

Results of the $\mathcal{O}(\alpha_s)$ two-loop virtual corrections to $B \to X_s \, \ell^+ \ell^-$ in the standard model

Christoph Greub* and M. Walker [†]

Institut für Theoretische Physik, Universität Bern, CH-3012 Bern, Switzerland E-mail: greub@itp.unibe.ch, walker@itp.unibe.ch

ABSTRACT: We present the results of the $\mathcal{O}(\alpha_s)$ two-loop virtual corrections to the differential decay width $d\Gamma(B \to X_s \ell^+ \ell^-)/d\hat{s}$, where \hat{s} is the invariant mass squared of the lepton pair, normalized to m_b^2 . Those contributions from gluon bremsstrahlung which are needed to cancel infrared and collinear singularities are also included. Our calculation is restricted to the range $0.05 \leq \hat{s} \leq 0.25$ where the effects from resonances are small. The new contributions drastically reduce the renormalization scale dependence of existing results for $d\Gamma(B \to X_s \ell^+ \ell^-)/d\hat{s}$. The renormalization scale uncertainty of the corresponding branching ratio (restricted to $0.05 \leq \hat{s} \leq 0.25$) gets reduced from $\sim \pm 13\%$ to $\sim \pm 6.5\%$.

1. Introduction

After the observation of the penguin-induced decay $B \to X_s \gamma$ [1] and corresponding exclusive channels such as $B \to K^* \gamma$ [2], rare *B*-decays have begun to play an important role in the phenomenology of particle physics. They put strong constraints on various extensions of the standard model. The inclusive decay $B \to X_s \ell^+ \ell^-$ has not been observed so far, but is expected to be detected at the currently running *B*-factories.

The next-to-leading logarithmic (NLL) result for $B \to X_s \ell^+ \ell^-$ suffers from a relatively large (±16%) dependence on the matching scale μ_W [3, 4]. The NNLL corrections to the Wilson coefficients remove the matching scale dependence to a large extent [5], but leave a ±13%-dependence on the renormalization scale μ_b , which is of $\mathcal{O}(m_b)$. In order to further improve the result, we have recently calculated the $\mathcal{O}(\alpha_s)$ two-loop corrections to the matrix elements of the operators O_1 and O_2 as well as the $\mathcal{O}(\alpha_s)$ one-loop corrections to $O_7,..., O_{10}$ [6]. Because of large resonant contributions from $\bar{c}c$ intermediate states, we restrict the invariant lepton mass squared s to the region $0.05 \leq \hat{s} \leq 0.25$, where $\hat{s} = s/m_b^2$. In the following we present a summary of the results of these calculations.

^{*}Speaker.

[†]Work partially supported by Schweizerischer Nationalfonds and SCOPES program.

2. Theoretical Framework

The appropriate tool for studies on weak *B*-mesons decays is the effective Hamiltonian technique. The effective Hamiltonian is derived from the standard model by integrating out the *t*-quark, the Z_0- and the *W*-boson. For the decay channels $b \to s\ell^+\ell^-$ ($\ell = \mu, e$) it reads

$$\mathcal{H}_{\text{eff}} = -rac{4\,G_F}{\sqrt{2}}\,V_{ts}^*\,V_{tb}\sum_{i=1}^{10}C_i\,O_i\,,$$

where O_i are dimension six operators and C_i denote the corresponding Wilson coefficients. The operators can be chosen as [5]

