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Abstract: The leptons are viewed as composite objects, exhibiting anomalous magnetic

moments and anomalous flavor-changing transition moments. The decay µ → eγ is

expected to occur with a branching ratio of the same order as the present experimental

limit. The first order QED radiative correction is considered.

Recently an indication was found that the anomalous magnetic moment of the muon

µ+ is slightly larger than expected within the standard model [1]. The deviation is of the

order of 10−9:

∆aµ = aµ(exp)− aµ(SM) = (4.3 ± 1.6) × 10−9. (1)

For a review of the contribution of the standard model to the anomalous magnetic moment

of the muon see Ref. [2]. The observed effect (2.6 σ excess) does not necessarily imply

a conflict with the standard model, in view of the systematic uncertainties in the theo-

retical calculations due to the hadronic corrections. If this result is confirmed by further

experimental data and theoretical work, it might be interpreted as the first signal towards

an internal structure of the leptons [3], although other interpretations (vertex corrections

due to new particles or non-minimal couplings due to a more complex space-time structure

[4]) are also possible. A new contribution to the magnetic moment of the muon can be

described by adding an effective term Leff to the Lagrangian of the standard model as
follows:

Leff = e

2Λ
µ̄ (A+Bγ5)σµνµF

µν

(
1− 4α

π
ln
Λ

mµ

)
, (2)

where µ is the muon field, Fµν the electromagnetic field strength, Λ the compositeness

scale and A and B are constants. We have taken the QED one loop correction into account
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[5]. The leading order contribution has been considered in [6]. We have included a γ5-term

in view of a possible CP violation of the confining interaction.

The constants in Leff depend on dynamical details of the underlying composite struc-
ture. If the latter is analogous to QCD, where such a term is induced by the hadronic

dynamics, the constant A is of the order one, and the BNL result would give: Λ ≈ 2× 109
GeV using

∆aµ =
(mµ

Λ

)(
1− 4α

π
ln
Λ

mµ

)
, (3)

assuming |A| = 1. The γ5-term does not contribute to the anomalous magnetic moment.
The magnetic moment term (2) has the same chiral structure as the lepton mass

term. Thus one expects that the same mechanism which leads to the small lepton masses

(mµ � Λ), e.g. a chiral symmetry, leads to a corresponding suppression of the magnetic
moment. In this case the effective Lagrangian should be written as follows:

Leff = e

2Λ

mµ

Λ
µ̄ (A+Bγ5)σµνµF

µν

(
1− 4α

π
ln
Λ

mµ

)
. (4)

The contribution of the compositeness to the magnetic moment is in this case given by

∆aµ =
(mµ

Λ

)2(
1− 4α

π
ln
Λ

mµ

)
. (5)

Using the central value of ∆aµ, one obtains: Λ ≈ 1.54 TeV, i.e. Λ is much smaller due to
the chiral symmetry argument [7]. The 95% confidence level range for Λ is

1.16 TeV < Λ < 3.04 TeV. (6)

If the leptons have a composite structure, the question arises whether effects which

are absent in the standard model, in particular flavor-changing transitions, e.g. the decays

µ→ eγ or τ → µγ arise.

In this note we shall study flavor changing magnetic-moment type transitions which

indeed lead to radiative decays of the charged leptons on a level accessible to experiments

in the near future.

We start by considering the limit me = mµ = 0, i.e. only the third lepton τ remains

massive. Neutrino masses are not considered. In this limit the mass matrix for the charged

leptons has the structure ml− = mτdiag(0, 0, 1) and exhibits a “democratic symmetry”

[8, 9]. Furthermore there exists a chiral symmetry SU(2)L ⊗ SU(2)R acting on the first
two lepton flavors. The magnetic moment term induced by compositeness, being of a

similar chiral nature as the mass term itself, must respect this symmetry. We obtain

Leff = e

2Λ

mτ

Λ
ψ̄M̃ (A+Bγ5) σµνψF

µν

(
1− 4α

π
ln
Λ

mψ

)
. (7)

Here ψ denotes the vector (e, µ, τ) and M̃ is given by M̃ = diag(0, 0, 1).
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Once the chiral symmetry is broken, the mass matrix receives non-zero entries, and

after diagonalization by suitable transformations in the space of the lepton flavors it takes

the form M = diag(me,mµ,mτ ). If after symmetry breaking the mass matrix M and

the magnetic moment matrix M̃ were identical, the same diagonalization procedure which

leads to a diagonalized mass matrix would lead to a diagonalized magnetic moment matrix.

