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Abstract: The low energy excitation spectrum of the critical Wilson surface is discussed

between the roughening transition and the continuum limit of lattice QCD. The fine struc-

ture of the spectrum is interpreted within the framework of two-dimensional conformal

field theory.

1. INTRODUCTION

There exists great interest and considerable effort to explain quark confinement in Quantum

Chromodynamics (QCD) from the string theory viewpoint. The ideas of ’t Hooft, Polyakov,

Witten, and others, and recent glueball spectrum or QCD string tension calculations in AdS

theories are some illustrative examples of these activities. In a somewhat complementary

approach, the search for a microscopic mechanism to explain quark confinement in the

QCD vacuum continues with vigorous effort.

We believe that a deeper understanding of the string theory connection with large

Wilson surfaces will require a precise knowledge of the surface excitation spectrum and

the determination of the universality class of Wilson surface criticality in the continuum

limit of lattice QCD. This approach will also require a consistent description of the con-

formal properties of the gapless Wilson surface excitation spectrum. In this short progress

report we summarize our ab initio on-lattice calculations (a more extended status report
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was published recently[1]). In collaboration with Mike Peardon, we have also studied the

spectrum of a “closed” flux loop across periodic slab geometry (Polyakov line) by choos-

ing appropriate boundary conditions and operators for selected excitations without static

sources[2].

2. QCD STRING FORMATION

The first attempt at a comprehensive determination of the rich energy spectrum of the

gluon excitations between static sources in the fundamental representation of SU(3)c in

D=4 dimensions was reported earlier[3, 4] for quark-antiquark separations r ranging from

0.1 fm to 4 fm. The extrapolation of the full spectrum to the continuum limit is summa-
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Figure 1: Continuum limit extrapolations are shown for the excitation energies where an ar-

bitrary constant is removed by subtraction. Color coding in postscript is added to the numerical

labelling of the excitations (N=0,black:1), (N=1,red:2), (N=2,green:4,5,6), (N=3,blue:3,8,9,10), and

(N=4,cyan:7). The five groups represent the expected quantum numbers of a string in its ground

state (N=0) and the first four excited states (N=1,2,3,4). The arrows in the inset represent the

expected locations of the four lowest massless string excitations (N=1,2,3,4) which have to be

compared with the energy levels of our computer simulations.

rized in Fig. 1 with very different characteristic behavior on three separate physical scales.
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Nontrivial short distance physics dominates for r ≤ 0.3 fermi. The transition region to-
wards string formation is identified on the scale 0.5 fm ≤ 2.0 fm. String formation and the
onset of string-like ordering of the excitation energies occurs in the range between 2 fm

and 4 fm where we reach the current limit of our technology.

To display the fine structure with some clarity, error bars are not shown in Fig. 1.

Our earlier results are compatible with extended new runs on our dedicated UP2000 Alpha

cluster which was built to increase the statistics more than an order of magnitude. The

notation and the origin of the quantum numbers used in the classification of the energy

levels are explained in earlier publications[3, 4]. Following Sommer[5], the physical scale is

set by r0 which, to a good approximation, is r0 = 0.5 fm.

We also established that the main features of string formation with three separate

scales is remarkably universal, independent of the gauge groups SU(2) and SU(3), and

space-time dimensions D=3 and D=4. Although the level ordering is approximately string-

like in all cases at large separation, there is a surprising and rather universal fine structure

in the spectrum with large displacements from the expected massless Goldstone levels.

We believe that the fine structure of the spectrum can be explained within the frame-

work of two-dimensional conformal field theory.

3. CONFORMAL FIELD THEORY

One of our extensive tests included a detailed study of the Wilson surface excitation spec-

trum of the D=3 SU(2) gauge model of QCD3. The Abelian subgroup Z(2) of SU(2) is

expected to play an important role in the microscopic mechanisms of quark confinement

suggesting that Wilson surface physics of the D=3 Z(2) gauge spin model should have qual-

itative and quantitative similarities with the theoretically more difficult QCD3 case. In the

critical region of the Z(2) model we have a rather reasonable description of continuum

string formation based on the excitation spectrum of a semiclassical defect line (soliton)

of the equivalent Φ4 field theory. The surface physics of the Z(2) gauge model is closely

related to the BCSOS model by universality argument and a duality transformation: the

two surface spectra should agree asymptotically.

3.1 BCSOS Surface Spectrum

The body-centered solid-on-solid (BCSOS) model is obtained by the SOS condition (ac-

curate to a few percent around the roughening transition) on the fluctuating interface in

the body-centered cubic Ising model[6]. This model can be mapped into the six-vertex

formulation for which the Bethe Ansatz equations are known[7]. It follows from the Bethe

Ansatz solution that the surface has a roughening phase transition at TR = J/(kB · 2ln2)
which is of the Kosterlitz-Thouless type. For T < TR the interface is smooth with a finite

mass gap in its excitation spectrum. For T ≥ TR the mass gap vanishes and the surface
exhibits a massless excitation spectrum.

