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S tructure functions in inclusive deep-inelastic scattering offer the possibility for ex-tremely precise determinations of the strong coupling αs and the parton distribution

functions. The high statistical accuracy of the present experimental measurements, and

the data expected from the electron-proton collider HERA after the luminosity upgrade,

demand analyses in perturbative QCD beyond the standard next-to leading order (NLO)

corrections. In order to match the experimental precision, it is therefore necessary to cal-

culate higher order perturbative QCD corrections for the structure functions F2, F3 and

FL, in particular the complete next-to-next-to leading order (NNLO) corrections. This

information is not fully available yet. Some time ago, the two-loop coefficient functions

of F2, F3 and FL have been calculated [1], and more recently, they have been completely

checked [2]. However, for the three-loop anomalous dimensions γ
(2)
pp , only partial results are

available thus far. These include a finite number of fixed Mellin moments [3, 4, 5, 6], both

for F2 and F3, the large nf -limit [7] of γ
(2)
qq and γ

(2)
gg , in the latter case only the coefficient

of the colour factor n2fCA, and several terms relevant in the small-x limit [8].

∗Speaker.
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1. Prospects

To explore the prospects of a complete NNLO analysis in this situation, it has been a fruitful

strategy to combine all theoretical information presently available together with reason-

able assumptions about the parton distributions or the functional form of the three-loop

splitting functions P
(2)
pp (x). These investigations resulted in approximate expressions [9] for

P
(2)
pp (x) with negligible residual uncertainties for x>∼ 10−2. Subsequent studies of the NNLO
evolution of parton distributions revealed a much reduced scale dependence in comparison

to standard NLO analyses. Together with recent developments to account for correlated

experimental errors [10] in analyses and a rigorous statistical treament [11] of parton dis-

tributions, these efforts seem to allow for quantitative estimates of the parton distribution

uncertainties. Let us emphasize, that this task is of basic importance for precise lumi-

nosity measurements via W- and Z-boson production in upcoming experiments at hadron

colliders, and therefore essential for future searches of the Higgs particle or effects of new

physics.

The precision determination of the running coupling αs based on the available partial

information about NNLO QCD corrections has also been performed. The CCFR data for

xF3 from νN -scattering [12] has been analyzed [13] using the fixed Mellin moments [3,

4, 5, 6] for F3. The SLAC and HERA data from eP -scattering [14] have been averaged

with Bernstein polynomials to extract αs in a direct fit of Mellin moments to experimental

data [15]. The analyses agree within their errors and, more importantly, indicate that an

absolute error for the strong coupling ∆αs<∼ 1% is possible. In addition, the effect of higher
twist contributions, i.e. terms suppressed as 1/Q2, have been studied [13] and the NNLO

evolution of parton distributions has even been used to put bounds on squark and gluino

masses [15]. Finally, it is worth mentioning that the knowledge of a number of fixed Mellin

moments of the three-loop coefficient functions [3, 4, 5, 6] enables analyses even beyond

NNLO and allows for estimates of the effect of the next-to-NNLO corrections.

In summary, with the complete NNLO QCD analyses for the structure functions F2, F3
and FL a new level of precision is reached in comparing theoretical predictions to exper-

imental data. Moreover, the chance arises to address new questions which could not be

studied before.

2. Progress

Progress towards the calculation of the three-loop anomalous dimensions and the coeffi-

cient functions crucially relies on the ability to perform all necessary loop integrations. A

promising approach [16, 17] which allows to calculate the integrals in Mellin space analyti-

cally as a general function of N , is based on the optical theorem and the operator product

expansion (OPE). The parameters of the OPE are directly related to the Mellin moments

of the structure functions. For F2 we can write

FN2 (Q
2) =

1∫
0

dxxN−2F2(x,Q2) =
∑
j=α,q,g

CN2,j

(
Q2

µ2
, αs

)
AjP,N

(
µ2
)
, (2.1)
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and similar relations define FN3 and F
N
L . Here, C

N
2,j denote the coefficient functions and

AjP,N the spin averaged hadronic matrix elements of singlet operators O
q, Og and non-

singlet operators Oα, α = 1, 2, . . . , (n2f − 1), of leading twist. The coefficient functions
and the renormalized operator matrix elements in eq.(2.1) both satisfy renormalization

group equations. Due to current conservation they are governed by the same anomalous

dimensions γjk, which determine the scale evolution of deep-inelastic structure functions,

∑
k=α,q,g

[{
µ2
∂

∂µ2
+ β(αs(µ

2))
∂

∂αs(µ2)

}
δjk + γjk(αs(µ

2))
]
A
j
P,N

(
µ2
)
= 0 , (2.2)

∑
k=α,q,g

[{
µ2
∂

∂µ2
+ β(αs(µ

2))
∂

∂αs(µ2)

}
δjk − γjk(αs(µ2))

]
CN2,k

(
Q2

µ2
, αs(µ

2)

)
= 0 , (2.3)

where j = α, q, g and β represents the β-function of QCD.

The task is the calculation of the coefficient functions CN2,j and the anomalous dimen-

sions γjk in dimensionally regulated perturbation theory. In practice, at a given order in

perturbation theory, this amounts to calculating the N -th moment of all contributing four-

point diagrams with external partons of momentum p, p2 = 0 and photons of momentum

q, which is precisely the coefficient of (p · q/q2)N .
In order to do so, it is useful to set up a hierarchy among all diagrams depending on the

number of p-dependent propagators. We define basic building blocks (BBB) as diagrams in

which the parton momentum p flows only through a single line in the diagram. Composite

building blocks (CBB) are all diagrams with more than one p-dependent propagator. At

the three-loop level, there are 10 BBB’s, and 32 CBB’s respectivley, which correspond to

genuine three-loop topologies of the ladder, benz or non-planar type. In addition, there

exist numerous BBB’s and CBB’s at three loops with an effective two-loop topology and a

self-energy insertion in one line.

