ∼ C x
−2n
c

nα
α = 2−γ = 29 +

√
145

12
(3.7)

in agreement with (1.1) with R = 1/xc.

In addition, a number of the operators of the

flat space conformal theory get dressed by grav-

ity, in such a way that they acquire anomalous

scaling dimensions. Any given operator φk with

conformal dimensions hk = h̄k, is dressed into

an operator φ̃k with dressed dimension ∆k such

that the correlation functions behave as

〈φ̃k1 φ̃k2 ...φ̃kp〉 ∼ (xc − x)2−γ+Σ(∆ki−1) (3.8)

when x approaches the critical value xc, and where

the dressed dimension ∆k is related to the flat

space conformal dimension hk through

∆k =

√
1− c+ 24hk −

√
1− c√

25− c−√1− c (3.9)

Let us expose the operator content of the

c = −4 conformal theory describing the flat space
version of our model. For generic values of n1, n2,

it has a continuum description as a two-component

scalar field with charges at infinity. More pre-

cisely, it is a Coulomb gas made of two decoupled

scalar fields, with c = c(ni) = 1− 6e2i /(1− ei) =
−2 at ni = 0 (ei = 1/2) respectively, each viewed
as the effective field theory of loops of one color.

In particular, within each scalar field theory (in-

dexed by the color i = 1, 2), there exist operators

ψ
(i)
k (z) that create k oriented defect lines (of color

i) for the scalar field, with conformal dimensions

h
(i)
k =

k2 − 4
32

(3.10)

5
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at ni = 0. In the Coulomb gas formalism, these

correspond to electromagnetic operators with elec-

tric charge ei (spin-wave) and magnetic charge

±k/2 (vortex), according to whether the defect
line is oriented from or to the insertion point,

and k is a strictly positive integer. For k = 0

Eqn. (3.10) must be replaced by h
(i)
0 = 0 corre-

sponding to the identity operator. The correla-

tion functions must have a vanishing total mag-

netic charge.

Let us now study the dressing of these oper-

ators by gravity, and interpret them in meandric

terms. The dressed operator ψ̃
(i)
k again corre-

sponds to the creation of a vertex with |k| out-
coming (k > 0) or incoming (k < 0) lines of color

i, and the corresponding dressed dimension (3.8)-

(3.9) reads ∆
(i)
k = (12

√
8 + 3k2 − √5)/(√29 −√

5). The main application concerns the two

point function describing the insertion of a seg-

ment of river (color 1)

〈ψ̃(1)1 ψ̃
(1)
−1〉 ∼ (xc − x)2∆1−γ (3.11)

Recall that when we take the limit n1, n2 →
0, only diagrams with one connected component

of river and one of road are selected. In the

case of (3.11), the river forms a segment, around

which the road can freely wind. To fix ambigu-

ities, let us send one end of the river to infinity

(say to the left) and therefore represent the river

as a half-line as in Fig.1. The number of con-

figurations of a closed road crossing a half-line

(river with a source) through n bridges is defined

as the semi-meander number M̄n. We immedi-

ately identify the series expansion of (3.11) as

〈ψ̃(1)1 ψ̃
(1)
−1〉 =

∑
n≥1 M̄nx

n. We therefore deduce

the semi-meander asymptotics

M̄n ∼ c̄ xc
−n

nᾱ
, ᾱ = 1+2∆1−γ = 1+

√
11

24
(
√
5+
√
29)

(3.12)

In [11], a number of other results have been

presented, all corresponding to more sophisticated

river geometries, and making use of the magnetic

defect operators ψ̃
(i)
k , that create river vertices

with |k| branches.
Acknowledgements : This research is supported

in part by European TMR contract ERBFM-

RXCT960012.

References
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