Results of the $\mathcal{O}\left(\alpha_{s}\right)$ two-loop virtual corrections to $B \rightarrow X_{s} \ell^{+} \ell^{-}$in the standard model

Christoph Greub* and M. Walker ${ }^{\dagger}$
Institut für Theoretische Physik, Universiẗ̈t Bern, CH-3012 Bern, Switzerland
E-mail: 'greub@itp.unibe.ch' walker@itp. unibe.ch'

Abstract: We present the results of the $\mathcal{O}\left(\alpha_{s}\right)$ two-loop virtual corrections to the differential decay width $d \Gamma\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right) / d \hat{s}$, where \hat{s} is the invariant mass squared of the lepton pair, normalized to m_{b}^{2}. Those contributions from gluon bremsstrahlung which are needed to cancel infrared and collinear singularities are also included. Our calculation is restricted to the range $0.05 \leq \hat{s} \leq 0.25$ where the effects from resonances are small. The new contributions drastically reduce the renormalization scale dependence of existing results for $d \Gamma\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right) / d \hat{s}$. The renormalization scale uncertainty of the corresponding branching ratio (restricted to $0.05 \leq \hat{s} \leq 0.25$) gets reduced from $\sim \pm 13 \%$ to $\sim \pm 6.5 \%$. sive channels such as $B \rightarrow K^{*} \gamma[\overline{\overline{2}}]$, rare B-decays have begun to play an important role in the phenomenology of particle physics. They put strong constraints on various extensions of the standard model. The inclusive decay $B \rightarrow X_{s} \ell^{+} \ell^{-}$has not been observed so far, but is expected to be detected at the currently running B-factories.

The next-to-leading logarithmic (NLL) result for $B \rightarrow X_{s} \ell^{+} \ell^{-}$suffers from a relatively large $(\pm 16 \%)$ dependence on the matching scale $\mu_{W}\left[\begin{array}{l}\overline{3}, ~, ~ \overline{4} \\ 1\end{array}\right]$. The NNLL corrections to the Wilson coefficients remove the matching scale dependence to a large extent , but leave a $\pm 13 \%$-dependence on the renormalization scale μ_{b}, which is of $\mathcal{O}\left(m_{b}\right)$. In order to further improve the result, we have recently calculated the $\mathcal{O}\left(\alpha_{s}\right)$ two-loop corrections to the matrix elements of the operators O_{1} and O_{2} as well as the $\mathcal{O}\left(\alpha_{s}\right)$ one-loop corrections to O_{7}, \ldots, O_{10} [㣂. Because of large resonant contributions from $\bar{c} c$ intermediate states, we restrict the invariant lepton mass squared s to the region $0.05 \leq \hat{s} \leq 0.25$, where $\hat{s}=s / m_{b}^{2}$. In the following we present a summary of the results of these calculations.

[^0]
2. Theoretical Framework

The appropriate tool for studies on weak B-mesons decays is the effective Hamiltonian technique. The effective Hamiltonian is derived from the standard model by integrating out the t-quark, the Z_{0} - and the W-boson. For the decay channels $b \rightarrow s \ell^{+} \ell^{-}(\ell=\mu, e)$ it reads

$$
\mathcal{H}_{\mathrm{eff}}=-\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \sum_{i=1}^{10} C_{i} O_{i}
$$

where O_{i} are dimension six operators and C_{i} denote the corresponding Wilson coefficients. The operators can be chosen as

