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Abstract: We perform a complete analysis of the supersymmetric particle spectrum in

the Minimal Supergravity (mSUGRA) model. We show that present constraints on the

Higgs boson and superparticle masses from collider searches and precision measurements

still allow for large regions of the mSUGRA parameter space where some sparticles as

well as the heavier Higgs particles, are light enough to be produced at the next generation

of e+e− linear colliders. An important part of this parameter space remains even when
we require that the density of the lightest neutralinos left over from the Big Bang falls in

the range favored by current determinations of the Dark Matter density in the Universe.

1. Introduction

Although other viable Supersymmetric (SUSY) of the Standard Model (SM) exist, the

Minimal Supergravity (mSUGRA) model has become the most frequently used benchmark

scenario for supersymmetry, and has been widely used to analyze the expected SUSY

particle spectrum and the properties of SUSY particles, and to compare the predictions to

available and/or expected data from collider experiments. Several global or partial analyses

of the present theoretical and experimental constraints on the mSUGRA model have been

performed in the literature. In a recent paper [1], we have performed an independent

analysis of the SUSY particle is this model, taking into account theoretical constraints and

all available experimental information: searches for the MSSM Higgs bosons and SUSY

particles at the LEP and Tevatron colliders [2], electroweak precision measurements [2],

the radiative b → sγ decay, etc. Special attention was devoted to the implications of
the measurement of the anomalous magnetic moment of the muon recently performed

at Brookhaven [2], and to the ∼ 2σ evidence for a SM–like Higgs boson with a mass
MHiggs ∼ 115.6 GeV seen by the LEP collaborations [2]. We have also discussed the
implication of requiring thermal relic neutralinos to form the Dark Matter in the Universe
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[2]. We have then discussed prospects for producing SUSY particles and the heavier Higgs

bosons of the MSSM at future high–energy e+e− linear colliders with c.m. energies around
800 GeV. This talk summarizes the main results of this analysis; for more details and for

a complete set of references, we refer the reader to the original work.

2. The mSUGRA model and the calculation of the spectrum

We have performed our analysis in the constrained MSSM or mSUGRA model, where the

MSSM soft breaking parameters obey a set of universal boundary conditions at the GUT

scale, MGUT ' 2.1016 GeV, so that the electroweak symmetry is broken radiatively. In this
model, where the gauge couplings are unified at MGUT, one has only four continuous free

parameters, and an unknown sign in addition to to the parameters of the SM:

tanβ , m1/2 , m0 , A0 , sign(µ).

where tan β is the ratio of the vevs of the MSSM Higgs fields m1/2,m0 and A0, are respec-

tively, the common soft–SUSY breaking gaugino mass, scalar mass and trilinear couplings

at the GUT scale, and µ is the higgsino mass parameter, the absolute value of which is

determined by the requirement of a proper electroweak symmetry breaking (EWSB). All

the soft SUSY breaking parameters at the weak scale are then obtained through Renor-

malization Group Equations (RGE).

All results are based on the numerical FORTRAN code SuSpect version 2.0 [3], to

which we refer for a more detailed description. The algorithm essentially includes:

– RGE of parameters between the low energy scale and the GUT scale. For the gauge

and Yukawa couplings and gaugino masses, we use two–loop RGE. All the one–loop SUSY

threshold effects are implemented in the RG evolution via step functions in the β functions

for each particle threshold.

– Consistent implementation of EWSB. Loop corrections (with all SUSY and Higgs

particles) to the effective potential are included using the tadpole method. The SUSY

parameters are frozen at the EWSB scale. µ2 andBµ are determined from the minimization

of the potential at this scale. Since these parameters affect mass of some sparticles, this

procedure has to be iterated until stability is reached and a consistent value of µ is obtained.

– Calculation of the physical (pole) masses of the Higgs bosons and the sparticles

including all the important ingredients. For instance, we include the dominant radiative

correction to the 3d generation fermion masses and to all SUSY particles masses. The Higgs

sector is treated in the effective potential approach with RGE improved QCD corrections.

In calculating the masses, the procedure is iterated at least twice until stability is reached,

in order to take into account the (multi–scale) thresholds and the radiative corrections.