$$\begin{array}{ll} O_1 &= (\bar{s}_L \gamma_\mu T^a c_L) (\bar{c}_L \gamma^\mu T^a b_L) & O_2 &= (\bar{s}_L \gamma_\mu c_L) (\bar{c}_L \gamma^\mu b_L) \\ O_3 &= (\bar{s}_L \gamma_\mu b_L) \sum_q (\bar{q} \gamma^\mu q) & O_4 &= (\bar{s}_L \gamma_\mu T^a b_L) \sum_q (\bar{q} \gamma^\mu T^a q) \\ O_5 &= (\bar{s}_L \gamma_\mu \gamma_\nu \gamma_\sigma b_L) \sum_q (\bar{q} \gamma^\mu \gamma^\nu \gamma^\sigma q) & O_6 &= (\bar{s}_L \gamma_\mu \gamma_\nu \gamma_\sigma T^a b_L) \sum_q (\bar{q} \gamma^\mu \gamma^\nu \gamma^\sigma T^a q) \\ O_7 &= \frac{e}{g_s^2} m_b (\bar{s}_L \sigma^{\mu\nu} b_R) F_{\mu\nu} & O_8 &= \frac{1}{g_s} m_b (\bar{s}_L \sigma^{\mu\nu} T^a b_R) G^a_{\mu\nu} \\ O_9 &= \frac{e^2}{g_s^2} (\bar{s}_L \gamma_\mu b_L) \sum_\ell (\bar{\ell} \gamma^\mu \ell) & O_{10} &= \frac{e^2}{g_s^2} (\bar{s}_L \gamma_\mu b_L) \sum_\ell (\bar{\ell} \gamma^\mu \gamma_5 \ell) \,. \end{array}$$

The subscripts L and R refer to left- and right- handed fermion fields. We work in the approximation where the combination $(V_{us}^*V_{ub})$ of Cabibbo-Kobayashi-Maskawa (CKM) matrix elements is neglected. The CKM structure factorizes therefore.

3. Virtual Corrections to the Operators O_1 , O_2 , O_7 , O_8 , O_9 and O_{10}

Using the naive dimensional regularization scheme in $d = 4-2\epsilon$ dimensions, ultraviolet and infrared singularities both show up as $1/\epsilon^n$ -poles (n = 1, 2). The ultraviolet singularities cancel after including the counterterms. Collinear singularities are regularized by retaining a finite strange quark mass m_s . They are cancelled together with the infrared singularities at the level of the decay width, when taking the bremsstrahlung process $b \rightarrow s\ell^+\ell^-g$ into account. Gauge invariance implies that the QCD-corrected matrix elements of the operators O_i can be written as

$$\langle s\ell^+\ell^-|O_i|b\rangle = \hat{F}_i^{(9)}\langle O_9\rangle_{\rm tree} + \hat{F}_i^{(7)}\langle O_7\rangle_{\rm tree},$$

where $\langle O_9 \rangle_{\text{tree}}$ and $\langle O_7 \rangle_{\text{tree}}$ are the tree-level matrix elements of O_9 and O_7 , respectively.

3.1 Virtual corrections to O_1 and O_2

For the calculation of the two-loop diagrams associated with O_1 and O_2 we mainly used a combination of Mellin-Barnes technique [6, 7] and of Taylor series expansion in s. For $s < m_b^2$ and $s < 4 m_c^2$, most diagrams allow the latter. The unrenormalized form factors $\hat{F}^{(7,9)}$ of O_1 and O_2 are then obtained in the form

$$\hat{F}^{(7,9)} = \sum_{i,j,l,m} c_{ijlm}^{(7,9)} \hat{s}^i \, \ln^j(\hat{s}) \, \left(\hat{m}_c^2\right)^l \ln^m(\hat{m}_c) \,,$$

where $\hat{m}_c = \frac{m_c}{m_b}$. The indices i, j, m are non-negative integers and $l = -i, -i + \frac{1}{2}, -i + 1, \dots$.

