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Abstract: Non-perturbative lattice studies of QCD in the chiral thermodynamic regime,

where chiral symmetry is spontaneously broken, require to deal with almost quark zero

modes in a theoretically clean and computationally efficient way. We discuss the basic

features and some realistic tests of a formulation, known as lattice tmQCD, that fulfills

these requirements.

1. INTRODUCTION

Lattice field theory is known to provide a rigorous and systematically improvable way of

studying QCD in the non-perturbative regime by means of Monte Carlo simulations. As

in any numerical method, the coexistence of widely separated energy scales poses severe

practical problems: for instance, the energy-momentum resolution a−1, which is induced
by the lattice regularization, should be kept much larger than both the typical hadron

mass scale, say ∼ 500 MeV, and the external momenta of the correlation functions that are
computed. Moreover, the approximate and spontaneously broken flavour chiral symmetry

that is exhibited by the strong interactions entails the need of performing at least a few

simulations of lattice QCD in large volume and with small quark masses1: a fully realistic

setup would require a lattice of spatial volume L3, with MπL ≥ 5 and Mπ ∼ 140 MeV.
∗Support by the European Community’s Human Potential Programme under contract RTN1-1999-00246

is acknowledged.
†Speaker.
‡I acknowledge support and warm hospitality by the Theory Division of CERN for the time when the

work presented in this contribution was done.
1This task is significantly alleviated by studying the renormalization problems in finite volume by means

of renormalization group and finite-size scaling techniques, e.g. in the Schrödinger functional scheme.



P
r
H
E
P
 
h
e
p
2
0
0
1

International Europhysics Conference on HEP Roberto Frezzotti

The relevance of the approximate chiral symmetry for the low energy QCD amplitudes

can hardly be overestimated: it determines many aspects of the dynamics, as shown by

the chiral effective Lagrangian approach, and strongly constrains the operator mixings,

which on the lattice may be particularly severe due to the dimensionful ultraviolet cutoff

a−1. The realization of the chiral symmetry on the lattice is known to be delicate since
the pioneering work by Wilson [1] and in most cases the full flavour chiral symmetry is

recovered only in the continuum limit. The highly remarkable exception is represented by

those lattice formulations where the Dirac operator satisfies the Ginsparg-Wilson relation

[2], which in turn entails an exact flavour chiral invariance at finite lattice spacing. The

lattice regularizations with Ginsparg-Wilson quarks certainly simplify a lot the construction

of renormalized operators, especially those relevant for the weak effective Hamiltonian, at

the price however of a big overhead in the computational effort. In many cases one can

avoid such an overhead by working within the framework of Wilson quarks, which seems

to be more flexible and powerful than believed till few years ago, as we try to argue in the

following. In general, the lattice regularization of the quark sector should be chosen with

care depending on the physical applications and the related renormalization problems.

In this contribution we focus on a lattice formulation of QCD, based on Wilson quarks

and known as twisted mass QCD (tmQCD), that is particularly suited for dealing with the

u and d quarks. After discussing in Section 2 how the simulations of lattice QCD account

for the contribution of quark zero modes, we illustrate in Section 3 the basic features of

lattice tmQCD. In Section 4 we briefly report on an exploratory non-perturbative study of

O(a) improved lattice tmQCD, which reaches a pseudoscalar to vector meson mass ratio

of MPS/MV ' 0.47(1) and represents a successful test of several aspects of our approach.

2. Lattice QCD and physical quark zero modes

We assume that the reader is familiar with the lattice regularization of QCD introduced

by Wilson [1] and for simplicity we consider the theory with two mass-degenerate quark

flavours. In this case the lattice action with Wilson quarks reads

S = Sg[U ; g
2
0 ] + a

4
∑
x

χ(x)
[(
1
2γ · (∇+∇∗)− a12∇∗ · ∇+m′0

)
χ
]
(x) , (2.1)

where Sg is the pure gauge action, χ denotes the doublet of quark fields and v · w ≡
vµwµ, while ∇µ = ∇µ[U ] and ∇∗µ = ∇∗µ[U ] stand for the forward and backward covariant
derivatives on the lattice. The hard breaking of the flavour non-singlet axial generators

induced by the Wilson term can be compensated up to O(a) effects by tuning the parameter

m′0 and the coefficients that parameterize any chirality-violating operator mixings [3]. The
leading cutoff effects can be removed via the on-shell O(a) improvement [4] à la Symanzik.

