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Abstract: The QCD factorization approach provides the theoretical basis for a system-

atic analysis of nonleptonic decay amplitudes of B mesons in the heavy-quark limit. After

recalling the basic ideas underlying this formalism, some tests of QCD factorization in

the decays B → πK, ππ are discussed. It is then illustrated how factorization can be used

to obtain new constraints on the parameters of the unitarity triangle.

1. Introduction

In many years of intense experimental and theoretical investigations the flavor sector of

the Standard Model has been explored in great detail by studying mixing and weak decays

of B mesons and kaons. CP violation has been observed in K–K̄ mixing (1964), K → ππ

decays (1999), and most recently in the interference of mixing and decay in B → J/ψK

(2001). There is now compelling evidence that the Cabibbo–Kobayashi–Maskawa (CKM)

mechanism accounts for the dominant source of CP violation in low-energy hadronic weak

interactions. Most notably, the discovery of a large CP asymmetry in the B system has

established that CP is not an approximate symmetry of Nature. Rather, the smallness

of CP-violating effects in kaon (and charm) physics reflects the hierarchy of CKM matrix

elements.

Measurements of |Vcb| and |Vub| in semileptonic B decays and of the magnitude and
phase of Vtd in K–K̄ mixing, Bd,s–B̄d,s mixing, and B → J/ψK decays has helped to

determine the parameters of the unitarity triangle V ∗ubVud + V
∗
cbVcd + V

∗
tbVtd = 0 with good

accuracy. The current values obtained at 95% confidence level are ρ̄ = 0.21 ± 0.12, η̄ =
0.38±0.11 for the coordinates of the apex of the (rescaled) triangle, and sin 2β = 0.74±0.15,
sin 2α = −0.14± 0.57, γ = (61± 16)◦ for its angles [1]. These studies have established the
existence of a CP-violating phase in the top sector of the CKM matrix, i.e., Im(V 2td) 6= 0.
The next step in testing the CKM paradigm must be to explore the CP-violating phase

in the bottom sector, i.e., γ = arg(V ∗ub) 6= 0. In the Standard Model the two phases are,
∗Speaker.
†Work supported in part by the National Science Foundation.

mailto:neubert@mail.lns.cornell.edu


h
e
p
2
0
0
1

International Europhysics Conference on High Energy Physics Matthias Neubert

of course, related to each other. However, there is still plenty of room for New Physics to

affect the magnitude of flavor violations in both mixing and weak decays (see, e.g., [2]). In

particular, the present upper bound on γ is derived from the experimental limit on Bs–B̄s
mixing, which has not yet been seen experimentally and could well be affected by New

Physics.
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Figure 1: Tree and penguin topologies in charmless hadronic B decays.

Common lore says that measurements of γ are difficult. Several “theoretically clean”

determinations of this phase have been suggested, which are extremely challenging ex-

perimentally. It is more accessible experimentally to probe γ (and α) via the sizeable

tree–penguin interference in charmless hadronic decays such as B → πK and B → ππ.

The basic decay topologies contributing to these modes are shown in Figure 1. Experiment

shows that the tree-to-penguin ratios in the two cases are roughly |T/P |πK ≈ 0.2 and
|P/T |ππ ≈ 0.3, indicating a sizeable amplitude interference. It is important that the rel-
ative weak phase between the two amplitudes can be probed not only via CP asymmetry

measurements (∼ sin γ), but also via measurements of CP-averaged branching fractions
(∼ cos γ). Extracting information about CKM parameters from the analysis of nonlep-
tonic B decays is a challenge to theory, since it requires some level of control over hadronic

physics, including strong-interaction phases. Such challenges, combined with the impor-

tance of the issue, is what triggers theoretical progress.

2. QCD Factorization

Hadronic weak decay amplitudes simplify greatly in the heavy-quark limit mb � ΛQCD.
This statement should not surprise those who have followed the dramatic advances in our

theoretical understanding of B physics in the past decade. Many areas of B physics, from

spectroscopy to exclusive semileptonic decays to inclusive rates and lifetimes, can now be

systematically analyzed using heavy-quark expansions. Yet, the more complicated exclusive

nonleptonic decays have long resisted any theoretical progress. The technical reason is that,

whereas in most other applications of heavy-quark expansions one proceeds by integrating

out heavy fields (leading to local operator product expansions), in the case of nonleptonic

decays the large scale mb enters as the energy carried by light fields. Therefore, in addi-

tion to hard and soft subprocesses collinear degrees of freedom become important. This

complicates the understanding of hadronic decay amplitudes using the language of effective

field theory. (Yet, very significant progress towards an effective field-theory description of
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nonleptonic decays has been made recently with the establishment of a “collinear–soft ef-

fective theory” [3]. The reader is referred to these papers for more details on this important

development.)

