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Abstract: Using the example of the rare decay B → Xsγ, we analyse the importance of
interference effects for the bounds on the parameters in the squark mass matrices within

the unconstrained MSSM. In former model-independent analyses no correlations between

the different sources of flavour violation were taken into account. In our new analysis we

include the contributions from charged Higgs bosons, charginos and neutralinos and their

interference effects and, even more important, the effects that appear when several flavour

violating parameters, i.e. several off-diagonal elements in the squark mass matrices, are

switched on simultaneously. We derive new bounds on certain off-diagonal elements of

the squark-mass matrix which are in general one order of magnitude weaker than the

previous bounds.

CERN-TH/2001-331, BUTP-01/19, ZH-TH-42/01

1. Introduction

Flavour changing neutral current (FCNC) processes provide crucial guidelines for super-

symmetry model building. Besides the Cabibbo–Kobayashi–Maskawa (CKM)-induced con-

tributions, there are generic supersymmetric contributions induced by flavour mixing in the

squark mass matrices within the so-called unconstrained minimal supersymmetric standard

model (MSSM). The structure of the MSSM does not explain the suppression of FCNC
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processes, which is observed in experiments; this is the crucial point of the well-known

supersymmetric flavour problem.

Among neutral flavour transitions involving the third generation, the rare decay B →
Xsγ is at present the most important one [1], as it is the only inclusive mode that is already

measured [2] and that already provides theoretically clean and rather stringent constraints

on the parameter space of various extensions of the SM [3]. Although the theoretical SM

prediction, up to next-to-leading logarithmic (NLL) precision [4] for its branching ratio, is

in agreement with the experimental data, it is still possible that the rare decay B → Xsγ
leads to the first evidence of new physics by a significant deviation from the SM prediction,

for example in the observables concerning direct CP violation [5].

The decay B → Xsγ is sensitive to the mechanism of supersymmetry breaking because,
in the limit of exact supersymmetry, the decay rate would be just zero, B(B → Xsγ) = 0.
Flavour violation thus originates from the interplay between the dynamics of flavour and

the mechanism of supersymmetry breaking and FCNC processes may contribute to the

question of which mechanism ultimately breaks the supersymmetry.

Former analyses in the unconstrained MSSM neglected QCD corrections and only used

the gluino contribution to saturate the experimental bounds. Moreover, no correlations

between different sources of flavour violation were taken into account. In this way, one

arrived at ‘order-of-magnitude bounds’ on the soft parameters [6, 7, 8]. In [9], the sensitivity

of the bounds on the down squark mass matrix to radiative QCD corrections was analysed,

including the SM and the gluino contributions. In the new analysis [10] we present here, we

include the contributions from charged Higgs bosons, charginos and neutralinos and their

interference effects and, even more important, the effects that result when several flavour

violating parameters, i.e. several off-diagonal elements in the squark mass matrices, are

switched on simultaneously.

2. Phenomenological Analysis

To understand the sources of flavour violation that may be present in supersymmetric mod-

els, in addition to those enclosed in the CKM matrix, one has to consider the contributions

to the squark mass matrices

M2
f ≡



m2f, LL + Ff LL +Df LL

(
m2f, LR

)
+ Ff LR

(
m2f, LR

)†
+ Ff RL m2f,RR + Ff RR +Df RR


 , (2.1)

where f stands for up- or down-type squarks. We recall that the matrices mu,LL and

md,LL cannot be specified independently; SU(2)L gauge invariance implies that mu,LL =

Kmd,LLK
†, where K is the CKM matrix. In the super-CKM basis, where the quark mass

matrices are diagonal and the squarks are rotated in parallel to their superpartners, the F

terms from the superpotential and the D terms turn out to be diagonal 3× 3 submatrices
of the 6 × 6 mass matrices M2

f . This is in general not true for the additional terms m
2
f ,

originating from the soft supersymmetry breaking potential. Because all neutral gaugino

couplings are flavour diagonal in the super CKM basis, the gluino contributions to the decay
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B → Xsγ are induced by the off-diagonal elements of the soft terms m2f,LL, m2f,RR, m2f,RL.
Since there are different contributions to this decay, with different numerical impact on

its rate, some of these flavour violating terms may turn out to be poorly constrained.

