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Abstract: We construct a model based on SUSY SO(10) combined with U(2) fam-

ily symmetry including complex phases leading to CP violation. In contrast with the

commonly used effective operator approach, 126-dimensional Higgs fields are utilized to

construct the Yukawa sector. R-parity symmetry is thus preserved at low energies. The

symmetric mass textures arising from the left-right symmetry breaking chain of SO(10)

give rise to very good predictions for quark and lepton masses and mixings. The pre-

diction for sin 2β agrees with the current bounds from BaBar and Belle. In the neutrino

sector, our predictions are in good agreement with results from atmospheric neutrino ex-

periments. Our model favors both the LOW and QVO solutions to the solar neutrino

anomaly; the matrix element for neutrinoless double beta decay is highly suppressed. The

leptonic analog of the Jarlskog invariant, J lCP , is predicted to be of O(10
−2).

SO(10) has long been thought to be an attractive candidate for a grand unified theory

(GUT) for a number of reasons: First of all, it unifies all the 15 known fermions with the

right-handed neutrino for each family into one 16-dimensional spinor representation. The

seesaw mechanism then arises very naturally, and the non-zero neutrino masses can thus

be explained. Since a complete quark-lepton symmetry is achieved, it has the promise for

explaining the pattern of fermion masses and mixing. Because B−L contained in SO(10)
is broken in symmetry breaking chain to the SM, it also has the promise for baryogenesis.

Recent atmospheric neutrino oscillation data from Super-Kamiokande indicates non-zero

neutrino masses. This in turn gives very strong support to the viability of SO(10) as

a GUT group. Models based on SO(10) combined with discrete or continuous family

symmetry have been constructed to understand the flavor problem. Most of the models

utilize “lopsided” mass textures which usually require more parameters and therefore are

less constrained. Furthermore, the right-handed neutrino Majorana mass operators in

most of these models are made out of 16H × 16H which breaks the R-parity at a very high
scale. The aim of this talk, based on Ref.[1, 2], is to present a realistic model based on

supersymmetric SO(10) combined with U(2) family symmetry which successfully predicts
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the low energy fermion masses and mixings. Since we utilize symmetric mass textures

and 126-dimensional Higgs representations for the right-handed neutrino Majorana mass

operator, our model is more constrained in addition to having R-parity conserved. We first

discuss the viable phenomenology of mass textures followed by the model which accounts

for it, and then the implications of the model for neutrino mixing, CP violation, neutrinoless

double beta decay and leptogenesis are presented.

The set of up- and down-quark mass matrix combination is given by, at the GUT scale,

Mu =


 0 0 aeiγa

0 beiγb ceiγc

aeiγa ceiγc eiγ


 dvu, Md =


 0 eeiγe 0

eeiγe feiγf 0

0 0 eiγh


hvd (1)

with a ' b � c � 1, and e � f � 1. Symmetric mass textures arise naturally if SO(10)
breaks down to the SM through the left-right symmetric breaking chain SU(4)×SU(2)L×
SU(2)R. SO(10) relates the up-quark mass matrix to the Dirac neutrino mass matrix, and

the down-quark mass matrix to the charged lepton mass matrix. To achieve the Georgi-

Jarlskog relations, md ' 3me, ms ' 1
3mµ, mb ' mτ , a factor of −3 is needed in the (2, 2)

entry of the charged lepton mass matrix,

Me =


 0 eeiγe 0

eeiγe −3feiγf 0

0 0 eiγh


hvd (2)

This factor of −3 can be accounted for by the SO(10) CG coefficients associated with
126-dimensional Higgs representations. In order to explain the smallness of the neutrino

masses, we will adopt the type I seesaw mechanism. The Dirac neutrino mass matrix is

identical to the mass matrix of the up-quarks in the framework of SO(10)

MνLR =


 0 0 aeiγa

0 beiγb ceiγc

aeiγa ceiγc eiγ


 dvu (3)

The right-handed neutrino sector is an unknown sector. It is only constrained by the

requirement that it gives rise to a bi-maximal mixing pattern and a hierarchical mass

spectrum at low energies. To achieve this, we consider an effective neutrino mass matrix

of the form

MνLL =M
T
νLR

M−1
νRR

MνLR =


 0 0 t0 1 1

t 1 1


 d2v2u

MR
(4)