The importance of the heavy-quark limit is based on the physical idea of color trans-

parency [4, 5, 6]. A fast-moving light meson (such as a pion) produced in a point-like source

(a local operator in the effective weak Hamiltonian) decouples from soft QCD interactions.

More precisely, the couplings of soft gluons to such a system can be analyzed using a multi-

pole expansion, and the first contribution (from the color dipole) is suppressed by a power

of ΛQCD/mb. The QCD factorization approach provides a systematic, model-independent

implementation of this idea [7, 8]. It gives rigorous results in the heavy-quark limit, which

are valid to leading power in ΛQCD/mb but to all orders of perturbation theory. Having

obtained control over nonleptonic decays in the heavy-quark limit is a tremendous advance.

We are now able to talk about power corrections to a well-defined and calculable limiting

case, which captures a substantial part of the physics in these complicated processes.
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Figure 2: Factorization of short- and long-distance contributions in hadronic B decays. Left:

Factorization of short-distance effects into Wilson coefficients of the effective weak Hamiltonian.

Right: Factorization of hard “nonfactorizable” gluon exchanges into hard-scattering kernels.

The workings of QCD factorization can best be illustrated with the cartoons shown in

Figure 2. The first graph shows the well-known concept of an effective weak Hamiltonian

obtained by integrating out the heavy fields of the top quark and weak gauge bosons

from the Standard Model Lagrangian. This introduces new effective interactions mediated

by local operators Oi(µ) (typically four-quark operators) multiplied by calculable running

coupling constants Ci(µ) called Wilson coefficients. This reduction in complexity (nonlocal

heavy particle exchanges→ local effective interactions) is exact up to corrections suppressed
by inverse powers of the heavy mass scales. The resulting picture at scales at or above

mb is, however, still rather complicated, since gluon exchange is possible between any
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of the quarks in the external meson states. Additional simplifications occur when the

renormalization scale µ is lowered below the scale mb. Then color transparency comes

to play and implies systematic cancellations of soft and collinear gluon exchanges. As

a result, all “nonfactorizable” exchanges, i.e., gluons connecting the light meson at the

“upper” vertex to the remaining mesons, are dominated by virtualities of order mb and

can be calculated. Their effects are absorbed into a new set of running couplings T I,IIij (µ)

called hard-scattering kernels, as shown in the two graphs on the right-hand side. What

remains are “factorized” four-quark and six-quark operators Ofactj (µ) and Q
fact
j (µ), whose

matrix elements can be expressed in terms of form factors, decay constants and light-cone

distribution amplitudes. As before, the reduction in complexity (local four-quark operators

→ “factorized” operators) is exact up to corrections suppressed by inverse powers of the
heavy scale, now set by the mass of the b quark.

The factorization formula is valid in all cases where the meson at the “upper” vertex

is light, meaning that its mass is much smaller than the b-quark mass. The second term

in the factorization formula (the term involving “factorized” six-quark operators) gives a

power-suppressed contribution when the final-state meson at the “lower” vertex is a heavy

meson (i.e., a charm meson), but its contribution is of leading power if this meson is also

light. Aspects of this power counting will be discussed in more detail later.

Factorization is a property of decay amplitudes in the heavy-quark limit. Comparing

the magnitude of “nonfactorizable” effects in kaon, charm and beauty decays, there can

be little doubt about the relevance of the heavy-quark limit to understanding nonleptonic

processes [9]. Yet, for phenomenological applications it is important to explore the structure

of at least the leading power-suppressed corrections. While no complete classification of

such corrections has been given to date, several classes of power-suppressed terms have

been analyzed and their effects estimated. These estimates have been implemented in the

phenomenological applications to be discussed later in this talk. Specifically, the corrections

that have been analyzed are “chirally-enhanced” power corrections [7], weak annihilation

contributions [8, 10], and power corrections due to nonfactorizable soft gluon exchange

[11, 12, 13]. With the exception of the “chirally-enhanced” terms, no unusually large

power corrections (i.e., corrections exceeding the naive expectation of 5–10%) have been

identified so far. Nevertheless, it is important to refine and extend the estimates of power

corrections. Fortunately, the QCD factorization approach has a wide range of applicability

and makes many testable predictions. Ultimately, the data will give us evidence on the

relevance of power-suppressed effects. For a limit of space we focus here on tests in the

context of charmless hadronic decays. A more extensive list of factorization tests, employing

heavy–light final states and exclusive radiative B decays, can be found in the review [14].