Thus, given the generality of such a calculation, it is convenient to rely on the mass

eigenstate formalism, which remains valid even when some of the intergenerational mixing

elements are large, and not to use the approximate mass insertion method (MIA), where

the off-diagonal squark mass matrix elements are taken to be small and their higher powers

neglected. In the latter approach the reliability of the approximation can be checked only

a posteriori.

As a first step, it is convenient to select one possible source of flavour violation in the

squark sector at a time and assume that all the remaining ones are vanishing. It should be

stressed that one already excludes any kind of interference effects between different sources

of flavour violation in this way. Following ref. [6], all diagonal entries in m2d, LL, m
2
d, RR,

and m2u,RR are set equal and their common value is denoted by m
2
q̃. The branching ratio

can then be studied as a function of

δLL,ij =
(m2d, LL)ij

m2q̃
, δRR,ij =

(m2d,RR)ij

m2q̃
, δLR,ij =

(m2d, LR)ij

m2q̃
(i 6= j). (2.2)

We find that only those parameters get stringently bounded by B → Xsγ, which can

generate contributions to the two five-dimensional gluino-induced dipole operators, namely

δd,LR,23 and δd,RL,23. The two corresponding operators are connected by chirality and are

denoted byO7g̃,g̃ and Ô7g̃,g̃ in the following. As the gluino yields, intrinsically, the dominant
contribution by far, we also find that the bounds on δd,LR,23 and δd,RL,23 are only marginally

modified by chargino, neutralino and charged Higgs boson contributions.

In the second part of our analysis, we investigate whether the obtained bounds re-

main stable if all off-diagonal elements, which induce the decay B → Xsγ, are varied
simultaneously. For our analysis we explore various scenarios that are characterized by

the values of the parameters µ,MH− , tan β,Msusy,mg̃. We regard this as reasonable, be-

cause we expect that these input parameters, which are unrelated to flavour physics, will

be fixed from flavour conserving observables in the next generations of high energy ex-

periments (provided low energy SUSY exists). We note that the common SUSY scale,

Msusy, fixes in our scenarios the general soft squark mass scale mq̃ (see (2.2)) and the

first diagonal element of the chargino mass matrix M2. The mass of the charged Higgs

boson MH− are fixed to be MH− = 300GeV . We also allow for a non-degeneracy of

the diagonal elements in the matrices m2d, LL, m
2
d,RR, and m

2
u,RR. To implement this,

we define δ-quantities in addition to those in eq. (2.2), which parametrize this non-

degeneracy: δf,LL,ii = ((m
2
f, LL)ii −m2q̃)/(m2q̃); and analogously for δf,RR,ii. In our Monte

Carlo analysis these diagonal δ-parameters are varied in the interval [−0.2, 0.2]. On the
other hand, the off-diagonal ones (in eq. (2.2)) are varied in the interval [−0.5, 0.5], by
use of a Monte Carlo program. There are, however, two exceptions. First, we do not

vary those off-diagonal δ’s with an index 1; the latter δ’s we set to zero, since they are

severely constrained by kaon decays (see for example [6]). Second, also (m2u,LR)33 is not

varied, but fixed such that the mass of the lightest neutral Higgs boson gets heavy enough
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Figure 1: Contours in the δd,LR,23-δd,RL,23 plane. In the left frame, δd,LR,23 and δd,RL,23 are the

only flavour violating parameters. In the right frame, δd,LR,23, δd,RL,23, δd,LL,23 and δd,RR,23 are

flavour violating parameters; δd,LR,22, δd,LR,33 are also non-zero. We only consider SM and gluino

contributions and the other parameters are µ = 300GeV , tanβ = 10, Msusy = 500GeV , x = 1.

to be compatible with experimental bounds [11]. We plot those events, corresponding to

2.0 × 10−4 ≤ BR(B → Xsγ) ≤ 4.5 × 10−4, which is the range allowed by the CLEO
measurement. We start with the following parameter set: µ = 300GeV , MH− = 300GeV ,

tan β = 10, Msusy = 500GeV , x = m
2
g̃ /M

2
susy = 1 and Xt = 750GeV . In fig. 1, we

only consider SM and gluino contributions. In the left frame we present the constraints on

δd,LR,23 and δd,RL,23 when these are the only flavour-violating soft parameters; the diagonal

δ-parameters defined above are also switched off. As expected, stringent constraints are

obtained. The hole inside the dotted area represents values of δd,LR,23 and δd,RL,23 for

which the branching ratio is too small to be compatible with the measurements. In the

right frame we now investigate interference effects from different sources of flavour viola-

tion, where we allow for non-zero δd,LR,23, δd,RL,23, δd,LL,23, δd,RR,23, δd,LR,22, and δd,LR,33.