We determined the low energy part of the full surface spectrum from direct diago-

nalization of the transfer matrix of the BCSOS model and from the numerical solution of

the Bethe Ansatz equations. A periodic boundary condition was used, which corresponds

– 3 –



P
r
H
E
P
 
h
e
p
2
0
0
1

International Europhysics Conference on HEP Julius Kuti

to the spectrum of a periodic Polyakov line in the Z(2) gauge model. With a flux of pe-

riod L we used exact diagonalization for L ≤ 18, and the the Bethe Ansatz equations up
to L=1024. The following picture emerges from the calculation for large L values in the

massless Kosterlitz-Thouless (KT) phase. The ground state energy of the flux is given by

E0(L) = σ∞ · L− π
6L
c + o(1/L) , (3.1)

where σ∞ is the string tension, c designates the conformal charge, which is found to be c=1
to very high accuracy, consistent with the fact that we are in the KT phase. The o(1/L)

term designates the corrections to the leading 1/L behavior; they decay faster than 1/L. At

the critical point of the roughening transition, the corrections can decay very slowly, like

1/(lnL3 · L). Away from the critical point, the corrections decay faster than 1/L in power-
like fashion. These finite size (or equivalent cut-off effects) in the fine structure of the

spectrum are dominated by the Sine-Gordon operator in conformal perturbation theory[8].

For each operator Oα which creates states from the vacuum with quantum numbers

α, there is a tower excitation spectrum above the ground state,

Eαj,j′(L) = E0(L) +
2π

L
(xα + j + j

′) + o(1/L) , (3.2)

where the nonnegative integers j,j’ label the conformal tower and xα is the anomalous

dimension of the operator Oα. The momentum of each excitation is given by

Pαj,j′(L) =
2π

L
(sα + j− j′) , (3.3)

where sα is the spin of the operator Oα.

The surface excitation spectrum described by Eqs. (3.1, 3.2, 3.3) is not a simple mass-

less string spectrum with obvious geometric interpretation. There are excitations with

noninteger values of the anomalous dimensions xα which continuously vary with the Ising

coupling J. In fact, we found an infinite sequence of operators which excite surface states

with fractional multiples of 2π/L, instead of integer multiples of 2π/L, as expected in a

naive string picture. This sequence can be labelled by anomalous dimensions

xGn,m =
n2

4πK
+ πKm2 , (3.4)

where n,m are nonnegative integers and the constant K depends in a known way on the

BCSOS coupling constant J. The physical interpretation of the rather peculiar excitations

of the rough gapless surface will be discussed elsewhere. Here it is sufficient to note that

the spectrum is related to a free compactified Gaussian field, but the field configuration

allow for line defects, presumably related to dislocations of the fluctuating rough surface.

4. D=3 QCD STRING THEORY

If the QQ pair is located along one of the principal axes on the lattice in some spatial

direction, the Wilson surface at strong coupling is smooth in technical terms. This implies
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the existence of a mass gap in its excitation spectrum, as seen for example in the strong

coupling tests of our simulation technology. As the coupling weakens, a roughening tran-

sition is expected in the surface at some finite gauge coupling g = gR where the gap in

the excitation spectrum vanishes with the characteristics of the Kosterlitz-Thouless phase

transition. The correlation length in the surface diverges at the critical point gR of the

roughening transition and it is expected to remain infinite for any value of the gauge cou-

pling when g ≤ gR. At the roughening transition, the bulk behavior differs from that of
the continuum theory which is located in the vicinity of g = 0. The low energy excitation

spectrum of the Wilson surface for g ≤ gR and not far from gR, in the domain of the critical
KT phase, should be essentially identical to Eqs. (3.1-3.3) of our BCSOS spectrum.

A change in the structure of the low energy spectrum of the Wilson surface should

occur from the KT universality class into a new universality class of continuum QCD3 string

theory as we take the g→ 0 continuum limit in the bulk. We expect that the Wilson surface
remains gapless from the roughening transition point gR to the continuum limit g→ 0. In
this scenario the critical behavior of the Wilson surface will exhibit crossover from the

Kosterlitz-Thouless class into the new universality class of continuum QCD string theory.

The other scenario where a physical mass gap develops in the surface is not excluded,

although it would imply new phase transitions in the Wilson surface which is unlikely. The

precise determination of the expected crossover behavior remains the subject of our future

investigations.
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