$$
\begin{array}{ll}
O_{1}=\left(\bar{s}_{L} \gamma_{\mu} T^{a} c_{L}\right)\left(\bar{c}_{L} \gamma^{\mu} T^{a} b_{L}\right) & O_{2}=\left(\bar{s}_{L} \gamma_{\mu} c_{L}\right)\left(\bar{c}_{L} \gamma^{\mu} b_{L}\right) \\
O_{3}=\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right) \sum_{q}\left(\bar{q} \gamma^{\mu} q\right) & O_{4}=\left(\bar{s}_{L} \gamma_{\mu} T^{a} b_{L}\right) \sum_{q}\left(\bar{q} \gamma^{\mu} T^{a} q\right) \\
O_{5}=\left(\bar{s}_{L} \gamma_{\mu} \gamma_{\nu} \gamma_{\sigma} b_{L}\right) \sum_{q}\left(\bar{q} \gamma^{\mu} \gamma^{\nu} \gamma^{\sigma} q\right) & O_{6}=\left(\bar{s}_{L} \gamma_{\mu} \gamma_{\nu} \gamma_{\sigma} T^{a} b_{L}\right) \sum_{q}\left(\bar{q} \gamma^{\mu} \gamma^{\nu} \gamma^{\sigma} T^{a} q\right) \\
O_{7}=\frac{e}{g_{s}^{2}} m_{b}\left(\bar{s}_{L} \sigma^{\mu \nu} b_{R}\right) F_{\mu \nu} & O_{8}=\frac{1}{g_{s}} m_{b}\left(\bar{s}_{L} \sigma^{\mu \nu} T^{a} b_{R}\right) G_{\mu \nu}^{a} \\
O_{9}=\frac{e^{2}}{g_{s}^{2}}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right) \sum_{\ell}\left(\bar{\ell} \gamma^{\mu} \ell\right) & O_{10}=\frac{e^{2}}{g_{s}^{2}}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right) \sum_{\ell}\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right)
\end{array}
$$

The subscripts L and R refer to left- and right- handed fermion fields. We work in the approximation where the combination $\left(V_{u s}^{*} V_{u b}\right)$ of Cabibbo-Kobayashi-Maskawa (CKM) matrix elements is neglected. The CKM structure factorizes therefore.

3. Virtual Corrections to the Operators $O_{1}, O_{2}, O_{7}, O_{8}, O_{9}$ and O_{10}

Using the naive dimensional regularization scheme in $d=4-2 \epsilon$ dimensions, ultraviolet and infrared singularities both show up as $1 / \epsilon^{n}$-poles $(n=1,2)$. The ultraviolet singularities cancel after including the counterterms. Collinear singularities are regularized by retaining a finite strange quark mass m_{s}. They are cancelled together with the infrared singularities at the level of the decay width, when taking the bremsstrahlung process $b \rightarrow s \ell^{+} \ell^{-} g$ into account. Gauge invariance implies that the QCD-corrected matrix elements of the operators O_{i} can be written as

$$
\left\langle s \ell^{+} \ell^{-}\right| O_{i}|b\rangle=\hat{F}_{i}^{(9)}\left\langle O_{9}\right\rangle_{\text {tree }}+\hat{F}_{i}^{(7)}\left\langle O_{7}\right\rangle_{\text {tree }}
$$

where $\left\langle O_{9}\right\rangle_{\text {tree }}$ and $\left\langle O_{7}\right\rangle_{\text {tree }}$ are the tree-level matrix elements of O_{9} and O_{7}, respectively.

3.1 Virtual corrections to O_{1} and O_{2}

For the calculation of the two-loop diagrams associated with O_{1} and O_{2} we mainly used a combination of Mellin-Barnes technique [$\overline{\underline{G}} \overline{1}, \bar{T}]$ and of Taylor series expansion in s. For $s<m_{b}^{2}$ and $s<4 m_{c}^{2}$, most diagrams allow the latter. The unrenormalized form factors $\hat{F}^{(7,9)}$ of O_{1} and O_{2} are then obtained in the form

$$
\hat{F}^{(7,9)}=\sum_{i, j, l, m} c_{i j l m}^{(7,9)} \hat{s}^{i} \ln ^{j}(\hat{s})\left(\hat{m}_{c}^{2}\right)^{l} \ln ^{m}\left(\hat{m}_{c}\right)
$$

where $\hat{m}_{c}=\frac{m_{c}}{m_{b}}$. The indices i, j, m are non-negative integers and $l=-i,-i+\frac{1}{2},-i+1, \ldots$. .
Besides the counterterms from quark field, quark mass and coupling constant $\left(g_{s}\right)$ renormalization, there are counterterms induced by operator mixing. They are of the form

$$
C_{i} \cdot \sum_{j} \delta Z_{i j}\left\langle O_{j}\right\rangle \quad \text { with } \quad \delta Z_{i j}=\frac{\alpha_{s}}{4 \pi}\left[a_{i j}^{01}+\frac{a_{i j}^{11}}{\epsilon}\right]+\frac{\alpha_{s}^{2}}{(4 \pi)^{2}}\left[a_{i j}^{02}+\frac{a_{i j}^{12}}{\epsilon}+\frac{a_{i j}^{22}}{\epsilon^{2}}\right]+\mathcal{O}\left(\alpha_{s}^{3}\right) .
$$