2.1 Valence and sea quarks

In any correlation function to be evaluated via Monte Carlo simulations, due to the huge

dimensionality of the vector space spanned by the Grassmann variables in the Euclidean

– 2 –
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path integral, it is customary to integrate out analytically the fermionic degrees of freedom.

In the case of the correlator of two local pseudoscalar densities with isospin index a = 1,

C11PS(x− y) ≡ −〈P 1(x)P 1(y)〉 = −Z−1
∫
dUdχdχ exp(−S) [χγ5 τ12 χ](x)[χγ5 τ

1

2 χ](y) ,

(2.2)

this procedure yields

C11PS(x− y) =
∫
dU P [U ; g20 ,m

′
q]tr
{
[DW,c +m

′
q]
−1(x, y)γ5 τ

1

2 [DW,c +m
′
q]
−1(y, x)γ5 τ

1

2

}

P [U ; g20 ,m
′
q] = Z−1 exp(−Sg[U, g20 ]) det({DW,c +m′q}[U ]) ≥ 0 , (2.3)

where2 Z denotes the Euclidean partition function and DW,c = DW,c[U ] is the critical

(two-flavour) Wilson-Dirac operator:

DW,c =
1
2γ · (∇+∇∗)− a2∇∗ · ∇+mc . (2.4)

The parameter m′q = m′0 −mc is hence proportional to the renormalized quark mass that
appears in the PCAC Ward identity: the massless theory is obtained for m′0 = mc(g

2
0).

Gauge configurations U are generated via suitable algorithms with probability P [U ; g20 ,m
′
q],

and on each configuration U the quark propagator from the lattice site x to the site y,

[DW,c+m
′
q]
−1(y, x), can be computed –for fixed x– by solving a linear system. By expand-

ing the correlator (2.2) around the trivial perturbative vacuum, one can easily check that in

eq. (2.3) the trace term involving quark propagators corresponds to valence quark diagrams

dressed with any kind of purely gluonic corrections, whereas the term det(DW,c +m
′
q) ac-

counts for the sea quark corrections to the aforementioned dressed valence quark diagrams.

2.2 Quenched and partially quenched lattice QCD

It is well-known that with the established simulation techniques the simulation of the full

theory, including the sea quark effects, has a very high computational cost, which quickly

increases as the pion mass is decreased towards realistic values. On the other hand, it

is technically trivial to choose different values for the parameter m′q that appears in the
fermionic determinant and its counterpart in the inverse Dirac operator: m′q,sea 6= m′q,val.
A moment of thought reveals that such a modification of lattice QCD corresponds to a

statistical model with extra spin-1/2 ghost fields, which is local and renormalizable by

power counting but violates reflection positivity (see e.g. Ref. [5]). The general case

m′q,val 6= m′q,sea is referred to as partially quenched QCD, whereas the particular case
|m′q,val| < |m′q,sea| =∞ corresponds to the well-known quenched approximation.
It should be noted that these approximations in general break down as the valence

quark mass m′q,val → 0 in the thermodynamic limit. In this regime the flavour chiral
symmetry is spontaneously broken: if the chiral condensate is to be non-vanishing, the

gauge configurations carrying zero modes of the Dirac operator must receive a finite weight

in the Euclidean path integral, even in the limit (taken at infinite spatial volume) m′q,sea =
2The symbol tr{. . .} denotes the trace over flavour, colour and spin indices, whereas the symbol det{. . .}

stands for the determinant with respect to all indices, including the space-time ones.
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m′q,val → 0 [6]. It is clear that in the full theory the integration over the fermionic variables
on any gauge background can not yield divergences: in presence of quark zero modes

the infinities in the quark propagators must be compensated by the zeros in the fermion

determinant, see eq. (2.3). Such a delicate compensation is no longer guaranteed if the

condition m′q,sea = m′q,val is violated: fermionic observables may hence diverge on gauge
configurations carrying quark zero modes, which causes the breakdown of the quenched

and partially quenched approximations.

However, when working sufficiently away from the thermodynamic chiral limit, the

quenched –or partially quenched– approximation is expected to be reasonably accurate, at

least for those quantities that are not very sensitive to sea quark effects. An example is

given by the ratios of hadron masses [7], with the η′-meson mass being the most striking
exception. Indeed, given the high computational cost of simulating the full theory, the

quenched approximation has been widely used as a testbed for lattice techniques and

for first non-perturbative estimates of quantities such as renormalized couplings, hadron

masses and matrix elements, order parameters of phase transitions. The chiral effective

Lagrangian for quenched QCD has also been worked out [5] with the aim of identifying

and parameterising the deviations from the full theory close to the chiral limit.

