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Abstract: I review progress related to the calculation of QCD jet cross sections at the

NLO accuracy. After a short introduction into the theory of NLO calculations, I discuss

two recent developments: the calculation of two- and three-jet leptoproduction at the

NLO accuracy and the extension of the dipole subtraction method for computing NLO

corrections for processes involving massive partons.

Jet cross sections at the NLO accuracy consist of the first two terms of the perturbative

expansion in the strong coupling,

σ = σLO + σNLO =

∫
m

dσB + σNLO . (1)

The leading order cross section is the integral of the fully exclusive Born matrix element

of m final-state partons over the available phase space. The NLO correction is a sum of

two terms: the real correction is the integral of the Born matrix element of m + 1 final-

state partons and the virtual correction is the integral of the interference term between the

Born-level and one-loop amplitudes of m final state partons,

σNLO =

∫
m+1
dσR +

∫
m

dσV . (2)

In four dimensions both contributions are divergent. An observable is IR-safe if the total

NLO correction is finite in four dimensions. However, for almost all cases of interest

the phase-space integrations cannot be performed analytically, therefore, in the sum, the

cancellation of the singularities requires special care. In the literature several general

methods are described [1] to find this finite contribution, each relying on the same principle,

namely we subtract an auxiliary cross section from the real corrections such that dσA has

the same pontwise singular behaviour in any dimensions as dσR. Moreover, dσA has to be
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chosen simple enough, so that it is analytically integrable in d dimensions over the one-

parton subspaces that cause the soft and collinear divergences and thus it can be combined

with the virtual contribution to give a finite correction in four dimensions. Thus the total

NLO contribution can be written as a sum of two terms, an (m+1)-parton and anm-parton

integral,

σNLO =

∫
m+1

[(
dσR
)
ε=0
− (dσA)

ε=0

]
+

∫
m

[
dσV +

∫
1
dσA
]
ε=0

. (3)

Although, the principle is simple, the numerical implementation that is also stable and

efficient is difficult. The various methods, that differ in the explicit choice for the auxiliary

cross section, were developed with the aim of finding the solution with the best numerical

behaviour. In this respect, the dipole method [2] has several advantageous features, only

partially shared by the other techniques: (i) The calculation is exact; the same auxiliary

cross section is subtracted and added back. (ii) The phase space is exactly the same for the

dσR as for dσA, which allows for an efficient generation of the phase space, most suitable for

the actual calculation at hand. (iii) There is no need for any particular manipulation of the

squared matrix element. (iv) The calculation is Lorentz invariant at any intermediate step,

thus switching between various frames of reference can be achieved by simply transforming

the momenta. (v) There is no need for crossing functions, thus partonic cross sections can

be calculated also with hadrons in the initial state. (vi) It can be implemented in a fully

process independent way, therefore, a truly general purpose code, suitable for any initial

states, can be written and the same matrix elements in the same code can be used for

various processes. The first such example is the NLOJET++ code that already incorporates

three- and four-jet production in e+e− annihilation [3], two- and three-jet leptoproduction
[4] and two- and three-jet hadroproduction [5].

As a new application of the method, let us turn to the computation of NLO corrections

to three-jet leptoproduction. Although the NLOJET++ program can be used for calculating

any IR-safe observable, for the sake of comparison with existing data I present differential

distributions that were also measured by the H1 collaboration at HERA. In order to make

the comparisons, I used the same kinematic range as employed in the experiment, i.e.,

5GeV2 < Q2 < 5000GeV2, 0 < xBj < 1, 0.2 < y < 0.6, −1 < ηlabjet < 2.5, EBreitT,jet > 5GeV.

The hard scale was chosen to be the average transverse momentum of the three-jets. The

leading order curves were obtained using the CTEQ5L pdf’s and αs run from αs(MZ0) =

0.127 using one-loop running, and the NLO curves with CTEQ5M1 pdf’s and αs run from

αs(MZ0) = 0.118 using two-loop running. The three-jet final states were selected using the

inclusive kT algorithm. The plots in Figs. 1 and 2 show the differential distributions in

the momentum transfer squared and the Bjorken variable, respectively. We can observe

that the leading order predictions have different shape than the data: too low for small

values of the variables and too high for large values. The radiative corrections bring theory

and experiment much closer. Taking into account the hadronization corrections, the NLO

prediction gives a remarkably good description of the data.

We should consider the impressive agreement with caution. For small values of Q2 the

radiative corrections are rather large (between 30 and 60%), so we may expect that the

higher order corrections are also large, which is also indicated if we look at the dependence
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Figure 1: The three-jet differential distribu-

tion in the momentum transfer squared Q2.

Figure 2: The three-jet differential distri-

bution in the xBj Bjorken variable.

of the NLO prediction for the (3+1)-jet inclusive cross section on the renormalization and

factorization scales in Fig. 3. The scale dependence of the cross section at NLO is still

large indicating potentially large higher order corrections. At high Q2 (see Fig. 4 we find

that the renormalization-scale dependence is reduced significantly, while the originally not

too strong factorization-scale dependence does not change substantially. Setting the two

scales equal, at NLO we find a rather flat curve with a wide plato around the chosen hard

scale. If Q2 is large, however, the NLO corrections are negative indicating that all order

resummation of terms such as ln 1/xBj may be important, which will typically increase the

cross sections.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
2
/Q

2
H.S.

80

100

120

140

160

180

200

220

240

260

280

3+
1

[p
b]

inclusive k algorithm with CTEQ5M1 pdf

5 < Q
2

< 100GeV
2

F
2 = 2 & R

2 = Q2
H.S.

R
2 = 2 & F

2 = Q2
H.S.