3. Tests of Factorization in B → πK,ππ Decays
The factorization formula for B decays into two light mesons is more complicated because of

the presence of the two types of contributions shown in the graphs on the right-hand side in

Figure 2. The finding that these two topologies contribute at the same power in ΛQCD/mb

is nontrivial [10] and relies on the heavy-quark scaling law FB→L(0) ∼ m−3/2b for heavy-to-
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light form factors. Whereas this scaling law has been obtained from several independent

studies (see, e.g., [15, 16, 17]), it is not as rigorously established as the corresponding scaling

law for heavy-to-heavy form factors. In the QCD factorization approach the kernels T Iij(µ)

are of order unity, whereas the kernels T IIij (µ) contribute first at order αs. Numerically,

the latter ones give corrections of about 10–20% with respect to the leading terms. This is

consistent with being of the same power but down by a factor of αs. Therefore, the scaling

laws that form the basis of the QCD factorization formula appear to work well empirically.

The factorization formula for B decays into two light mesons can be tested best by

using decays that have negligible amplitude interference. In that way any sensitivity to

the value of the weak phase γ is avoided. For a complete theoretical control over charmless

hadronic decays one must control the magnitude of the tree topologies, the magnitude

of the penguin topologies, and the relative strong-interaction phases between trees and

penguins. It is important that these three key features can be tested separately. Once

these tests are conclusive (and assuming they are successful), factorization can be used to

constrain the parameters of the unitarity triangle. (Of course, alternative schemes such as

pQCD [18] and “charming penguins” [19] must face the same tests.)

Magnitude of the Tree Amplitude: The magnitude of the leading B → ππ tree

amplitude can be probed in the decays B± → π±π0, which to an excellent approximation
do not receive any penguin contributions. The QCD factorization approach makes an

absolute prediction for the corresponding branching ratio [10],

Br(B± → π±π0) =
[
5.3+0.8−0.4 (pars.)± 0.3 (power)

]
· 10−6 ×

[ |Vub|
0.0035

FB→π0 (0)

0.28

]2
,

which compares well with the experimental result (5.6 ± 1.5) × 10−6 (see the table in
Figure 4 for a compilation of the experimental data on charmless hadronic B decays). The

theoretical uncertainties quoted are due to input parameter variations and to the modeling

of the leading power corrections. An additional large uncertainty comes from the present

error on |Vub| and the semileptonic B → π form factor. The sensitivity to these quantities

can be eliminated by taking the ratio

Γ(B± → π±π0)
dΓ(B̄0 → π+l−ν̄)/dq2|q2=0

= 3π2f2π |a(ππ)1 + a
(ππ)
2 |2︸ ︷︷ ︸

1.33+0.20−0.11 (pars.)±0.07 (power)

= (0.68+0.11−0.06)GeV
2 .

This prediction includes a sizeable (∼ 25%) contribution of the hard-scattering term in the
factorization formula (the lower graph on the right-hand side in Figure 2). Unfortunately,

this ratio has not yet been measured experimentally.

Magnitude of the T/P Ratio: The magnitude of the leading B → πK penguin ampli-

tude can be probed in the decays B± → π±K0, which to an excellent approximation do not
receive any tree contributions. Combining it with the measurement of the tree amplitude

just described, a tree-to-penguin ratio can be determined via the relation

εexp =

∣∣∣∣TP
∣∣∣∣ = tanθC fKfπ

[
2Br(B± → π±π0)
Br(B± → π±K0)

] 1
2

= 0.223 ± 0.034 .
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The quoted experimental value of this ratio is in good agreement with the theoretical pre-

diction εth = 0.24 ± 0.04 (pars.) ± 0.04 (power) ± 0.05 (Vub) [10], which is independent of
form factors but proportional to |Vub/Vcb|. This is a highly nontrivial test of the QCD
factorization approach. Recall that when the first measurements of charmless hadronic

decays appeared several authors remarked that the penguin amplitudes were much larger

than expected based on naive factorization models. We now see that QCD factorization re-

produces naturally (i.e., for central values of all input parameters) the correct magnitude of

the tree-to-penguin ratio. This observation also shows that there is no need to supplement

the QCD factorization predictions in an ad hoc way by adding enhanced phenomenological

penguin amplitudes, such as the “nonperturbative charming penguins” introduced in [19].