A complete list of the coefficients $a_{i j}^{l m}$ used for our calculation can be found in [$[\overline{6}]$. The operator mixing involves also the evanescent operators

$$
\begin{aligned}
& O_{11}=\left(\bar{s}_{L} \gamma_{\mu} \gamma_{\nu} \gamma_{\sigma} T^{a} c_{L}\right)\left(\bar{c}_{L} \gamma^{\mu} \gamma^{\nu} \gamma^{\sigma} T^{a} b_{L}\right)-16 O_{1} \quad \text { and } \\
& O_{12}=\left(\bar{s}_{L} \gamma_{\mu} \gamma_{\nu} \gamma_{\sigma} c_{L}\right)\left(\bar{c}_{L} \gamma^{\mu} \gamma^{\nu} \gamma^{\sigma} b_{L}\right)-16 O_{2} .
\end{aligned}
$$

3.2 Virtual corrections to O_{7}, O_{8}, O_{9} and O_{10}

The renormalized contributions from the operators O_{7}, O_{8} and O_{9} can all be written in the form

$$
\left\langle s \ell^{+} \ell^{-}\right| C_{i} O_{i}|b\rangle=\widetilde{C}_{i}^{(0)}\left(-\frac{\alpha_{s}}{4 \pi}\right)\left[F_{i}^{(9)}\left\langle\widetilde{O}_{9}\right\rangle_{\text {tree }}+F_{i}^{(7)}\left\langle\widetilde{O}_{7}\right\rangle_{\text {tree }}\right],
$$

with $\widetilde{O}_{i}=\frac{\alpha_{s}}{4 \pi} O_{i}, \quad \widetilde{C}_{7,8}^{(0)}=C_{7,8}^{(1)} \quad$ and $\quad \widetilde{C}_{9}^{(0)}=\frac{4 \pi}{\alpha_{s}}\left(C_{9}^{(0)}+\frac{\alpha_{s}}{4 \pi} C_{9}^{(1)}\right)$.
The formally leading term $\sim g_{s}^{-2} C_{9}^{(0)}\left(\mu_{b}\right)$ to the amplitude for $b \rightarrow s \ell^{+} \ell^{-}$is smaller than the NLL term $\sim g_{s}^{-2}\left[g_{s}^{2} /\left(16 \pi^{2}\right)\right] C_{9}^{(1)}\left(\mu_{b}\right)$ [绿]. We therefore adapt our systematics to the numerical situation and treat the sum of these two terms as a NLL contribution, as indicated by the expression for $\widetilde{C}_{9}^{(0)}$. The decay amplitude then starts out with a NLL term.

The contribution from O_{8} is finite, whereas those from O_{7} and O_{9} are not, ie $F_{7}^{(7)}$ and $F_{9}^{(9)}$ suffer from the same infrared divergent part $f_{\text {inf }}$.

As the hadronic parts of the operators O_{9} and O_{10} are identical, the QCD corrected matrix element of O_{10} can easily be obtained from that of O_{9}.

4. Bremsstrahlung Corrections

 between the tree-level and the one-loop matrix elements of O_{9} and from the corresponding bremsstrahlung corrections can be written as

$$
\frac{d \Gamma_{99}}{d \hat{s}}=\left(\frac{\alpha_{e m}}{4 \pi}\right)^{2} \frac{G_{F}^{2} m_{b, \mathrm{pole}}^{5}\left|V_{t s}^{*} V_{t b}\right|^{2}}{48 \pi^{3}}(1-\hat{s})^{2}(1+2 \hat{s})\left[2\left|\widetilde{C}_{9}^{(0)}\right|^{2} \frac{\alpha_{s}}{\pi} \omega_{9}(\hat{s})\right] .
$$