Besides the counterterms from quark field, quark mass and coupling constant (g_s) renormalization, there are counterterms induced by operator mixing. They are of the form

$$C_i \cdot \sum_j \delta Z_{ij} \langle O_j \rangle \quad \text{with} \quad \delta Z_{ij} = \frac{\alpha_s}{4\pi} \left[a_{ij}^{01} + \frac{a_{ij}^{11}}{\epsilon} \right] + \frac{\alpha_s^2}{(4\pi)^2} \left[a_{ij}^{02} + \frac{a_{ij}^{12}}{\epsilon} + \frac{a_{ij}^{22}}{\epsilon^2} \right] + \mathcal{O}(\alpha_s^3) \,.$$

A complete list of the coefficients a_{ij}^{lm} used for our calculation can be found in [6]. The operator mixing involves also the evanescent operators

$$O_{11} = (\bar{s}_L \gamma_\mu \gamma_\nu \gamma_\sigma T^a c_L) (\bar{c}_L \gamma^\mu \gamma^\nu \gamma^\sigma T^a b_L) - 16 O_1 \quad \text{and} \\ O_{12} = (\bar{s}_L \gamma_\mu \gamma_\nu \gamma_\sigma c_L) (\bar{c}_L \gamma^\mu \gamma^\nu \gamma^\sigma b_L) - 16 O_2 .$$

3.2 Virtual corrections to O_7 , O_8 , O_9 and O_{10}

The renormalized contributions from the operators O_7 , O_8 and O_9 can all be written in the form

$$\langle s\ell^{+}\ell^{-}|C_{i}O_{i}|b\rangle = \widetilde{C}_{i}^{(0)} \left(-\frac{\alpha_{s}}{4\pi}\right) \left[F_{i}^{(9)}\langle \widetilde{O}_{9}\rangle_{\text{tree}} + F_{i}^{(7)}\langle \widetilde{O}_{7}\rangle_{\text{tree}}\right],$$

$$O_{i} , \quad \widetilde{C}_{7,8}^{(0)} = C_{7,8}^{(1)} \quad \text{and} \quad \widetilde{C}_{9}^{(0)} = \frac{4\pi}{\alpha_{s}} \left(C_{9}^{(0)} + \frac{\alpha_{s}}{4\pi}C_{9}^{(1)}\right).$$

The formally leading term $\sim g_s^{-2}C_9^{(0)}(\mu_b)$ to the amplitude for $b \to s\ell^+\ell^-$ is smaller than the NLL term $\sim g_s^{-2}[g_s^2/(16\pi^2)]C_9^{(1)}(\mu_b)$ [8]. We therefore adapt our systematics to the numerical situation and treat the sum of these two terms as a NLL contribution, as indicated by the expression for $\widetilde{C}_9^{(0)}$. The decay amplitude then starts out with a NLL term.

The contribution from O_8 is finite, whereas those from O_7 and O_9 are not, ie $F_7^{(7)}$ and $F_9^{(9)}$ suffer from the same infrared divergent part f_{inf} .

As the hadronic parts of the operators O_9 and O_{10} are identical, the QCD corrected matrix element of O_{10} can easily be obtained from that of O_9 .

4. Bremsstrahlung Corrections

with $\widetilde{O}_i = \frac{\alpha_s}{4\pi}$

It is known [3, 4] that the contribution to the inclusive decay width from the interference between the tree-level and the one-loop matrix elements of O_9 and from the corresponding bremsstrahlung corrections can be written as

$$\frac{d\Gamma_{99}}{d\hat{s}} = \left(\frac{\alpha_{em}}{4\pi}\right)^2 \frac{G_F^2 \, m_{b,\text{pole}}^5 \, \left|V_{ts}^* V_{tb}\right|^2}{48 \, \pi^3} \, (1-\hat{s})^2 \, (1+2 \, \hat{s}) \left[2 \left|\widetilde{C}_9^{(0)}\right|^2 \frac{\alpha_s}{\pi} \, \omega_9(\hat{s})\right].$$