In the numerical analyses we fix the MSSM parameters tan β given at scale MZ as

well as A0 and the sign of µ, and then perform a systematic scan over the high energy

mSUGRA inputs m0 and m1/2. Given these boundary conditions, all the soft SUSY break-

ing parameters and couplings are evolved down to the EWSB scale, which we choose to be

the geometric mean of the two top squark masses, MEWSB = (mt̃1mt̃2)
1/2.

The program allowed us to fairly reliably delineate the regions of the mSUGRA param-

eter space which are still allowed by theoretical constraints [from a proper EWSB breaking,

neutralino LSP, non–tachyonic Higgs and SUSY particles, etc..]
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3. Constraints on the mSUGRA parameter space

(i) Lower bounds on SUSY particle masses: A wide range of searches for SUSY

particles has been performed at LEP2 and at the Tevatron, resulting in limits on the

masses of these particles. The most important ones are due to the negative search of

charginos, sleptons and third generation squarks at LEP2 and squarks and gluinos at the

Tevatron. We therefore impose the following bounds: mχ̃+1
≥ 104 GeV,mf̃ ≥ 100 GeV

with f̃ = t̃1, b̃1, l̃
±, ν̃ and mg̃ ≥ 300 GeV,mq̃1,2 ≥ 260 GeV with q̃ = ũ, d̃, s̃, d̃.

(ii) Constraints from the Higgs boson masses: In the SM, a 95% CL lower bound

has been set on the Higgs boson mass at LEP2, MH0 ≥ 113.5 GeV. In the MSSM, this
bound is valid in the decoupling regime where the pseudoscalar A boson is very heavy.

For small values of MA, a combined exclusion limit of Mh ∼ MA ≥ 93.5 GeV has been
set. In the intermediate region an interpolation has to be made. We have also studied the

implications of the 2.1σ evidence for a SM–like Higgs boson with a mass MH = 115.6 GeV

seen by the LEP collaborations. In view of the theoretical and experimental uncertainties,

we interpreted this result as favoring the range: 113GeV ≤ Mh ≤ 117GeV.
(iii) Constraints from electroweak precision observables: Loops of Higgs and SUSY

particles can contribute to electroweak observables which have been precisely measured

at LEP, SLC and the Tevatron. The dominant contributions, in particular MW and the

effective angle s2W , enter via a deviation from unity of the ρ parameter which measures the

breaking of the custodial SU(2) symmetry. In the MSSM, the dominant contributions are

due to the 3d generation (t̃, b̃) and (τ̃ , ν̃) weak iso–doublets, which we have required these

contributions to stay below the acceptable (2σ) level of ∆ρ(f̃) ≤ 2.2 · 10−3.
(iv) The b → sγ constraint: Another observable where SUSY particle contributions

might be large is the radiative flavor changing decay b→ sγ, the branching ratio of which
has been measured to be BR(b→ sγ) = (3.37±0.37±0.34±0.24+0.35−0.16±0.38)·10−4 , including
theoretical errors. In our analysis, we will use the most up–to–date determination in the

MSSM of the b→ sγ decay rate including NLO QCD corrections and allow the branching
ratio to vary in the 2σ range: 2.0× 10−4 ≤ BR(b→ sγ) ≤ 5.0× 10−4.
(v) The contribution to the muon g − 2: Recently, the Muon (g − 2) Collaboration

has reported a new measurement of the anomalous moment of the muon: (gµ − 2) ≡
aexpµ = 11 659 202 (14)(6) 10−10 , which differs from the predicted SM average value by
2.6σ. We interpret the discrepancy as being a SUSY contribution (chargino–sneutrino and

neutralino–smuon loops) of 11 · 10−10 ≤ aSUSYµ ≤ 75 · 10−10.
(vi) Cosmological constraints: We have analyzed the contribution of the χ01 particles,

which are the lightest SUSY particles, to the (normalized) overall matter density of the