Analogous formulas hold true for the contributions from O_{7} and the interference terms between the matrix elements of O_{7} and O_{9} :

$$
\begin{aligned}
& \frac{d \Gamma_{77}}{d \hat{s}}=\left(\frac{\alpha_{e m}}{4 \pi}\right)^{2} \frac{G_{F}^{2} m_{b, \text { pole }}^{5}\left|V_{t s}^{*} V_{t b}\right|^{2}}{48 \pi^{3}}(1-\hat{s})^{2} 4(1+2 / \hat{s})\left[2\left|\widetilde{C}_{7}^{(0)}\right|^{2} \frac{\alpha_{s}}{\pi} \omega_{7}(\hat{s})\right], \\
& \frac{d \Gamma_{79}}{d \hat{s}}=\left(\frac{\alpha_{e m}}{4 \pi}\right)^{2} \frac{G_{F}^{2} m_{b, \text { pole }}^{5}\left|V_{t s}^{*} V_{t b}\right|^{2}}{48 \pi^{3}}(1-\hat{s})^{2} 12 \cdot 2 \frac{\alpha_{s}}{\pi} \omega_{79}(\hat{s}) \operatorname{Re}\left[\widetilde{C}_{7}^{(0)} \widetilde{C}_{9}^{(0)}\right] .
\end{aligned}
$$

The function $\omega_{9}(\hat{s}) \equiv \omega(\hat{s})$ can be found eg in in [$[\hat{3}, \underline{\hat{u}}]$. For $\omega_{7}(\hat{s})$ and $\omega_{79}(\hat{s})$ see [$[\hat{6}]$. All other bremsstrahlung corrections are finite and will be given in [9].

5. Corrections to the Decay Width for $B \rightarrow X_{s} \ell^{+} \ell^{-}$

Combining the virtual corrections discussed in section $\overline{\underline{3}}$ with the bremsstrahlung contributions considered in section $\overline{\text { in }}$, we find for the decay width

$$
\begin{align*}
& \frac{d \Gamma\left(b \rightarrow X_{s} \ell^{+} \ell^{-}\right)}{d \hat{s}}=\left(\frac{\alpha_{e m}}{4 \pi}\right)^{2} \frac{G_{F}^{2} m_{b, \text { pole }}^{5}\left|V_{t s}^{*} V_{t b}\right|^{2}}{48 \pi^{3}}(1-\hat{s})^{2} \times \\
& \quad\left((1+2 \hat{s})\left[\left|\widetilde{C}_{9}^{\text {eff }}\right|^{2}+\left|\widetilde{C}_{10}^{\text {eff }}\right|^{2}\right]+4(1+2 / \hat{s})\left|\widetilde{C}_{7}^{\text {eff }}\right|^{2}+12 \operatorname{Re}\left[\widetilde{C}_{7}^{\text {eff }} \widetilde{C}_{9}^{\text {efft }}\right]\right) \tag{5.1}
\end{align*}
$$

where the effective Wilson coefficients $\widetilde{C}_{7}^{\text {eff }}, \widetilde{C}_{9}^{\text {eff }}$ and $\widetilde{C}_{10}^{\text {eff }}$ can be written as

$$
\left.\left.\begin{array}{l}
\widetilde{C}_{9}^{\mathrm{eff}}=\left[1+\frac{\alpha_{s}(\mu)}{\pi} \omega_{9}(\hat{s})\right]\left(A_{9}+T_{9} h\left(\hat{m}_{c}^{2}, \hat{s}\right)+U_{9} h(1, \hat{s})+W_{9} h(0, \hat{s})\right) \\
\quad-\frac{\alpha_{s}(\mu)}{4 \pi}\left(C_{1}^{(0)} F_{1}^{(9)}+C_{2}^{(0)} F_{2}^{(9)}+A_{8}^{(0)} F_{8}^{(9)}\right), \\
\widetilde{C}_{7}^{\mathrm{eff}}= \\
\widetilde{C}_{10}^{\mathrm{eff}}=
\end{array}\right]\left[1+\frac{\alpha_{s}(\mu)}{\pi} \omega_{7}(\hat{s})\right] A_{7}-\frac{\alpha_{s}(\mu)}{\pi} \omega_{9}(\hat{s})\right] A_{10} .
$$

The function $h\left(\hat{m}_{c}^{2}, \hat{s}\right)$ is defined in [哺], where also the values of $A_{7}, A_{9}, A_{10}, T_{9}, U_{9}$ and W_{9} can be found. $C_{1}^{(0)}, C_{2}^{(0)}$ and $A_{8}^{(0)}=\widetilde{C}_{8}^{(0, \text { eff })}$ are taken from [i] .