Analogous remarks apply for the partially quenched approximation, the quality of

which depends on the ratio m′q,sea/m′q,val. In particular, it has been remarked that the low-
energy (Gasser-Leutwyler) constants of partially quenched QCD with Nf quark flavours

coincide with those of the fully unquenched theory, provided that all the quark flavours

are light enough for the chiral perturbation theory to be applicable [8]. In the physically

relevant cases, which are Nf = 3 and –to some extent– Nf = 2, varying m
′
q,val while keeping

fixed m′q,sea can then be very convenient, since it allows to investigate the dependence of
the observables on m′q,val without performing many unquenched simulations.

3. Lattice tmQCD

Lattice tmQCD is an extension of the widely used formulation with Wilson quarks, from

which it differs in that the physically non-vanishing quark mass term is in general not

aligned with the Wilson term in the flavour chiral space. This simple modification brings

definite advantages concerning the simulations with light quarks –especially in the quenched

or partially quenched case– and the renormalization properties of some phenomenologically

important quantities, such as the leptonic decay amplitude of pseudoscalar mesons or the

mixing amplitude in the K0-K
0
system [9, 10, 11].

3.1 Lattice Wilson quarks and spurious zero modes

While the considerations of Subsections 2.1–2.2, apply to any sensible lattice regulariza-

tion of QCD, working with Wilson fermions entails a further technical problem that renders

particularly difficult –or even impossible– the simulations with light quarks. The problem

arises whenever the quenched (or partially quenched) sample of configurations, as deter-

mined by a given choice of the bare parameters, includes gauge backgrounds on which the

critical Wilson-Dirac operator DW,c, eq. (2.4), has one or more eigenvalues with negative
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real part Re(λ) < 0 and (almost) zero imaginary part. Under these conditions, the massive

Dirac operatorDW,c+m
′
q,val is singular for values ofm

′
q,val > 0 as soon asm

′
q,val+Re(λ) = 0

for some of the real negative eigenvalues λ.

The fermionic observables, which involve [DW,c +m
′
q,val]

−1, may receive (almost) di-
vergent contributions on the aforementioned gauge backgrounds, spoiling the expected

decrease of the statistical errors with the number of independent measurements [12]. As an

example of this phenomenon, we show in Fig. 1 the Monte Carlo history of the normalized

relative standard deviation for the pion channel correlator f ≡ f11P (x0) at x0 = 24a = T/2,
see Section 4.1. The normalization of the standard deviation is such that it should ap-

proach a constant in the limit of infinite statistics: in the case of the standard Wilson

regularization, which corresponds to the open symbols in Fig. 1, the problem is apparent.

Via the combined effect of lattice artifacts and statistical fluctuations, ”spurious” quark

zero modes3 anticipate at non-vanishing values of m′q the breakdown of the quenched or
partially quenched approximation.

In practice, in the quenched case the rate of occurrence of gauge backgrounds with

spurious quark zero modes –also called ”exceptional configurations”– depends on the values

of m′q,val and g
2
0 , on the physical linear size L of the lattice and on various details of the

lattice regularization. The rate tends to increase when decreasing m′q,val and increasing
g20 and L/a, as well as when switching on the coefficient, csw(g

2
0), of the counterterm that

is needed for the on-shell O(a) improvement of the fermionic action. For instance, in the

regularization with plaquette gauge action and non-perturbatively O(a) improved Wilson

quarks, the problem is felt for L ≥ 1.5 fm at values of g20 corresponding to a ∼ 0.1 fm and
at valence quark masses that are about half the strange quark mass. A similar problem is

also expected in partially quenched simulations, although with a lower rate depending on

the ratio m′q,val/m
′
q,sea, and has indeed been observed, see e.g. Ref. [13].

In the fully unquenched case, one can expect troubles at the algorithmic level with light

Wilson quarks on rather coarse lattices. This is because the state-of-the-art algorithms

implement stochastically the fermion determinant that appears in the probability measure

for the gauge configurations: almost exceptional configurations may hence be proposed,

but are then almost certainly rejected. In this process however the simulation algorithm,

e.g. the standard HMC one4, undergoes a severe slowing-down, due to a decrease in the

acceptance rate and an increment of the condition number of the Dirac matrix before the

accept/reject test.

