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Abstract

We consider the case of an integrable quantum spin chain with “soliton non-preserving”

boundary conditions. This is the first time that such boundary conditions have been

considered in the spin chain framework. We construct the transfer matrix of the model,

we study its symmetry and we find explicit expressions for its eigenvalues. Moreover,

we derive a new set of Bethe ansatz equations by means of the analytical Bethe ansatz

method.



1 Introduction

So far, quantum spin chains with “soliton preserving” boundary conditions have been studied

[1]-[3]. However, there exists another type of boundary conditions, namely the “soliton non-

preserving”. These conditions are basically known in affine Toda field theories [4]-[6], although

there is already a hint of such boundary conditions in the prototype paper of Sklyanin [8], which

is further clarified by Delius in [4]. It is important to mention that in affine Toda field theories

only the “soliton non-preserving” boundary conditions have been studied [6], [7]. It is still an

open question what the “soliton preserving” boundary conditions are in these theories.

In this work we construct the open spin chain with the “new” boundary conditions, we show

that the model is integrable, we study its symmetry, and evidently, we solve it by means of the

analytical Bethe ansatz method [9]-[11]. This is the first time that such boundary conditions

have been considered in the spin chain framework.

To describe the model it is necessary to introduce the basic constructing elements, namely,

the R and K matrices.

The R matrix, which is a solution of the Yang-Baxter equation

R12(λ1 − λ2) R13(λ1) R23(λ2) = R23(λ2) R13(λ1) R12(λ1 − λ2) (1.1)

(see, e.g., [12]).

Here, we focus on the special case of the SU(3) invariant R matrix [13]

R12(λ)jj ,jj = (λ+ i) ,

R12(λ)jk ,jk = λ , j 6= k ,
R12(λ)jk ,kj = i , j 6= k ,

1 ≤ j , k ≤ 3 . (1.2)

We also need to introduce the R matrix that involves different representations of SU(3) [14],

[15], in particular, 3 and 3̄ (see also [16]). This matrix is given by crossing [17]-[20]

R1̄2(λ) = V1 R12(−λ− ρ)t2 V1 = V t22 R12(−λ− ρ)t1 V t22 , (1.3)

where V 2 = 1. R1̄2(λ) is also a solution of the Yang-Baxter equation

R1̄2(λ1 − λ2) R1̄3(λ1) R23(λ2) = R23(λ2) R1̄3(λ1) R1̄2(λ1 − λ2) . (1.4)

The matrices K−, and K+ which are solutions of the boundary Yang-Baxter equation [21], [6]

R12(λ1 − λ2) K−1 (λ1) R21̄(λ1 + λ2) K−2 (λ2)
= K−2 (λ2) R1̄2(λ1 + λ2) K

−
1 (λ1) R21(λ1 − λ2) , (1.5)

1



and,

R12(−λ1 + λ2) K+1 (λ1)t1 R21̄(−λ1 − λ2 − 2ρ) K+2 (λ2)t2
= K+2 (λ2)

t2 R1̄2(−λ1 − λ2 − 2ρ) K+1 (λ1)t1 R21(−λ1 + λ2) , (1.6)

where ρ = 3i
2
. We can consider that the Ki matrix describes the reflection of a soliton with the

boundary which comes back as an anti-soliton.

It is a natural choice to consider the following alternating spin chain [14], [15], which leads

to a local Hamiltonian. The corresponding transfer matrix t(λ) for the open chain of N sites

with “soliton non-preserving” boundary conditions is (see also e.g., [8], [22])

t(λ) = tr0K
+
0 (λ) T0(λ) K

−
0 (λ) T̂0̄(λ) , (1.7)

where tr0 denotes trace over the “auxiliary space” 0, T0(λ) is the monodromy matrix. We define

for N even

T0(λ) = R0N (λ)R0N̄−1(λ) · · ·R01̄(λ) , T̂0̄(λ) = R1̄0̄(λ)R20̄(λ) · · ·RN 0̄(λ) , (1.8)

(we usually suppress the “quantum-space” subscripts 1 , . . . , N). The transfer matrix satisfies

the commutativity property

[t(λ) , t(λ′)] = 0 . (1.9)

We can change the auxiliary space to its conjugate and then we obtain the t̄(λ) matrix which

satisfies, for K− = K+ = 1,

t̄(λ) = t(λ)t (1.10)

and it also has the commutativity property,

[t̄(λ) , t̄(λ′)] = 0 . (1.11)

The corresponding open spin chain Hamiltonian H is

H ∼ d
dλ
t(λ)t̄(λ)

∣∣∣
λ=0
, (1.12)

and one can show that this is indeed a local Hamiltonian with terms that describe interaction

up to four neighbours.