Experiment Theory

[20, 21, 22, 23] Beneke et al. [10] Keum et al. [18] Ciuchini et al. [19]

ACP(π
+K−) (%) −4.8± 6.8 5± 9 −18 ±(17± 6)

ACP(π
0K−) (%) −9.6± 11.9 7± 9 −15 ±(18± 6)

ACP(π
−K̄0) (%) −4.7± 13.9 1± 1 −2 ±(3± 3)

Table 1: Direct CP asymmetries in B → πK decays.

Strong Phase of the T/P Ratio: QCD factorization predicts that (most) strong-

interaction phases in charmless hadronic B decays are parametrically suppressed in the

heavy-quark limit, i.e., sinφst = O[αs(mb),ΛQCD/mb]. This implies small direct CP asym-

metries since, e.g., ACP(π
+K−) ' −2 |TP | sin γ sinφst. The suppression results as a conse-

quence of systematic cancellations of soft contributions, which are missed in phenomeno-

logical models of final-state interactions. In many other schemes the strong-interaction

phases are predicted to be much larger, and therefore larger CP asymmetries are expected.

Table 1 shows that first experimental data provide no evidence for large direct CP asym-

metries in B → πK decays. However, the errors are still too large to draw a definitive

conclusion that would allow us to distinguish between different theoretical predictions.

Remarks on Sudakov Logarithms: In recent years, Li and collaborators have pro-

posed an alternative scheme for calculating nonleptonic B decay amplitudes based on a

perturbative hard-scattering approach [18]. From a conceptual point of view, the main

difference between QCD factorization and this so-called pQCD approach lies in the latter’s

assumption that Sudakov form factors effectively suppress soft-gluon exchange in diagrams

such as those shown in the graphs on the right-hand side in Figure 2. As a result, the

B → π and B → K form factors are assumed to be perturbatively calculable. This

changes the counting of powers of αs. In particular, the nonfactorizable gluon exchange

diagrams included in the QCD factorization approach, which are crucial in order to cancel

the scale and scheme-dependence in the predictions for the decay amplitudes, are formally

of order α2s in the pQCD scheme and consequently are left out. Thus, to the considered

order there are no loop graphs that could give rise to strong-interaction phases in that

scheme. (However, in [18] large phases are claimed to arise from on-shell poles of massless

propagators in tree diagrams.) The assumption of Sudakov suppression in hadronic B de-
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cays is questionable, because the relevant “large” scale Q2 ∼ mbΛQCD ∼ 1GeV2 is in fact
not large for realistic b-quark masses. Indeed, one finds that the pQCD calculations are

very sensitive to details of the p⊥ dependence of the wave functions [24]. This sensitivity
to infrared physics invalidates the original assumption of an effective suppression of soft

contributions. The argument just presented leaves open the conceptual question whether

Sudakov logarithms are relevant in the asymptotic limit mb → ∞. This question has not
yet been answered in a satisfactory way.

4. New Constraints on the Unitarity Triangle

The QCD factorization approach, combined with a conservative estimate of power correc-

tions, offers several new strategies to derive constraints on CKM parameters. This has

been discussed at length in [10], to which we refer the reader for details. Some of these

strategies will be illustrated below. Note that the applications of QCD factorization are

not limited to computing branching ratios. The approach is also useful in combination with

other ideas based on flavor symmetries and amplitude relations. In this way, strategies can

be found for which the residual hadronic uncertainties are simultaneously suppressed by

three small parameters, since they vanish in the heavy-quark limit (∼ ΛQCD/mb), the limit
of SU(3) flavor symmetry (∼ (ms −mq)/ΛQCD), and the large-Nc limit (∼ 1/Nc).