3.2 Action and symmetries

As already known since 1989 [15], the problem with spurious quark zero modes is absent

in the two-flavour theory if one considers the action

SW[U,ψ, ψ] = Sg + a
4
∑
x

ψ(x)[(DW,c +mq + iµqγ5τ
3)ψ](x) , (3.1)

3These spurious quark zero modes should not be confused with the quark zero modes that play an

important physical role in the thermodynamic chiral limit of renormalized QCD.
4Evidence for a large increase of the fermionic force at small quark mass values is reported in Ref. [14].

– 5 –
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where ψ is a flavour quark doublet, the matrix τ3 acts in the flavour space and the boundary

conditions for finite-volume systems may remain unspecified for a while. Since mc is known

in practice with finite precision, the exactly known bare parameters are g20 , µq and m0 =

mc +mq. It is easy to see that, as long as µq 6= 0, on any gauge background the lowest
eigenvalue of the Hermitean square of the matrix (DW,c +mq + iµqγ5τ

3) is bounded from

below by (aµq)
2.

The action (3.1) represents a sensible regularization of QCD with Nf = 2 mass-

degenerate quark flavours, but in a quark field basis that is chirally twisted with respect

to the standard one [9]. To illustrate this point, let us focus on the simple case mq = 0,

µq 6= 0, and consider the very same lattice theory in the standard quark field basis, which
is obtained by a suitable axial rotation with generator τ3:

χ = exp

(
iωγ5

τ3

2

)
ψ , χ = ψ exp

(
iωγ5

τ3

2

)
, ω = arctan

µq

mq
=
π

2
. (3.2)

The action (3.1) then reads

SW[U,χ, χ] = Sg + a
4
∑
x

χ(x)[(DtmW,c + µq)χ](x) , (3.3)

where

DtmW,c =
1
2γ · (∇+∇∗) + ia2γ5τ3∇∗ · ∇ − iγ5τ3mc . (3.4)

The connection, eq. (3.2), between the two lattice quark bases makes obvious that the

chiral limit is obtained for mq = µq = 0 with mc being the usual function of g
2
0 . Inspection

of the symmetries of the action (3.3) shows that in the chiral limit one vector and two

axial generators –out of the six generators of the flavour chiral group– are preserved by

the lattice regularization, while parity is preserved only up to a flavour exchange (PF
symmetry) and all other symmetries are as usual with Wilson fermions. It follows that µq
is multiplicatively renormalized, µR = Zµ(g

2
0)µq, while mR = Zm(g

2
0)mq. Power counting

renormalizability and the recovery of the full flavour chiral symmetry in the continuum

limit [3], together with the exact PF invariance, imply that parity must also be recovered

in the continuum limit. In contrast with other approaches based on the action (3.1) [12],

the correlation functions of the massive QCD are obtained at finite µq, so that the problem

with the spurious quark zero modes is certainly solved.

In the general case, where both mq and µq are non-vanishing, the situation is fully

analogous, but the relation between the two lattice quark bases involves an angle ω 6= π/2.
However, owing to the complications arising from the Wilson term, it is convenient to

perform first the renormalization (and possibly the O(a) improvement) of the correlation

functions in a given quark basis and then transform to the ”physical” basis, i.e. the one

where the quark mass is coupled to the singlet scalar density. The first step implies that

the continuum limit is approached at fixed values of g2R, mR, µR and the normalization

conditions for the composite fields. Concerning the second step, for a wide class of renor-

malization schemes, the relation between the renormalized fields in two different bases that

are related via a non-singlet axial rotation takes the same form as at the classical level [9].

– 6 –
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In terms of polar quark mass coordinates,

tanα =
µR
mR

, MR =
√
µ2R +m

2
R , (3.5)

the angle α identifies the quark basis and hence specifies the axial rotation with generator

τ3/2 that allows to combine the renormalized correlation functions so to obtain finite

correlators with given continuum quantum numbers5. On the latter correlators the partial

breaking of isospin and parity is an effect of order aµR and represents no serious drawback.

If one identifies the two quark flavours with the u and d quark, the tiny mass difference

between them can safely be taken into account by means of chiral perturbation theory. Al-

ternatively, lattice tmQCD can also be formulated for a doublet of non-degenerate quarks,

whilst retaining the protection against spurious quark zero modes [17]. Heavier flavours of

Wilson quarks can be added e.g. in the usual way to the lattice tmQCD action for Nf = 2.