2 Bethe ansatz equations

We can use the results of the previous sections in order to deduce the Bethe ansatz equations

for the spin chain. First, we have to derive a reference state, namely the pseudo-vacuum. We

consider the state with all spins up i.e.,
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|Λ(0)〉 =
N⊗
k=1

|+〉(k) , (2.1)

this is annihilated by J + where (we suppress the (k) index)

|+〉 =


1

0

0


 . (2.2)

This is an eigenstate of the transfer matrix. The action of the R0k, R0̄k matrices on the |+〉
(〈+|) state gives upper (lower) triangular matrices. Consequently, the action of the monodromy
matrix on the pseudo-vacuum gives also upper (lower) triangular matrices (see also [16]). We

find that the transfer matrix eigenvalue for the pseudo-vacuum state, after some tedious calcu-

lations, is

Λ(0)(λ) = (a(λ)b̄(λ))N
2λ+ i

2

2λ+ 3i
2

+ (b(λ)b̄(λ))N + (ā(λ)b(λ))N
2λ+ 5i

2

2λ+ 3i
2

. (2.3)

One can show that the model has SO(3) symmetry (see [23]), therefore there exist simultaneous

eigenstates of M = 1
2
(N − S) and the transfer matrix, namely,

M |Λ(m)〉 = m|Λ(m)〉 , t(λ)|Λ(m)〉 = Λ(m)(λ)|Λ(m)〉 . (2.4)

We assume that a general eigenvalue has the form of a “dressed” pseudo-vacuum eigenvalue

i.e.,

Λ(m)(λ) = (a(λ)b̄(λ))N
2λ+ i

2

2λ+ 3i
2

A1(λ) + (b(λ)b̄(λ))
NA2(λ) + (ā(λ)b(λ))

N 2λ+
5i
2

2λ+ 3i
2

A3(λ) . (2.5)

Our task is to find explicit expressions for the Ai(λ). We consider all the conditions we derived

previously. The asymptotic behaviour of the transfer matrix

t(λ) = λ2N(3 +
9NI

2λ
)I (2.6)

gives the following condition for λ→∞
3∑
i=1

Ai(λ)→ 3 . (2.7)

From the fusion equation (see e.g., [25])

t̂(λ) = ζ ′(2λ+ 2ρ) t̄(λ) t(λ+ ρ)− ζ(λ+ ρ)N/2ζ ′(λ+ ρ)N/2g(2λ+ ρ)g(−2λ− 3ρ) , (2.8)

where we define,

g(λ) = λ+ i , ζ(λ) = (λ+ i)(−λ + i) , ζ ′(λ) = (λ+ ρ)(−λ+ ρ) , (2.9)
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we obtain conditions involving A1(λ), A3(λ), namely,

A1(λ+ ρ)A3(λ) = 1 . (2.10)

The crossing symmetry of the transfer matrix (see e.g., [10], [16]).

t(λ) = t(−λ− ρ) , (2.11)

provides further restrictions among the dressing functions i.e.,

A3(−λ− ρ) = A1(λ) , A2(λ) = A2(−λ− ρ) . (2.12)

The last two equations combined give

A1(λ)A1(−λ) = 1 . (2.13)

Moreover, for λ = −i the Rmatrix degenerates to a projector onto a three dimensional subspace.
Thus, we can obtain another equation that involves A1(λ) and A2(λ) (see also [9]), namely,

A2(λ)A1(λ+ i) = A1(λ+
i

2
) . (2.14)

Finally, we require A2(λ) to have the same poles with A1(λ) and A3(λ). Considering all the

above conditions together we find that

A1(λ) =
m∏
j=1

λ+ λj − i
2

λ+ λj +
i
2

λ− λj − i
2

λ− λj + i
2

, (2.15)

A2(λ) =
m∏
j=1

λ+ λj +
3i
2

λ+ λj +
i
2

λ− λj + 3i
2

λ− λj + i
2

λ+ λj
λ+ λj + i

λ− λj
λ− λj + i , (2.16)

A3(λ) =
m∏
j=1

λ+ λj + 2i

λ+ λj + i

λ− λj + 2i
λ− λj + i . (2.17)

We can check that the above functions indeed satisfy all the necessary properties. Finally, the

analyticity of the eigenvalues (the poles must vanish) provides the Bethe ansatz equations

e1(λi)
Ne−1(2λi) = −

m∏
j=1

e2(λi − λj) e2(λi + λj) e−1(λi − λj) e−1(λi + λj) , (2.18)

where we have defined en(λ) as

en(λ) =
λ+ in

2

λ− in
2

. (2.19)

Notice that we obtain a completely new set of Bethe equations starting with the known SU(3)

invariant R matrix. Furthermore, the result can be probably generalized for the spin chain

constructed by the SU(N ) invariant R matrix. We expect a reduced symmetry for the general
case as well.
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3 Discussion

We constructed a quantum spin chain with “soliton non-preserving” boundary conditions. We

used the symmetry of the model, the crossing symmetry and the fusion of the transfer matrix

to find the spectrum of the transfer matrix, and we also deduced the Bethe ansatz equations

(2.18) via the analytical Bethe ansatz method. It would be of great interest to study the

trigonometric case. Hopefully, one can find diagonal solutions for the K matrices and solve the

trigonometric open spin chain. The interesting aspect for the trigonometric case is that one can

possibly relate the lattice model with some boundary field theory. Indeed, we know that e.g.,

the critical periodic A(1)N−1 spin chain can be regarded as a discretisation of the corresponding
affine Toda field theory [26]. Finally, one can presumably generalize the above construction

using any SU(N ) invariant R matrix. We hope to report on these issues in a future work [27].

4 Acknowledgements

This work was presented in the “Non-perurbative quantum effects 2000” TMR meeting in Paris.

I am grateful to E. Corrigan, G.W. Delius, and R.I. Nepomechie for helpful discussions. This

work was supported by the European Commission under the TMR Network “Integrability,

non-perturbative effects, and symmetry in quantum field theory”, contract number FMRX-

CT96-0012.

References
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