R
2 = F

2 = 2
H1 (1- had)

NLO

LO

MRST99

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
2
/Q

2
H.S.

20

25

30

35

40

45

50

55

60

3+
1

[p
b]

inclusive k algorithm with CTEQ5M1 pdf

150 < Q
2

< 5000 GeV
2

F
2 = 2 & R

2 = Q2
H.S.

R
2 = 2 & F

2 = Q2
H.S.

R
2 = F

2 = 2
H1 (1- had)

NLO

LO

MRST99

Figure 3: The scale-dependences of the in-

clusive three-jet cross section at low Q2.

Figure 4: The scale-dependences of the in-

clusive three-jet cross section at high Q2.

Let us now turn to discussing some developments in the theory of NLO calculations for

processes involving massive partons. A lot of such calculations exist in the literature, but

most of them were carried out for a specific process, not with the general methods worked

out for processes of massless partons. The role of massive partons will become even more
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important when the LHC comes into operation and perhaps a lot of new massive coloured

particles will be found, or at least will be searched for. Recently, both the slicing [6] and

the dipole [7] techniques were extended to taking into account the parton masses. Here I

advocate another extension of the dipole method which has a smooth zero-mass limit.

In order to understand why the zero-mass limit may be important, let us recall the

different physical roles the finite mass M of the QCD partons play in different physical

processes. In some processes (e.g. the total cross section for heavy-quark hadroproduction)

the finite (and large) value of M has the essential role of setting the hard scale of the cross

section. In these cases the massless limit is IR unstable, and the corresponding cross section

cannot be computed in QCD perturbation theory. In other processes (e.g. the production

of heavy-flavoured jets), instead, the hard scale Q is independent of the mass M , and the

latter has only the role of an auxiliary (though important) kinematic scale. These processes

are IR stable in the massless limit, that is, when M → 0 the cross section is still infrared-
and collinear-safe and, thus, perturbatively computable.

The processes that are perturbatively stable in the massless limit are often studied in

kinematic regions where the typical hard scale Q is much larger than the mass M of one

(or more) of the heavy partons. In this regime the integral of the real term dσR(M) of the

NLO cross section in eq. (2) leads to contributions of the type

∫
m+1
dσR(M) →

∫ Q2
0
dq2⊥

(
q2⊥
)−ε 1

q2⊥ +M2 Q̃�M
ln
Q2

M2
+O(ε) , (4)

∫
m+1
dσR(M) →

∫ Q2
0
dq2⊥

(
q2⊥
)−ε M2[

q2⊥ +M2
]2 Q̃�M M2 1M2 +O(ε) , (5)

where q⊥ generically denotes the typical transverse momentum of the heavy parton with
mass M . Since these contributions are finite when ε → 0, naively, they would not re-
quire any special treatments within the subtraction method. However, this could lead to

serious numerical problems in kinematic regions where Q � M . When computing the
NLO cross section, the large lnQ2/M2 contribution would appear in the first term (the

(m+1)-parton integral) on the right-hand side of Eq. (3), and it would be compensated by

an equally large (but with opposite sign) logarithmic contribution arising from the second

term (the m-parton integral). Owing to the presence of several large (although compensat-

ing) contributions, a similar naive procedure would lead to instabilities in any numerical

implementations of the NLO calculation. The numerical instabilities would increase by in-

creasing the ratio Q/M and, in particular, they would prevent from performing the massless

limit. The second contribution in Eq. (5) can also lead to numerical instabilities due to the

presence of a linearly divergent (in the limit M2/Q2 → 0) integral, because its variance
increases linearly with Q2/M2.

These numerical problems can be avoided if we set up our massive-parton formalism

by choosing the auxiliary cross section dσA(M) in such a way that the following property

is fulfilled:

lim
M→0

∫
m+1

[(
dσR(M)

)
ε=0
− (dσA(M))

ε=0

]
=

∫
m+1

[(
dσR(M = 0)

)
ε=0
− (dσA(M = 0))

ε=0

]
.

(6)
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To avoid the problems related to the large logarithmic contributions in Eq. (4), it is suf-

ficient to impose that the integral of the subtracted cross section on the left-hand side of

Eq. (6) is finite when M → 0. Equation (6) is, instead, a stronger constraint. It implies
that, in the evaluation of the subtracted cross section, the massless limit (or, more gen-

erally, the limit M/Q → 0) commutes with the (m + 1)-parton integral. This guarantees
that [dσR(M)− dσA(M)] does not contain integrands of the type in Eq. (5).
The explicit details of the algorithm will be published soon. Here, I only remark that

it follows from eqs. (3) and (6) that the m-parton contribution also possesses a smooth

zero-mass limit,

lim
M→0

∫
m

[
dσV(M) +

∫
1
dσA(M)

]
ε=0

=

∫
m

[
dσV(M = 0) +

∫
1
dσA(M = 0)

]
ε=0

, (7)

provided the analytic integration over the one-parton phase space,
∫
1 is performed uni-

formly in the parton masses. Relation (7) can be utilized to deduce the universal singular

behaviour, both as ε → 0 and as M → 0, of the one-loop QCD amplitudes [8]. The first
computation employing our techniques is published in Ref. [9]).

In summary, the theory of NLO calculations is well established, including massive par-

tons. For QCD phenomenology the NLO corrections are known for the most interesting

processes, including two- and three-jet hadro- and leptoproduction and two-jet photopro-

duction. Jet phenomenology could benefit from (i) a program for three-jet photoproduction,

(ii) programs for heavy-flavoured jet lepto-, hadro-, photoproduction and (iii) programs for

vector-boson(s) and associated jet(s) hadroproduction.
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