6. Numerical Results

The decay width in eq (5). has a large uncertainty due to the factor $m_{b, \text { pole }}^{5}$. Following common practice, we consider the ratio

$$
R_{\mathrm{quark}}(\hat{s})=\frac{1}{\Gamma\left(b \rightarrow X_{c} e \bar{\nu}_{e}\right)} \frac{d \Gamma\left(b \rightarrow X_{s} \ell^{+} \ell^{-}\right)}{d \hat{s}}
$$

in which the factor $m_{b, \text { pole }}^{5}$ drops out. $\Gamma\left(b \rightarrow X_{c} e \bar{\nu}_{e}\right)$ can be found eg in "呵.
In Fig. ${ }_{1}^{1}{ }_{1}$ we investigate the dependence of $R_{\text {quark }}(\hat{s})$ on the renormalization scale μ_{b} for $0.05 \leq \hat{s} \leq 0.25$. The solid lines take the new NNLL contributions into account, whereas the dashed lines include the NLL results combined with the NNLL corrections to the matching conditions [$\mu_{b}=2.5,5$ and 10 GeV , respectively, and $\hat{m}_{c}=0.29$. From this figure we conclude that the renormalization scale dependence gets reduced by more than a factor of 2 . For the integrated quantity we get

$$
R_{\text {quark }}=\int_{0.05}^{0.25} d \hat{s} R_{\text {quark }}(\hat{s})=(1.25 \pm 0.08) \times 10^{-5}
$$

where the error is obtained by varying μ_{b} between 2.5 GeV and 10 GeV . Not including our
 scale dependence got reduced from $\sim \pm 13 \%$ to $\sim \pm 6.5 \%$. The largest uncertainty due to the input parameters is induced by \hat{m}_{c}. Fig. $\bar{\sim}$ \hat{m}_{c}. The dashed, solid and dash-dotted lines correspond to $\hat{m}_{c}=0.27, \hat{m}_{c}=0.29$ and $\hat{m}_{c}=0.31$, respectively, and $\mu_{b}=5 \mathrm{GeV}$. We find an uncertainty of $\pm 7.6 \%$ due to \hat{m}_{c}.

Figure 1: Dependence of $R_{\text {quark }}(\hat{s})$ on μ_{b}.

Figure 2: Dependence of $R_{\text {quark }}(\hat{s})$ on \hat{m}_{c}.

We conclude with the remark that the results presented in this exposition have recently been included in a systematic description of the corresponding exclusive decay mode $B \rightarrow K^{*} \ell^{+} \ell^{-}$[10

References

[1] M. S. Alam et al. (CLEO Collaboration), iPhys. Rev. Lett. $\mathbf{7 4}(1995) 2885$.
[2] R. Ammar et al. (CLEO Collaboration), 'Phys. Rev. Lett. 71. (1993) 674.

[6] H. H. Asatryan, H. M. Asatrian, C. Greub and M. Walker, iPhys. Lett. $\overline{\mathbf{B}} \overline{5} \overline{0} \overline{7}(2001) 1 \overline{2} \overline{2}$, [hep-ph/0103087.
H. H. Asatryan, H. M. Asatrian, C. Greub and M. Walker, [hep-ph/0109140]
[7] C. Greub and P. Liniger, Phys. Lett. $\mathbf{B} \mathbf{- 1 9 4}(2000) 237$, hep-ph/0008071
C. Greub and P. Liniger, 'Phys. Rev. D. 63 (2001) 054025', hep-ph/0009144].
[8] B. Grinstein, M. J. Savage and M. B. Wise, $\bar{N} \bar{N} \bar{c} \bar{l}, \bar{P} \bar{h} y s . \bar{B} \overline{3} \overline{9}(1 \overline{9} \overline{8} \overline{9}) \overline{2} \overline{7} \overline{1}:$
[9] H. H. Asatryan, H. M. Asatrian, C. Greub and M. Walker, in preparation.

[11] Th. Feldmann, these proceedings, $\left[h e p-\mathrm{ph} / 010{ }^{-142}\right]$

[^0]: *Speaker.
 ${ }^{\dagger}$ Work partially supported by Schweizerischer Nationalfonds and SCOPES program.