All these parameters are varied between ±0.5. As can be seen, the bounds on δd,LR,23 and
δd,RL,23 get destroyed dramatically (note the different scale in the two plots). The reason

for this is that there are now new contributions to the five-dimensional dipole operators.

As an example, the combined effect of δd,LR,33 and δd,LL,23 leads to a contribution to the

Wilson coefficient of the gluino-induced magnetic dipole operator O7g̃,g̃. The sign of this
contribution can be different from the one generated by δd,LR,23. As a consequence, the

bound on δd,LR,23 gets weakened. To illustrate this more quantitatively, we assume for the

moment that there are only these two sources that can generate O7g̃,g̃, i.e. we switch off
the other δ-quantities. If δd,LR,23 is larger than the individual bound from the first part of

the analysis, it is necessary that the product of δd,LR,33 and δd,LL,23 also be relatively large;

only in this case can the two sources lead to a branching ratio compatible with experiment.

This feature is illustrated in fig. 2; only values of δd,LR,23 and values of δd,LR,33 · δd,LL,23
that are strongly correlated lead to an acceptable branching ratio. As clearly visible from

fig. 2, the correlation between the two sources for O7g̃,g̃ is essentially linear. This implies
that the linear combination com := δd,LR,23 + f δd,LR,33 · δd,LL,23 gets constrained if f
is chosen appropriately. Stated differently, the Wilson coefficient of the five-dimensional

magnetic dipole operator is essentially proportional to the combination com defined above.

This implies in turn, that for the values of the parameters we are using at the moment,

the Wilson coefficient is well approximated by its double mass insertion expression. Thus,
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Figure 2: The parameters δd,LR,23 and δd,LR,33 · δd,LL,23, which are compatible with the data on
B → Xsγ, are shown by dots. Values lying on the solid line lead to a vanishing contribution of the
five-dimensional magnetic dipole operator O7g̃,g̃ in the MIA. See text.

the coefficient f can be fixed analytically (see [10]); the numerical values of f(x) for some

values of x read 0.74 for x = 0.3, 0.68 for x = 0.5, 0.60 for x = 1.0 and 0.52 for x = 2.0,

respectively. The solid line in fig. 2 represents pairs (δd,LR,23, δd,LR,33 · δd,LL,23) for which
the combination com is zero. The points scattered around this line therefore represent

Monte Carlo events for which this combination is small. We now turn back to the scenario

of fig. 1, in which all the parameters δd,LR,23, δd,RL,23, δd,LL,23, δd,RR,23, δd,LR,22, δd,LR,33
are varied simultaneously. In this case, the linear combinations

LC1 = δd,RL,23 + f(x)δd,RR,23 · δd,RL,33 + f(x)δd,RL,22 · δd,LL,23,
LC2 = δd,LR,23 + f(x)δd,LR,22 · δd,RR,23 + f(x)δd,LL,23 · δd,LR,33, (2.3)

are expected to get constrained. In fig. 3 we show the allowed region for LC1 and LC2.

There, we allow all non-diagonal δ-parameters to vary between ±0.5. In addition, we also
allow for non-equal diagonal soft entries, by varying the parameters δf,LL,ii and δf,RR,ii
between ±0.2. With the latter choice we still guarantee the hierarchy between diagonal
and off-diagonal entries, but we get rid of the unnatural assumption of degenerate diagonal

entries. In the left frame, we include only the SM and gluino contributions. We find that

the linear combinations LC1 and LC2 indeed get stringently bounded. In the right frame of

fig. 3 we test the resistance of these bounds when the additional contributions (i.e., those

from charginos, charged Higgs bosons and neutralinos) are turned on. In this case also

δu,LR,23, δu,RL,23, δu,LL,23, δu,RR,23 and δu,LR,22 are varied in the range ±0.5. We find that
the bound on LC1 remains unchanged, while the one on LC2 gets somewhat weakened.

This feature is expected, because charginos and charged Higgs bosons contribute to the

unprimed operator.