Determination of γ with minimal theory input: Some years ago, Rosner and the

present author have derived a bound on γ by combining measurements of the ratios εexp =

|T/P | and R∗ = 1
2 Γ(B

± → π±K0)/Γ(B± → π0K±) with the fact that for an arbitrary
strong phase −1 ≤ cos φst ≤ 1 [25]. The model-independent observation that cos φst = 1
up to second-order corrections to the heavy-quark limit can be used to turn this bound

into a determination of γ (once |Vub| is known). The resulting constraints in the (ρ̄, η̄)
plane, obtained under the conservative assumption that cosφst > 0.8 (corresponding to

|φst| < 37◦) are shown in the left-hand plot in Figure 3 for several illustrative values of
the ratio R∗. Note that for 0.8 < R∗ < 1.1 (the range preferred by the Standard Model)
the theoretical uncertainty reflected by the widths of the bands is smaller than for any

other constraint on (ρ̄, η̄) except for the one derived from the sin 2β measurement. With

present data the Standard Model is still in good shape, but it will be interesting to see

what happens when the experimental errors are reduced.

Determination of sin 2α: With the help of QCD factorization it is possible to control

the “penguin pollution” in the time-dependent CP asymmetry in B → π+π− decays,
defined such that Sππ = sin 2α · [1 + O(P/T )]. This is illustrated in the right-hand plot
in Figure 3, which shows the constraints imposed by a measurement of Sππ in the (ρ̄, η̄)

plane. It follows that even a result for Sππ with large experimental errors would imply

a useful constraint on the unitarity triangle. A first, preliminary measurement of the

asymmetry has been presented by the BaBar Collaboration this summer. Their result is

Sππ = 0.03
+0.53
−0.56 ± 0.11 [23].
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Figure 3: Left: Allowed regions in the (ρ̄, η̄) plane corresponding to εexp = 0.22 and different

values of the ratio R∗ as indicated. The widths of the bands reflect the total theoretical uncertainty.
The current experimental values are εexp = 0.22±0.03 and R∗ = 0.71±0.14. Right: Allowed regions
in the (ρ̄, η̄) plane corresponding to different values of the mixing-induced CP asymmetry Sππ. The

widths of the bands reflect the total theoretical uncertainty. The corresponding bands for positive

values of Sππ are obtained by a reflection about the ρ̄ axis. The bounded light area is the allowed

region obtained from the standard global fit of the unitarity triangle [1].

Global Fit to B → πK, ππ Branching Ratios: Various ratios of CP-averaged B →
πK, ππ branching fractions exhibit a strong dependence on γ and |Vub|, or equivalently, on
the parameters ρ̄ and η̄ of the unitarity triangle. From a global analysis of the experimental

data in the context of the QCD factorization approach it is possible to derive constraints

in the (ρ̄, η̄) plane in the form of regions allowed at various confidence levels. The results

are shown in Figure 4. The best fit of the QCD factorization theory to the data yields an

excellent χ2/ndof of less than 0.5.
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Figure 4: 95% (solid), 90% (dashed) and 68% (short-dashed) confidence level contours in the

(ρ̄, η̄) plane obtained from a global fit of QCD factorization results to the CP-averagedB → πK, ππ

branching fractions. The dark dot shows the overall best fit, whereas the light dot indicates the

best fit for the default choice of all theory input parameters. The table compares the best fit values

for the various CP-averaged branching fractions (in units of 10−6) with the world average data.
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The results of this global fit are compatible with the standard CKM fit using semilep-

tonic decays, K–K̄ mixing and B–B̄ mixing (|Vub|, |Vcb|, εK , ∆md, ∆ms, sin 2β), although
the fit prefers a slightly larger value of γ and/or a smaller value of |Vub|. The combination
of the results from rare hadronic B decays with |Vub| from semileptonic decays excludes
η̄ = 0 at 95% CL, thus showing first evidence for the existence of a CP-violating phase

in the bottom sector. In the near future, when the data become more precise, this will

provide a powerful test of the CKM paradigm.

5. Outlook

The QCD factorization approach provides the theoretical framework for a systematic anal-

ysis of hadronic and radiative exclusive B decay amplitudes based on the heavy-quark

expansion. This theory has already passed successfully several nontrivial tests, and will

be tested more thoroughly with more precise data. A new effective field-theory language

appropriate to QCD factorization is emerging in the form of the collinear–soft effective the-

ory. Ultimately, the developments reviewed in this talk may lead to theoretical control over

a vast variety of exclusive B decays, giving us new constraints on the unitarity triangle.
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