The effective neutrino mass matrix of this form is obtained if the right-handed neutrino

mass matrix has the same texture as that of the Dirac neutrino mass matrix,

MνRR =


 0 0 δ10 δ2 δ3
δ1 δ3 1


MR (5)
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and if the elements δi are of the right orders of magnitudes, determined by δi = fi(a, b, c, t, θ),

where θ ≡ (γb−2γc−γ). Note thatMνLL has the same texture as that ofMνLR andMνRR .
That is to say, the seesaw mechanism is form invariant. A generic feature of mass matrices

of the type given in Eq.(4) is that they give rise to bi-maximal mixing pattern. After

diagonalizing this mass matrix, one can see immediately that the squared mass difference

between m2ν1 and m
2
ν2 is of the order of O(t

3), while the squared mass difference between

m2ν2 and m
2
ν3 is of the order of O(1), in units of Λ. For t � 1, the phenomenologically

favored relation ∆m2atm � ∆m2� is thus obtained.
The U(2) family symmetry is implemented á la the Froggatt-Nielsen mechanism which

simply states that the heaviest matter fields acquire their masses through tree level interac-

tions with the Higgs fields while masses of the lighter matter fields are produced by higher

dimensional interactions involving, in addition to the regular Higgs fields, exotic vector-like

pairs of matter fields and the so-called flavons (flavor Higgs fields). After integrating out

superheavy (≈ M) vector-like matter fields, the mass terms of the light matter fields get

suppressed by a factor of <θ>M , where < θ > is the VEVs of the flavons and M is the

UV-cutoff of the effective theory above which the family symmetry is exact. We assume

that the family symmetry scale is higher than the GUT scale. The heaviness of the top

quark and to suppress the SUSY FCNC together suggest that the third family of matter

fields transform as a singlet and the lighter two families of matter fields transform as a dou-

blet under U(2). In the family symmetric limit, only the third family has non-vanishing

Yukawa couplings. U(2) breaks down in two steps: U(2)
εM−→ U(1)

ε′M−→ nothing, where

ε′ � ε� 1 and M is the family symmetry scale. These small parameters ε and ε′ are the
ratios of the vacuum expectation values of the flavon fields to the family symmetry scale.

Since ψ3ψ3 ∼ 1S , ψ3ψa ∼ 2, ψaψb ∼ 2 ⊗ 2 = 1A ⊕ 3, the only relevant flavon fields are
in the Aab ∼ 1A, φa ∼ 2, and Sab ∼ 3 dimensional representations of U(2). Because we
are confining ourselves to symmetric mass textures, we use only φa and Sab. In the chosen

basis, the VEVs various flavon fields could acquire are given by

〈φ〉
M
∼ O

(
ε′

ε

)
,

〈
Sab
〉

M
∼ O

(
ε′ ε′

ε′ ε

)
(6)

Putting everything together, a symmetric mass matrix would have the following built-in

hierarchy given by 
 ε′ ε′ ε′

ε′ ε ε

ε′ ε 1


 (7)

Combining SO(10) with U(2), the most general superpotential which respects the symme-

try one could write down is given schematically by

W = H(ψ3ψ3 + ψ3
φa

M
ψa + ψa

Sab

M
ψb) (8)

A discrete symmetry (Z2)
3 is needed to avoid unwanted couplings. The field content

of our model is then given by
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– matter fields

ψa ∼ (16, 2)−++ (a = 1, 2), ψ3 ∼ (16, 1)+++

– Higgs fields:

(10, 1) : T+++1 , T−+−2 , T−−+3 , T−−−4 , T+−−5

(126, 1) : C
−−−

, C
+++
1 , C

++−
2

– Flavon fields:
(1, 2) : φ++−(1) , φ+−+(2) , Φ−+−

(1, 3) : S+−−(1) , S−−−(2) , Σ++−

and the superpotential of our model which generates fermion masses is given by

W =WD(irac) +WM(ajorana)
WD = ψ3ψ3T1 +

1
Mψ3ψa

(
T2φ(1) + T3φ(2)

)
+ 1
Mψaψb

(
T4 + C

)
S(2) +

1
MψaψbT5S(1)

WM = ψ3ψ3C1 +
1
Mψ3ψaΦC2 +

1
MψaψbΣC2

(9)

where Ti’s and Ci’s are the 10 and 126 dimensional Higgs representations of SO(10) respec-

tively, and Φ and Σ are the doublet and triplet of U(2), respectively. Detailed quantum

number assignment and the VEVs acquired by various scalar fields are given in Ref.[1].