Analogous formulas hold true for the contributions from O_7 and the interference terms between the matrix elements of O_7 and O_9 :

$$\frac{d\Gamma_{77}}{d\hat{s}} = \left(\frac{\alpha_{em}}{4\pi}\right)^2 \frac{G_F^2 m_{b,\text{pole}}^5 |V_{ts}^* V_{tb}|^2}{48\pi^3} (1-\hat{s})^2 4 (1+2/\hat{s}) \left[2\left|\widetilde{C}_7^{(0)}\right|^2 \frac{\alpha_s}{\pi} \omega_7(\hat{s})\right],$$
$$\frac{d\Gamma_{79}}{d\hat{s}} = \left(\frac{\alpha_{em}}{4\pi}\right)^2 \frac{G_F^2 m_{b,\text{pole}}^5 |V_{ts}^* V_{tb}|^2}{48\pi^3} (1-\hat{s})^2 12 \cdot 2\frac{\alpha_s}{\pi} \omega_{79}(\hat{s}) \operatorname{Re}\left[\widetilde{C}_7^{(0)} \widetilde{C}_9^{(0)}\right].$$

The function $\omega_9(\hat{s}) \equiv \omega(\hat{s})$ can be found eg in in [3, 4]. For $\omega_7(\hat{s})$ and $\omega_{79}(\hat{s})$ see [6]. All other bremsstrahlung corrections are finite and will be given in [9].

5. Corrections to the Decay Width for $B \to X_s \ell^+ \ell^-$

Combining the virtual corrections discussed in section 3 with the bremsstrahlung contributions considered in section 4, we find for the decay width

$$\frac{d\Gamma(b \to X_s \ell^+ \ell^-)}{d\hat{s}} = \left(\frac{\alpha_{em}}{4\pi}\right)^2 \frac{G_F^2 m_{b,\text{pole}}^5 |V_{ts}^* V_{tb}|^2}{48\pi^3} (1-\hat{s})^2 \times \left(\left(1+2\,\hat{s}\right) \left[\left|\tilde{C}_9^{\text{eff}}\right|^2 + \left|\tilde{C}_{10}^{\text{eff}}\right|^2\right] + 4\,(1+2/\hat{s}) \left|\tilde{C}_7^{\text{eff}}\right|^2 + 12\,\operatorname{Re}\left[\tilde{C}_7^{\text{eff}}\tilde{C}_9^{\text{eff}*}\right]\right),\quad(5.1)$$

where the effective Wilson coefficients \tilde{C}_7^{eff} , \tilde{C}_9^{eff} and $\tilde{C}_{10}^{\text{eff}}$ can be written as

$$\begin{split} \widetilde{C}_{9}^{\text{eff}} &= \left[1 + \frac{\alpha_{s}(\mu)}{\pi} \,\omega_{9}(\hat{s}) \right] \left(A_{9} + T_{9} \,h(\hat{m}_{c}^{2},\hat{s}) + U_{9} \,h(1,\hat{s}) + W_{9} \,h(0,\hat{s}) \right) \\ &- \frac{\alpha_{s}(\mu)}{4\pi} \left(C_{1}^{(0)} F_{1}^{(9)} + C_{2}^{(0)} F_{2}^{(9)} + A_{8}^{(0)} F_{8}^{(9)} \right) , \\ \widetilde{C}_{7}^{\text{eff}} &= \left[1 + \frac{\alpha_{s}(\mu)}{\pi} \,\omega_{7}(\hat{s}) \right] A_{7} - \frac{\alpha_{s}(\mu)}{4\pi} \left(C_{1}^{(0)} F_{1}^{(7)} + C_{2}^{(0)} F_{2}^{(7)} + A_{8}^{(0)} F_{8}^{(7)} \right) , \\ \widetilde{C}_{10}^{\text{eff}} &= \left[1 + \frac{\alpha_{s}(\mu)}{\pi} \,\omega_{9}(\hat{s}) \right] A_{10} . \end{split}$$

The function $h(\hat{m}_c^2, \hat{s})$ is defined in [5], where also the values of A_7 , A_9 , A_{10} , T_9 , U_9 and W_9 can be found. $C_1^{(0)}$, $C_2^{(0)}$ and $A_8^{(0)} = \widetilde{C}_8^{(0,\text{eff})}$ are taken from [7].