4. A test-study of lattice tmQCD with light quarks and in large volume

We present here some preliminary results of a high-statistics exploratory study of lattice

tmQCD in the thermodynamic chiral regime. The study aimed at testing the absence

of exceptional configurations, the computational cost and the magnitude of cutoff effects

for a few typical observables. We adopt in the following the notation of Ref. [19], to the

equations of which we refer with the prefix ”I”, and postpone many technical details to a

forthcoming publication [20].

4.1 Observables and simulations

In this test-study we choose to work in the quark basis of action (3.1) and implement the

non-perturbative O(a) improvement of the action and the relevant operators along the lines

of Ref. [18]. Attention is restricted to the pseudoscalar and vector meson masses, MPS and

MV, the pseudoscalar (leptonic) decay constant, FPS, and the polar quark masses, MR and

α, which are defined according to eqs. (I.3.3)–(I.3.20) for µR and mR and eq. (3.5).

Set, β L/a, T/L # meas. mR/MR MRr0 MPSr0 FPSr0 MVr0

A1, 6.0 16, 2 650 −0.016(3) 0.2729(15) 1.711(7) 0.455(5) 2.662(40)

A1’,6.0 16, 3 650 −0.016(3) 0.2729(15) 1.714(6) 0.455(6) 2.656(42)

A2, 6.2 24, 2 535 −0.014(2) 0.2558(16) 1.623(8) 0.456(5) 2.557(32)

B1L, 6.0 24, 2 260 0.017(3) 0.1949(11) 1.452(6) 0.432(6) 2.517(35)

B1, 6.0 16, 2 535 0.001(3) 0.1949(11) 1.455(8) 0.428(5) 2.513(47)

B2, 6.2 24, 2 300 −0.004(4) 0.1962(12) 1.420(9) 0.436(7) 2.462(41)

C, 6.0 24, 2 260 0.083(5) 0.1205(7) 1.160(6) 0.401(6) 2.485(59)

Table 1: Statistics and renormalized quantities obtained in our simulations, which are identified

by a label and the value of β = 6/g20. The values of m0 and µq can be found in Ref. [20].

5This point of view might lead to a reinterpretation of the ”spontaneous breakdown of parity and isospin”

in lattice QCD with Wilson fermions [16], which was observed by employing the action (3.1).

– 7 –
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We work in the quenched approximation considering systems of physical size L3T

with L such that MPSL ≥ 4.5 to suppress finite volume effects. In practice we take
L =1.5 fmorL=2.2 fm and T/L = 2÷ 3. Following Ref. [19], we impose boundary condi-
tions of Schrödinger functional (SF) type and compute the SF correlators

f11A (x0) , f11P (x0) , f12V (x0) , k11V (x0) , k11T (x0) , k12A (x0) , f111 . (4.1)

We hence construct the linear combinations of renormalized and O(a) improved SF cor-

relators that correspond to operator insertions (at time x0) with well defined continuum

quantum numbers, see eqs. (I.3.10)–(I.3.11) with α given by eq. (3.5). Namely, the corre-

lators [f11A′ ]R(x0) and [f
11
P′ ]R(x0) correspond to the insertion of the isotriplet pseudoscalar

operators (A′R)
1
0 and (P

′
R)
1, while the correlators [k11V′ ]R(x0) and [k

11
T′ ]R(x0) correspond to

the insertion of the isotriplet vector operators (V ′R)
1
k and (T

′
R)
1
k0. In the limit of large x0

and large (T −x0) and up to cutoff effects, these non-vanishing correlators are expected to
be dominated by the lowest isotriplet pseudoscalar and vector meson states.

An overview of our simulation parameters, statistics and preliminary results for renor-

malized quantities is given in Table 1. The renormalized gauge coupling g2R is eliminated

in favour of the length scale r0 [21], which is known to be about 0.5 fm, while the lattice

spacing value corresponding to β = 6 (6.2) is a ∼ 0.093 (0.068) fm. Our most critical sim-
ulation (set C, β = 6), where we employed a CGNE solver for the SSOR-preconditioned

version of the Dirac matrix (DW,c +mq + iµqγ5τ
3), required ∼ 230 GFlops × day.