For the BBB’s, the single p-dependent propagator, say 1/(p − l) · (p − l) in a loop
with momentum l, can be expanded into a geometrical sum using p2 = 0. Then, scaling

arguments require the final answer for theN -th moment to be proportional to the coefficient

(2 p · l/l2)N . Thus, one is left with two-point functions with symbolic powers of scalar
products in the numerator and denominator. For these objects, one sets up a reduction

scheme, that relates the BBB under consideration to simpler diagrams, where certain lines

are eliminated, such that the topology simplifies. For the CBB, a straightforward expansion

of the p-dependent propagators leads to multiple nested sums, which in general are very

difficult to evaluate. Hence, one has to seek a reduction scheme, that maps a given CBB

onto BBB’s. This is achieved, if one can remove a p-dependent propagator. If one can get

rid of a p-independent propagator, usually the topology simplifies.

For the BBB’s and the CBB’s alike the reduction schemes are determined with the help

of integration-by-parts identities [18, 19] and scaling identities [2]. The reduction identities

often involve explicitly the parameter N of the Mellin moment and sometimes one has to

set up difference equations in N for the N -th moment F (N) of a diagram ,

a0(N)F (N) + a1(N)F (N − 1) + . . . + an(N)F (N − n) +G(N) = 0 , (2.4)
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where G(N) denotes the N -th Mellin moment of simpler diagrams. In the reduction

schemes for three-loop diagrams, we have encountered difference equations up to the third

order. First order difference equations can be solved at the cost of one sum over Γ-functions

in dimensional regularization, D = 4− 2ε. The Γ-functions can be expanded in ε and the
sum can be solved to any order in ε in terms of harmonic sums [20, 21]. Higher order

difference equations could be solved constructively. In general, the approach to calculate

Mellin moments of structure functions relies on particular mathematical concepts [22],

such as harmonic sums [20, 21] and related sums [23]. Subsequently, the inverse Mellin

transformation to x-space requires harmonic polylogarithms [24], or more general, mul-

tiple polylogarithms [25]. Difference equations for the evaluation of Feynman diagrams,

although not in the context of Mellin moments, have recently also been studied by other

authors [26, 27].

Let us present an example of a diagram of the non-planar type, that gives rise to a

third order difference equation,

∫
dDl1 d

Dl2 d
Dl3

1

l21 (p + l2)
2 l23 . . . l

2
8

, (2.5)

where l4 = l3 − q, l5 = l1 − l2 + l3 − q, l6 = l1 − q, l7 = l2 − l1 and l8 = l2 − l3, see ref. [28]
for the conventions of the momentum flow. The result for the N -th Mellin moment of this

diagram is given by the coefficient cN ,

1

1

1 1

1 1

1 1

= cN

(
p · q
q2

)N
. (2.6)

The solution for cN is expressed in terms of harmonic sums of weight six, as it is expected

for the finite terms of a three-loop diagram. We obtain for cN ,

cN =
(−1)N
N + 1

(
8S−3,−2(N+1) + 8S2(N+1)ζ3 + 4S2,−3(N+1)− 4S2,3(N+1) (2.7)

+4S3,−2(N+1) + 4S3,2(N+1) + 10ζ5
)
+

1

N + 1

(
4S−3,−2(N+1) + 4S−3,2(N+1)

+8S−2(N+1)ζ3 + 4S−2,−3(N+1)− 4S−2,3(N+1) + 8S3,−2(N+1) + 10ζ5
)
.

This illustrates nicely that our method will not only provide the anomalous dimensions,

which are proportional to the single pole in ε in dimensional regularization, but also the

coefficient functions which are determined by the finite terms at three loops.

In a systematic study we could set up, solve and program the complete reduction

identities for all three-loop BBB’s and all genuine three-loop CBB’s of the ladder, benz and

non-planar type. We have used FORM [29] for this task and performed checks at all stages

of the calculation with the standard MINCER routine [28] by evaluating the expressions for

a number of fixed values of the Mellin moment N . Optimization of the program requires

the tabulation of several thousand two- and three-loop integrals in order to evaluate a given

Feynman diagram in reasonable time. Thus far, the creation of these tables has already

used a large amount of computer time. The complete database of Feynman diagrams for
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the structure functions F2, F3 and FL has been generated with QGRAF [30] and contains

roughly 11000 diagrams up to three loops. At present, the implementation of the reduction

scheme is not complete yet. We expect that finishing the program along with the testing

and finally the actual calculation of all Feynman diagrams still requires a lot of work.

3. Conclusions

The complete NNLO perturbative QCD corrections for deep-inelastic structure functions

significantly reduce the theoretical uncertainties in the determination of the strong cou-

pling αs and the parton distributions. A precise knowledge of these quantities, including a

quantitative error estimate, will be particularly important for new hadron collider experi-

ments.

The present approach based on the OPE, to calculate the Mellin moments of the three-

loop structure functions seems to allow a successful completion. The approach relies on

the ability to solve all nested sums as functions of N in terms of harmonic sums, to set

up and solve difference equations in N and, finally, to reconstruct the complete analytical

expressions of the results in x-space by means of an inverse Mellin transformation.

As far as the theoretical developments are concerned, we believe that there is a realistic

chance for very high precision measurements in deep-inelastic scattering.
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