However there is no reason why M̃ and M should be proportional to each other after

symmetry breaking. The matrix elements of the magnetic moment operator depend on

details of the internal structure in a different way than the matrix elements of the mass

density operator. Thus in general the magnetic moment operator will not be diagonal, once

the mass matrix is diagonalized and vice versa. Thus there exist flavor-non-diagonal terms

(for a discussion of analogous effects for the quarks see Ref. [8]), e.g. terms proportional

to ē σµν (A+Bγ5)µ. These flavor-non-diagonal term must obey the constraints imposed

by the chiral symmetry, i.e. they must disappear once the masses of the light leptons

involved are turned off. For example, the e − µ transition term must vanish for me → 0.
Furthermore the flavor changing terms arise due to a mismatch between the mass density

and the magnetic moment operators due to the internal substructure. If the substructure

were turned off (Λ → ∞), the effects should not be present. The simplest Ansatz for
the transition terms between the leptons flavors i and j is const.

√
mimj/Λ. It obeys the

constraints mentioned above: it vanishes once the mass of one of the leptons is turned off,

it is symmetric between i and j and it vanishes for Λ → ∞. In this case the magnetic
moment operator has the general form:

Leff = e

2Λ

mτ

Λ
ψ̄




me
mτ

Ceµ
√
memµ
Λ Ceτ

√
memτ
Λ

Ceµ
√
memµ
Λ

mµ
mτ

Cµτ
√
mµmτ
Λ

Ceτ
√
memτ
Λ Cµτ

√
mµmτ
Λ 1


ψ (A+Bγ5)σµνFµν

×
(
1− 4α

π
ln
Λ

mψ

)
. (8)

Here Cij are constants of the order one. In general one may introduce two different matrices

(with different constants Cij) both for the 1-term and for the γ5-term, but we shall limit

ourselves to the simpler structure given above.

Based on the flavor-changing transition terms given in eq. (8), we can calculate the

decay rates for the decays µ→ eγ, τ → µγ and τ → eγ. We find:

Γ(µ→ eγ) = e2
mµ

8π

(√
mµme

Λ

)2 (mµ

Λ

)2 (mτ

Λ

)2 (|A|2 + |B|2)

×
(
1− 8α

π
ln
Λ

mµ

)
, (9)

Γ(τ → µγ) = e2
mτ

8π

(√
mτmµ

Λ

)2 (mτ

Λ

)2 (mτ

Λ

)2 (|A|2 + |B|2)

×
(
1− 8α

π
ln
Λ

mτ

)
, (10)

Γ(τ → eγ) = e2
mτ

8π

(√
mτme

Λ

)2 (mτ

Λ

)2 (mτ

Λ

)2 (|A|2 + |B|2)
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×
(
1− 8α

π
ln
Λ

mτ

)
. (11)

In the following we take |A| = 1. The parameter |B| can be constrained using the limits
for the electron EDM. This limit gives the most stringent constraint on this parameter.

The Lagrangian (8) yields the following EDM for the electron:

de =
e

Λ

me

Λ
|B|
(
1− 4α

π
ln
Λ

me

)
= 3.7 × 10−24|B| e-cm, (12)

which has to be compared to the experimental limit de
exp < (0.18±0.12±0.10)×10−26e−

cm [10], we thus see that |B|must be much smaller than |A|. We set |B| = 0 in the following.
The corresponding branching ratios are:

Br(µ→ eγ) ≈ 1.5 × 10−10, (13)

Br(τ → µγ) ≈ 3.5 × 10−10, (14)

Br(τ → eγ) ≈ 1.7 × 10−12, (15)

using the central value of ∆aµ to evaluate Λ. One obtains the following ranges for the

branching ratios

8.3× 10−10 > Br(µ→ eγ) > 2.5 × 10−12, (16)

1.9 × 10−9 > Br(τ → µγ) > 5.8 × 10−12, (17)

9.3× 10−12 > Br(τ → eγ) > 2.8 × 10−14, (18)

using the 95% confidence level range for Λ (6).

These ranges are based on the assumption that the constants of order one are fixed to

one. The upper part of the range for the µ → eγ decay given in (16) is excluded by the

present experimental limit: Br(µ→ eγ) < 1.2×10−11 [10]. Our estimates of the branching
ratio should be viewed as order of magnitude estimates. In general we can say that the

branching ratio for the µ→ eγ decay should lie between 10−13 and the present limit.
The decay τ → µγ processes at a level which cannot be observed, at least not in

the foreseeable future. The decay τ → eγ is, as expected, much suppressed compared to

τ → µγ decay and cannot be seen experimentally.

Numerically, the effect of the QED one loop correction is small compared to the “tree

level” calculation [6] because there is a cancellation between two effects: the extracted

composite scale is larger but the decay rates are suppressed by the factor
(
1− 8απ ln Λmf

)
,

where mf is the mass of the decaying lepton.

The experiment now under way at the PSI should be able to detect the decay µ→ eγ.

If it is found, it would be an important milestone towards a deeper understanding of the

internal structure of the leptons and quarks.
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