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Abstract:We discuss the effects of quantum decoherence for neutrino oscillations in the

weak coupling limit and review some experimental bounds.

1. Motivations

We all know that within the framework of ordinary quantum mechanics, isolated pure states

can never evolve to mixed ones. However, as argued in [1], an analysis about the final fate

of a black hole can lead us to introduce the possibility that such evolution takes place. In

this picture, quantum fluctuations of the gravitational field, which in turn can be viewed

as microblack holes, may lead to the loss of the quantum coherence also in a microscopic

level. If pure states can really evolve to incoherent mixtures, quantum mechanics should

be modified in some way. Introducing a phenomenological modification in the Liouville

equation for the density operator of a quantum system, Ellis et al. [2] showed that the

decoherence effects can be effectively implemented.

On the other hand, the subdynamics of any open system interacting with a “reservoir”

can develop dissipation, and consequently, show an irreversible dynamics. However, this

point of view presents no violation of the quantum theory at all [3]. The time evolution

of an open system can be described by the so called quantum dynamics semigroups [4] as

well as by the master equation formalism [5]. The former is a very general treatment to

∗Speaker.

mailto:zukanov@charme.if.usp.br
mailto:emoura@charme.if.usp.br
mailto:teves@charme.if.usp.br
mailto:agago@charme.if.usp.br


P
r
H
E
P
 
h
e
p
2
0
0
1

International Europhysics Conference on HEP Renata Zukanovich Funchal

systems whose time evolution is not reversible, based on very few assumptions: probability

conservation, entropy increasing with time and complete positivity (it is worth to say that

no assumption is made about the interaction between system and reservoir). The master

equation formalism is based on a procedure of elimination of degrees of freedom of the

reservoir from the equations of motion. Therefore, it demands some knowledge about the

interaction.

Independent of the fact that decoherence effects are assumed to be a fundamental

property of a new quantum theory or simply produced by an effective description of an

open system, we can ask to what extent these effects are important and can affect the

dynamics of elementary particles, such as neutrinos.

2. Open systems formalism

Let Hν be the free neutrino hamiltonian, HE be the hamiltonian of a given reservoir,

and Hint the neutrino-reservoir interaction hamiltonian. We can write down the total

hamiltonian as

H = Hν ⊗ 1 + 1⊗HE + εHint, (2.1)

where ε is a suitable coupling constant. There is a standard way of eliminating the reservoir

degrees of freedom, so that we get at the end a reduced equation of motion describing the

subdynamics of the subsystem. This is the so called master equation formalism. If there

is no initial correlation between ν and E, that is, if at t = 0 we can write the total density

operator as

ρtot = ρν ⊗ ρE, (2.2)

the effective equation of motion to the dynamics of the subsystem at the time t is given by

ρν(t) = TrE
[
e−iHt(ρν ⊗ ρE)e−iHt

]
, (2.3)

where TrE is the operation of taking the trace over reservoir variables. Its formal definition

can be found in [6].

The procedure of tracing over reservoir variables turns out to be very difficult, since we

have to deal with the generalized master equations [6]. These integral equations incorporate

memory effects. The situations in which memory effects can be eliminated give rise to the

so called Markovian master equations [6]. There are two well known situations where

Markovian master equations can be obtained: weak coupling limit and singular coupling

limit. Both of these limits are related to the relative time scales of the subsystem and the

reservoir. The weak coupling limit is explicitly implemented taking the limit ε→ 0 (feasible
interaction between subsystem and reservoir) and rescaling the time variable t→ τ = λ2t.
This is the limit of interest here.

In the weak coupling limit, the equation of motion for ρν(t) is given by

∂ρν(t)

∂t
= −i[Hν , ρν(t)] +Wρν(t), (2.4)
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where

Wρν(t) = lim
a→∞

−1
2a

∫ a
−a
ds

∫ ∞
0
dt′eiHνs

(
TrR

(
[eiH0t

′
Hinte

−iH0t′ , [Hint, ρ−s(t)⊗ ρR]]
))
e−iHνs,

(2.5)

with

ρ−s(t) = e−iHνsρ(t)eiHνs = ei[Hν ,ρ(t)]s, H0 = lim
ε→0H. (2.6)

Since the interaction is weak, we can admit a linear interaction hamiltonian

Hint = Fµ ⊗Bµ, (2.7)

so that starting from (2.5) we get [4]

∂ρν(t)

∂t
= −i[Heffν , ρν(t)] +

1

2

∑
j

(
[Aj , ρνA

†
j] + [Ajρν , A

†
j ]
)
, (2.8)

where Heffν is an effective hamiltonian for the neutrinos which incorporate dissipative

contributions, and Aj are limited operators depending on Fµ and Bµ. However, (2.8) is

essentially the infinitesimal generator of a quantum dynamical semigroup as derived by

Lindblad [7] based on the few assumptions already mentioned previously. Therefore, the

master equation formalism and quantum dynamical semigroups lead essentially to the same

equations of motion to the density operator, provided that we apply the weak coupling limit

in the master equation formalism.