Universe Ωχ̃01h
2 (h ∼ 0.5 is the Hubble constant). The χ01, is neutral, weakly interacting,

massive and absolutely stable since R-parity is conserved in mSUGRA, and is therefore

a good candidate for the cold Dark Matter. Recent evidence suggests that Ωχ̃01h
2 ' 0.2

and we define 0.1(0.025) ≤ Ωχ̃01h2 ≤ 0.3(0.5) as the (conservative) cosmologically favored
region. The calculation of the relic density is made using standard assumptions and includes

all the annihilation channels, with a proper treatment of the s–channel poles, as well as

co–annihilation with gauginos, sleptons and top squarks.
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The main outcome of this part our analysis can be summarized as follows:

– There are large areas of the (m1/2,m0) parameter space which are still allowed by

present experimental constraints. In particular, for large enough values of tan β, the bound

on the lightest h boson mass, Mh >∼ 113 GeV, does not place too severe constraints. If
µ > 0, which is favored by the (gµ − 2) anomaly, the constraint from the radiative decay
b→ sγ are not severe even for large values of tanβ. In fact, if A0 = 0 it is always superseded
by the Higgs boson mass constraint, but for A0 = −1 TeV the b → sγ constraint can be
more severe. Precision electroweak measurements are easily accommodated.

– For tan β >∼ 10 and small values of the coupling A0, the requirement of 113 GeV
<∼ Mh <∼ 117 GeV favors moderate values of the gaugino mass, m1/2 <∼ 500 GeV, leading
to relatively light chargino and neutralino states, mχ̃±1

∼ mχ̃02 ∼ 2mχ̃01 <∼ 400 GeV. For
large (and negative) values of A0, which lead to a strong mixing in the stop sector, Mh in

this range can be accommodated in large regions of the parameter space even for rather

small tan β(∼ 5) values. In this case t̃1 can be rather light, if the parameters m0 and m1/2
are not too high. The range of m1/2 favored by the LEP Higgs evidence strongly depends

on the exact value of Mt, calling for a more precise determination of this parameter.

– The (gµ − 2) excess, which can be accommodated in the MSSM only if µ > 0,
typically gives a stronger upper bound on m0 than the requirement MH = 115 ± 2 GeV.
For tan β ∼ 40, m0 and m1/2 values below ∼ 600 GeV [and slightly above ∼ 300 GeV] are
needed, implying again relatively light electroweak gaugino and slepton states. However,

the value of this upper bound increases roughly proportional to tanβ, so that at tan β = 60,

m0 as large as 1.0 (1.6) TeV can be accommodated at the 1 (2) σ level.

– For small and moderate tanβ( <∼ 40) the requirement that the density of the lightest
neutralinos accounts for the Dark Matter density in the Universe is very constraining

indeed. In this case most of the region where Ωχ̃01h
2 is “naturally” in the interesting range

is excluded by the Higgs mass constraints, which requires SUSY breaking masses above

those preferred by Dark Matter calculations. Only a small band in the region with a

relatively light bino–like neutralino and relatively light τ̃ survives. In addition, there are

“exceptional” regions: a narrow strip in the τ̃1χ̃
0
1 co–annihilation region near the boundary

where the τ̃1 slepton is the LSP, and a strip in the focus point region at large m0 and small

m1/2 values where neutralinos and charginos are relatively light and have large higgsino

components. Requiring in addition Mh = 115± 2 GeV and a SUSY interpretation for the
(gµ−2) anomaly removes most of these “exceptional” regions with acceptable relic density.
On the other hand, for large values of tanβ( >∼ 50), the area of the (m0,m1/2) parameter
space favored by cosmology extends significantly due to the opening of the pseudoscalar

A–boson pole. This allows to fit all the requirements [Mh, (gµ−2) and the DM constraint]
in a somewhat larger area of the (m0,m1/2) parameter space.

– In spite of the strong constraints on mSUGRA obtained by taking seriously all the

positive indications for SUSY it is still not possible to give tight limits on any one single

parameter. We found overlap regions with 5 ≤ tan β ≤ 60, 0.1 TeV <∼ m0 <∼ 1.5 TeV,

160 GeV <∼ m1/2 <∼ 550 GeV. Furthermore, allowing for a large negative A0 plays an

important role in extending the allowed region to smaller values of tan β. In fact, the

allowed (m1/2,m0) region plane could be further extended by considering more A0 choices.
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m0

m1/2

Figure 1: Constraints on the (m1/2,m0) mSUGRA plane for tanβ = 40, A0 = 0 and sign(µ) > 0.