6. Numerical Results

The decay width in eq (5.1) has a large uncertainty due to the factor $m_{b,\text{pole}}^5$. Following common practice, we consider the ratio

$$R_{\rm quark}(\hat{s}) = \frac{1}{\Gamma(b \to X_c \, e \, \bar{\nu}_e)} \frac{d\Gamma(b \to X_s \ell^+ \ell^-)}{d\hat{s}} \,,$$

in which the factor $m_{b,\text{pole}}^5$ drops out. $\Gamma(b \to X_c \, e \, \bar{\nu}_e)$ can be found eg in [5].

In Fig. 1 we investigate the dependence of $R_{\text{quark}}(\hat{s})$ on the renormalization scale μ_b for $0.05 \leq \hat{s} \leq 0.25$. The solid lines take the new NNLL contributions into account, whereas the dashed lines include the NLL results combined with the NNLL corrections to the matching conditions [5], only. The lower, middle and upper line each correspond to $\mu_b = 2.5$, 5 and 10 GeV, respectively, and $\hat{m}_c = 0.29$. From this figure we conclude that the renormalization scale dependence gets reduced by more than a factor of 2. For the integrated quantity we get

$$R_{\text{quark}} = \int_{0.05}^{0.25} d\hat{s} R_{\text{quark}}(\hat{s}) = (1.25 \pm 0.08) \times 10^{-5} ,$$

where the error is obtained by varying μ_b between 2.5 GeV and 10 GeV. Not including our corrections, one finds $R_{\text{quark}} = (1.36 \pm 0.18) \times 10^{-5}$ [5]. In other words, the renormalization scale dependence got reduced from $\sim \pm 13\%$ to $\sim \pm 6.5\%$. The largest uncertainty due to the input parameters is induced by \hat{m}_c . Fig. 2 illustrates the dependence of $R_{\text{quark}}(\hat{s})$ on \hat{m}_c . The dashed, solid and dash-dotted lines correspond to $\hat{m}_c = 0.27$, $\hat{m}_c = 0.29$ and $\hat{m}_c = 0.31$, respectively, and $\mu_b = 5$ GeV. We find an uncertainty of $\pm 7.6\%$ due to \hat{m}_c .

Figure 1: Dependence of $R_{\text{quark}}(\hat{s})$ on μ_b .

Figure 2: Dependence of $R_{\text{quark}}(\hat{s})$ on \hat{m}_c .

We conclude with the remark that the results presented in this exposition have recently been included in a systematic description of the corresponding exclusive decay mode $B \to K^* \ell^+ \ell^-$ [10, 11].

References

- [1] M. S. Alam et al. (CLEO Collaboration), Phys. Rev. Lett. 74 (1995) 2885.
- [2] R. Ammar et al. (CLEO Collaboration), Phys. Rev. Lett. 71 (1993) 674.
- [3] M. Misiak, Nucl. Phys. B 393 (1993) 23, Nucl. Phys. B 439 (1995) 461 (E).
- [4] A. J. Buras and M. Münz, *Phys. Rev.* D 52 (1995) 186, [hep-ph/9501281].
- [5] C. Bobeth, M. Misiak and J. Urban, Nucl. Phys. B 574 (2000) 291, [hep-ph/9910220].
- [6] H. H. Asatryan, H. M. Asatrian, C. Greub and M. Walker, *Phys. Lett.* B 507 (2001) 162, [hep-ph/0103087]
 H. H. Asatryan, H. M. Asatrian, C. Greub and M. Walker, [hep-ph/0109140]
- [7] C. Greub and P. Liniger, *Phys. Lett.* B 494 (2000) 237, [hep-ph/0008071]
 C. Greub and P. Liniger, *Phys. Rev.* D 63 (2001) 054025, [hep-ph/0009144].
- [8] B. Grinstein, M. J. Savage and M. B. Wise, Nucl. Phys. B 319 (1989) 271.
- [9] H. H. Asatryan, H. M. Asatrian, C. Greub and M. Walker, in preparation.
- [10] M. Beneke, Th. Feldmann and D. Seidel, Nucl. Phys. B 612 (2001) 25
- [11] Th. Feldmann, these proceedings, [hep-ph/0108142]