At this point we should stress that these plots were obtained by choosing the renormal-

ization scale µb = 4.8GeV and by requiring all squark masses to be larger than 150GeV .

We checked that the bounds on LC1 and LC2 remain practically unchanged when the

renormalization scale is varied between 2.4GeV and 9.6GeV ; they are also insensitive to

the value of the required minimal squark mass, as we found by changing msquarkmin from

150GeV to 100GeV or 250GeV . Moreover, we also checked whether the restriction to the
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Figure 3: Contours in the LC1–LC2 plane with δd,LR,23, δd,RL,23, δd,LL,23, δd,RR,23, δd,LR,22,

δd,LR,33, δu,LR,23, δu,RL,23, δu,LL,23, δu,RR,23, and δu,LR,22 all non-vanishing. In the left frame, we

consider only SM and gluino contributions whereas in the right frame we also include chargino,

charged Higgs boson and neutralino contributions.

µ = +300 GeV scenario is too severe: we redid the complete analysis for µ = −300GeV
and confirmed that there are no differences between the results with these two choices.

There is a remark in order. If we got rid of the hierarchy of diagonal and off-diagonal

entries in the squark mass matrices, stringent bounds on the simple combinations LC1 and

LC2 certainly would no longer exist, simply because there would then be more contributions

to the five-dimensional operators of similar magnitude. In this case, however, the full

Wilson coefficients of the five-dimensional operators would still be stringently constrained

by the experimental data on B → Xsγ. Unfortunately, in this case not much information
can be extracted for the individual soft parameters or simple combinations thereof.

Finally, we extend our analysis to other values of the input parameters. We analyse

the bounds on the soft parameters within the following parameter sets: Msusy = 300GeV ,

500GeV , 1000GeV . For tan β we explore the values: tan β = 2, 10, 30, 50. Furthermore,

the gluino mass mg̃ is varied over the values x = m
2
g̃ /M

2
susy = 0.3 , 0.5 , 1 , 2. Surprisingly,

we find that the constraints on LC1 and LC2 are completely stable over large parts of

the parameter space. However, the bounds get weakened when tan β values as large as 50

are chosen. This effect gets enhanced when the general mass scale mq̃ in the squark mass

matrices decreases with the parameter Msusy. There are two main reasons why the bounds

get weakened in these scenarios. First, in the large tanβ regime, the term (Fd,LR)33 gets

strongly enhanced because it is proportional to tan β. Particularly, for tanβ = 50 and

Msusy = 300GeV , the term (Fd,LR)33 is of the same magnitude as the diagonal entries

of the squark mass matrix. Thus, the contributions to the Wilson coefficients of the five-

dimensional gluino operators (induced by (Fd,LR)33 in combination with δd,LL,23 or δd,RR,23)

become important enough to weaken the bounds on LC1 and LC2 significantly. The relative

importance of this F term is of course increased if the general soft squark mass scale Msusy
is decreased. Second, within the large tanβ regime the contributions from charginos get

enhanced and therefore also weaken the bounds on LC2. Because the parameter (Fd,LR)33
is actually proportional to the product of tanβ and µ, we conclude from the above findings

that the bound on LC1 is unchanged if we increase the value of µ and decrease the value of

tan β so that the product of both parameters is constant; the bound on LC2 is then even

stronger, because the chargino contribution is smaller for increasing µ.
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3. Conclusions

Our new model-independent analysis of the rare decay B → Xsγ, based on a system-
atic leading logarithmic QCD analysis, mainly explored the interplay between the various

sources of flavour violation and the interference effects of SM, gluino, chargino, neutralino,

and charged Higgs boson contributions. In former analyses, no correlations between the

different sources of flavour violation were taken into account. Unlike previous work, which

used the mass insertion approximation, we used in our analysis the mass eigenstate for-

malism, which remains valid even when some of the intergenerational mixing elements are

large. We singled out two simple combinations of elements of the soft parts of the down

squark mass matrices, which stay stringently bounded over large parts of the supersymmet-

ric parameter space, excluding the large tan β and the large µ regime. These new bounds

are in general one order of magnitude weaker than the bound on the single off-diagonal

element δd,LR,23, which was derived in previous work [6, 12] by neglecting any kind of in-

terference effects. It seems that the flavour problem is less severe in the B system than

often stated. Thus, it would be interesting to explore also the consequences of natural

interference effects between different sources of flavour changes within the kaon sector.
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