This superpotential gives rise to the mass textures given in Eq.(1)-(5):

Mu,νLR =


 0 0

〈
10+2

〉
ε′

0
〈
10+4

〉
ε
〈
10+3

〉
ε〈

10+2
〉
ε′
〈
10+3

〉
ε
〈
10+1

〉

 =


 0 0 r2ε

′

0 r4ε ε

r2ε
′ ε 1


MU (10)

Md,e =




0
〈
10−5

〉
ε′ 0〈

10−5
〉
ε′ (1,−3)

〈
126

−〉
ε 0

0 0
〈
10−1

〉

 =


 0 ε′ 0

ε′ (1,−3)pε 0
0 0 1


MD (11)

where MU ≡
〈
10+1

〉
, MD ≡

〈
10−1

〉
, r2 ≡

〈
10+2

〉
/
〈
10+1

〉
, r4 ≡

〈
10+4

〉
/
〈
10+1

〉
and p ≡〈

126
−〉

/
〈
10−1

〉
. The right-handed neutrino mass matrix is

MνRR =




0 0
〈
126

′0
2

〉
δ1

0
〈
126

′0
2

〉
δ2

〈
126

′0
2

〉
δ3〈

126
′0
2

〉
δ1

〈
126

′0
2

〉
δ3

〈
126

′0
1

〉

 =


 0 0 δ10 δ2 δ3
δ1 δ3 1


MR (12)

with MR ≡
〈
126

′0
1

〉
. Note that, since we use 126-dimensional representations of Higgses

to generate the heavy Majorana neutrino mass terms, R-parity is preserved at all energies.

With values of mf , (f = u, c, t, e, µ, τ) and those of |Vus,ub,cb| at the weak scale, the
input parameters at the GUT scale are determined. The predictions for the charged

fermion masses and CKM mixing of our model at MZ which are summarized in Table[1]

including 2-loop RGE effects are in good agreements with the experimental values. In

the neutrino sector, the LOW solution to the solar neutrino problem is obtained with
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experimental results predictions at Mz
extrapolated to MZ

ms
md

17 ∼ 25 25

ms 93.4
+11.8
−13.0MeV 85.66MeV

mb 3.00+−0.11GeV 3.147GeV

|Vud| 0.9745 − 0.9757 0.9751

|Vcd| 0.218 − 0.224 0.2218

|Vcs| 0.9736 − 0.9750 0.9744

|Vtd| 0.004 − 0.014 0.005358

|Vts| 0.034 − 0.046 0.03611

|Vtb| 0.9989 − 0.9993 0.9993

J
q
CP

(2.71+−1.12) × 10−5 1.748 × 10−5
sin 2α −0.95 − 0.33 -0.8913

sin 2β 0.59+−0.14
+
−0.05 (BaBar) 0.7416

0.58+0.32+0.09−0.34−0.10(Belle)
γ 340 − 820 34.550 (0.6030rad)

Table 1: The predictions for the charged fermion masses, the CKM matrix elements and the CP

violation measures.

(δ1, δ2, δ3,MR) = (0.00125, 2.22 × 10−4ei(0.22), 0.0165e−i(0.0017) , 2.01 × 1013GeV ). The at-
mospheric and solar squared mass differences are predicted to be ∆m223 = 2.95× 10−3eV 2
and ∆m212 = 1.77 × 10−7eV 2; the mixing angles are given by sin2 2θatm = 0.999, and
sin2 2θ� = 0.994. |Ueν3| is predicted to be 0.0750 which is below the upper bound
0.16 by the CHOOZ experiment. The leptonic Jarlskog invariant is predicted to be

J lCP = −0.00815, and the matrix element for the neutrinoless double beta decay is pre-
dicted to be | < m > | = 1.36×10−3eV . The masses of the three heavy neutrinos are given
by (M1,M2,M3) = (9.41×107 , 1.49×109, 2.01×1013)GeV . We can also have the QVO solu-
tion with (δ1, δ2, δ3,MR) = (0.00127, 3.64×10−5ei(0.220), 0.0150e−i(0.0107) , 1.22×1014GeV ).
In this case, ∆m223 = 3.12 × 10−3eV 2, and ∆m212 = 7.58 × 10−10eV 2. The mixing angles
are given by sin2 2θatm = 0.999, and sin

2 2θ� = 0.995. |Ueν3| is predicted to be 0.0531. J lCP
and < m > are predicted to be −0.00811 and 3.07×10−4eV respectively. The masses of the
three heavy neutrinos are given by (M1,M2,M3) = (3.70×107, 2.34×109, 1.22×1014)GeV .
A few words concerning baryonic asymmetry are in order. Even though the sphaleron

effects destroy baryonic asymmetry, it could be produced as an asymmetry in the generation

of (B − L) at a high scale because of lepton number violation due to the decay of heavy
right-handed Majorana neutrinos, which in turn is converted into baryonic asymmetry due

to sphalerons. But in our model this mechanism produces baryonic asymmetry of O(10−13)
which is too small to account for the observed value of (1.7 − 8.3) × 10−11, reasons being
that the mass of the lightest right-handed Majorana neutrino is too small and the 1 − 3
family mixing of right-handed neutrinos is too large, leading, in essence, to the violation

of the out-of-equilibrium condition required by Sakharov. So a mechanism other than

leptogenesis is required to explain baryonic asymmetry.
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