0 50 100
N

0

1

2

3

[ N
1/

2 
 σ

 (
f )

 ] 
/ f

0 5 10 15 20 25 30 35 40 45
x0/a

0.15

0.17

0.19

0.21

0.23

0.25

0.27

0.29

aM
P

S(
x 0)

plateau window for [fA’ ]R

plateau window for [fP]R

Figure 1: The square root of the relative

a priori variance of f = f11P (x0 = 24a) ver-

sus the number of measurements N : data

from the simulation C (filled symbols) and

another simulation with the same values of

β and MR, but α = 0 (open symbols).

Figure 2: Pseudoscalar effective masses

extracted from the correlators [f11P′ ]R and

[f11A′ ]R for the simulation C. The tiny black

circles denote our (good) fit to the effective

masses from [f11A′ ]R: at large x0 a peculiar

O(aµq) contribution is present.

4.2 Results

We find that lattice tmQCD allows, as expected, to safely work in a region of parameters

which would be inaccessible with ordinary Wilson quarks: see e.g. Fig. 1 as well as the

findings of Ref. [24]. For a given number of independent measurements, the statistical

errors on MPS and MV are comparable, up to a factor of one to three, to those found e.g.

with domain wall quarks [22]. The CPU time effort, e.g. for the data sets A1, A1’ and A2,

is in line with the computational cost for ordinary Wilson quarks.

– 8 –
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2

ALPHA + UKQCD β=6.
ALPHA + UKQCD β=6.2.
ALPHA + UKQCD c. l.
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0.36

0.38

0.4

0.42

0.44

0.46

0.48

F
P
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0

Figure 3: (MPSr0)
2 versus MRr0 from

tmQCD and reanalysis of the data of

Ref. [23], including a continuum extrapola-

tion (c. l.).

Figure 4: The analogous of Fig. 3 for FPSr0.

Symbols are the same as specified in the leg-

enda of Fig. 3.

The partial breaking of parity and isospin that is peculiar of lattice tmQCD is found

to be a minor problem within our small statistical errors. In this respect it should be

noted that we work at small values of aµq, namely 0.0266 ≥ aµq ≥ 0.0117, and consider
observables in physical channels where the lowest state is lighter than the lowest state of

the corresponding channels with flipped parity and isospin. While deferring the details of

our analysis to Ref. [20], we show in Fig. 2 an example of effective masses extracted from

SF correlators, where the correlator [f11A′ ]R(x0) receives contributions of order aµq that

are visible at large x0. Analogous effects are expected and found to be negligible within

statistical errors for both [f11P′ ]R(x0) and the vector channel correlators.

As detailed in Refs. [18, 10], we expect the relations among our observables and the

renormalized parameters r0 and MR to be O(a) improved. In particular, when working at

α = π/2+O(a), which is the case of our study, the knowledge of a few counterterms (those

with coefficients Zg, mc and csw) suffices to obtain an O(a) improved estimate of FPS. In

order to check for the residual scaling violations, we produced data at β = 6.2 (sets A2

and B2), while keeping α, MR and r0 fixed. The small mismatch in MRr0 for the set A2

was corrected by employing estimates of the dependence of our observables on MRr0.

We also reanalysed the data of Ref. [23], which were produced at β = 6, 6.1, 6.2, 6.45,

by imposing precisely the same renormalization conditions as in this study of tmQCD.

We then performed a continuum extrapolation of these data, assuming a purely quadratic

dependence on (a/r0)
2 and discarding the data at β = 6. However, the resulting estimate of

FPS is not fully O(a) improved, as for one of the necessary improvement coefficients, bA(g
2
0),

only the one-loop estimate could be used. The outcome of this exercise is compared with

the results from tmQCD in Figs. 3–4, omitting the case of MVr0 where cutoff effects are

hardly visible within statistical errors. The estimators of MPS and FPS that are obtained

from lattice tmQCD show rather small cutoff effects, which agrees with the findings of a

scaling test [19] in intermediate volume (L = 0.75 fm).

5. Conclusions

Lattice tmQCD is well suited to perform non-perturbative studies of QCD in the chiral
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(thermodynamic or finite-volume) regime for all cases where it is technically sufficient to

recover chiral symmetry in the continuum limit. The framework has been successfully

tested in the quenched approximation and can straightforwardly be extended beyond it.

The tmQCD project is part of the ALPHA Collaboration research programme. We

acknowledge the very pleasant collaboration with P.A. Grassi, S. Sint and P. Weisz, as well

as fruitful discussions with M. Lüscher, G.C. Rossi and R. Sommer.
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