The grey areas are those excluded by the requirement of EWSB and limits on SUSY particle masses

(darker grey), BR(b → sγ) (medium grey) and Mh > 113 GeV (light and dark grey). The colors
are for the “evidence” for the h boson (red), the (gµ − 2) (blue) and Dark Matter (green).

4. Sparticle and Higgs production in e+e− Collisions

We have then analyzed the prospects for producing SUSY particles and heavy Higgs bosons

at high–energy and high–luminosity e+e− colliders, requiring a sample of 50 events per
year to establish discovery; this should be sufficient in the clean environment provided

by e+e− colliders. At c.m. energies
√
s ∼ 800 GeV, typical of the TESLA machine

[2], we have shown that charginos, neutralinos and sleptons [in particular τ̃ and ν̃] are

accessible in rather large regions of the parameter space. In particular, already at
√
s = 800

GeV associated χ̃01χ̃
0
2 production is accessible in the entire overlap region described above.

Almost all of this region can also be probed through χ̃±1 pair production, and in much of
it τ̃1 pair production can also be studied. In some areas, top squarks and even bottom

squarks can be produced. In the large tan β regime, where the present indications for SUSY

can be accommodated in a larger fraction of the (m1/2,m0) plane, there is a large region

where the heavier MSSM Higgs bosons H,A and H± are kinematically accessible.
Even for lower c.m. energies,

√
s ∼ 500 GeV, charginos, neutralinos and charged (τ)

sleptons can be produced in a significant region of parameter space not excluded by the

present constraints. However, discovery of sparticles can then no longer be guaranteed [in

the framework of mSUGRA] even if all positive indications for SUSY hold up to further

scrutiny. On the other hand, if the c.m. energy of the collider is increased to
√
s = 1.2

TeV, the mSUGRA parameter space where SUSY and Higgs particles are kinematically

accessible and have sufficiently large cross sections to be detected becomes very wide. The

e+e− collider will then have a search potential of SUSY particles that is comparable to
the range probed at the LHC. This is largely due to the fact that, thanks to the high

– 5 –



P
r
H
E
P
 
h
e
p
2
0
0
1

International Europhysics Conference on HEP Abdelhak Djouadi1

m0
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Figure 2: The (m1/2,m0) mSUGRA plane with tanβ = 40, A0 = 0 and sign(µ) > 0 where SUSY

and Higgs particles can be produced at and e+e− collider with a c.m. energy
√
s = 800 GeV. The

grey areas are those excluded by theoretical and experimental constraints. The colored regions are

those where then cross sections are large enough for the particles to be produced: χ̃01χ̃
0
2 (green),

χ̃+1 χ̃
−
1 (red), l̃

+ l̃− (blue), ν̃ν̃∗ (purple), t̃1t̃∗1 (dark blue), b̃1t̃∗1 (dark blue) and the heavy MSSM
H,A,H± bosons (yellow). Note that some of these regions are overlapping.

luminosities expected at future e+e− colliders, the process e+e− → χ̃01χ̃02 can probe large
values of the parameter m1/2: only from kinematical arguments, values m1/2 ∼ 1 TeV can
be probed at

√
s = 1.2 TeV, corresponding to a gluino mass of the order of 2 TeV. Heavy

Higgs particles can be searched if their masses are smaller than the beam energy. For large

values of tanβ, this occurs in a large region of the mSUGRA parameter space.

Once these particles are found, precision measurements at an e+e− collider could
reveal a great deal about the MSSM spectrum. In particular, threshold scans allow the

measurement of some sparticle masses at the permile level. Making use of the ability to

vary the beam polarization at will, various couplings appearing in the production cross

sections of SUSY and Higgs particles can be measured with a high precision. Additional

couplings can be determined through the careful measurement of decay branching ratios.

By combining the information on sleptons and electroweak gauginos that one can obtain

at e+e− colliders with the information on squark and gluino production obtained at the
LHC would allow very stringent tests of the model.
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