3. Current constraints in two generations

Let us give an explicit parameterization of (2.8) when ρν(t) describes neutrinos in the two

generation framework. Expanding the operatorsHeffν , ρν(t) and Aj of (2.8) in an orthonor-

mal basis of matrices {Fµ}µ of M2(C) (the space of 2×2complex matrices), equation (2.8)
is transformed into a system of coupled first order differential equations for the components

of ρν(t)

ρ̇µ = −2
∑
νδ

εµνδhµρν +
∑
ν

Lµνρνσµ, (3.1)

where

[Lµν ] = −2



0 0 0 0

0 a b c

0 b γ β

0 c β α


 , (3.2)

that is, the quantum decoherence effects in a two generation framework can be parameter-

ized by six phenomenological parameters. However these parameters are no all independent

if we adopt the condition of complete positivity [3]. In the simplest case, we can work with

a single parameter γ, so that the flavour conversion probability can be written as

P (να → νβ)(t) = Tr[ρα(t)ρβ ] = 1
2
sin2 2θ[1− e−2γL cos(2∆L)], (3.3)
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where the approximation t ≈ L was done and ∆ = (m22 −m21)/4E. In [8] we made some
Ansätze for the possible energy dependence of the parameter γ

γ = γ0E
n, n = −1, 0, 1, 2, (3.4)

and we have analyzed experimental data from terrestrial neutrino oscillation experiments

CHOOZ, CHORUS, E776 and CCFR in order to extract constraints on the decoherence

parameter γ. Three channels were studied: νµ → ντ , νµ → νe and νe → ντ . In figures 1,2
and 3, we can see some results of the statistical data analysis. For further details see [8].

Figure 1: Limits on γ0 as a func-

tion of sin2 2θ in the νµ → ντ mode.
The excluded region at 99% C.L. is

the one to the right of each curve. All

the limits were obtained with CHO-

RUS data.

Figure 2: Limits on γ0 as a function of sin
2 2θ in the νµ → νe

mode at 99% C.L..

Figure 3: Limits on γ0 as a function

of sin2 2θ in the νe → ντ mode at 99%
C.L..

Considering all the three families of neutrinos, the map Lµν can be parameterized by

36 parameters (quite complicated!). However, inspired by the two generation case, we can

adopt Lµν diagonal. In this case we are left with 8 parameters satisfying, in addition, the
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inequalities imposed by complete positivity. However, further considerations (as in the two

generation case [3]) can reduce, in the weak coupling limit, this number to two.

4. Conclusions

We discuss stringent experimental constraints for recent terrestrial neutrino experiments

on quantum decoherence effects in neutrino system. Our bounds are valid for neutrino

mass square differences compatible with the atmospheric (ANP), the solar (LA=Large

Amplitude solution, SA=Small Amplitude solution) and, in many cases, the LSND scale.

In the νµ → ντ mode (ANP solution range), we have established the following bounds:
γ0 < (5.6 − 4.3) × 10−21 GeV2 for n = −1, γ0 < (1.6 − 1.2) × 10−22 GeV for n = 0,
γ0 < (3.2 − 2.4) × 10−24 for n = 1 and γ0 < (4.0 − 3.1) × 10−26 GeV−1 for n = 2, at
99% C.L. In spite of the fact that these limits are much less restrictive than the ones given

in Ref. [9] from analyzing atmospheric neutrinos, they are valuable to be known. In the

νµ → νe mode (LA), we have established the following bounds: γ0 < (2.5 − 1.2) × 10−22
GeV2 for n = −1, γ0 < (6.0 − 3.1) × 10−22 GeV for n = 0, γ0 < (5.5 − 3.0) × 10−24 for
n = 1 and γ0 < (2.2 − 1.2) × 10−26 GeV−1 for n = 2, at 99% C.L. From these constraints,
we concluded that for n >∼ 1 one is discouraged to try to extract better limits from the
solar neutrino data itself. In the νµ → νe mode (SA), we have established the following
limits: γ0 < (6.0− 0.27)× 10−19 GeV2 for n = −1, γ0 < (7.0− 0.6)× 10−20 GeV for n = 0,
γ0 < (7.0 − 0.5) × 10−22 for n = 1 and γ0 < (8.0 − 0.3) × 10−24 GeV−1 for n = 2, at 99%
C.L. In the case n >∼ 2, the solar neutrino data will give weaker bounds than ours. Besides,
for n >∼ 0, our constraints are stronger than what we could obtain with LSND data. In
the νe → ντ mode (LA), we have established the following limits: γ0 < (2.5− 1.1)× 10−22
GeV2 for n = −1, γ0 < (1.0 − 0.5) × 10−20 GeV for n = 0, γ0 < (1.3 − 0.7) × 10−22 for
n = 1 and γ0 < (2.0− 1.0) × 10−24 GeV−1 for n = 2 at 99% C.L.
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