
P
r
H
E
P
 
h
e
p
2
0
0
1

International Europhysics Conference on HEP

PROCEEDINGS

Improved Determination of B7 and B8

Vincenzo Cirigliano∗

Inst. für Theoretische Physik, Univ. of Vienna, Boltzmanngasse 5, Vienna A-1090

Austria

vincenzo@thp.univie.ac.at

John F. Donoghue and Eugene Golowich† ‡

Physics Department, Univ. of Massachusetts, Amherst, MA 01003 USA

golowich@physics.umass.edu, donoghue@physics.umass.edu

Kim Maltman§

Department of Mathematics and Statistics, York University, 4700 Keele St., Toronto

ON M3J 1P3 Canada

kmaltman@physics.adelaide.edu.au

Abstract: I report on a dispersive matrix element calculation of B7,8 performed within

a fully rigorous theoretical framework which incorporates experimental data as a central

ingredient. This approach is the first to correctly implement two-loop matching of the

effective theory to the dispersive description while using the same scheme dependence

as the calculation of the OPE coefficients. The numerical treatment is also completely

new and provides a determination of not only central values for B7,8 but also legitimate

estimates of their uncertainties.

1. Introduction

The Standard Model formula for ε′/ε involves in part the matrix element 〈(ππ)I=2|Q8|K0〉.
The ordinary definition of the associated B-parameter B

(3/2)
8 involves dividing this matrix

element by its vacuum insertion value, whose determination unfortunately depends on

imprecisely known light-quark masses. Instead, I will work with the modified quantities

B7,8 in which the matrix elements are divided by 1 GeV
3. That is, if the matrix element

∗Research supported by TMR, EC-Contract No. ERBFMRX-CT980169 (EURODAΦNE)
†Speaker.
‡Research supported by the National Science Foundation (Grant PHY-9801875)
§Research supported by Natural Sciences and Engineering Research Council of Canada, CSSM at the

Univ. of Adelaide and Theory Group at TRIUMF.

mailto:vincenzo@thp.univie.ac.at
mailto:golowich@physics.umass.edu
mailto:donoghue@physics.umass.edu
mailto:kmaltman@physics.adelaide.edu.au


P
r
H
E
P
 
h
e
p
2
0
0
1

International Europhysics Conference on HEP Eugene Golowich

of operator Qk is expressed in units of GeV3, then it is numercially equal to Bk. Also, in
this talk I work with the operator

Q8 ≡ s̄aΓµLdb
(
ūbΓ

R
µua −

1

2
d̄bΓ

R
µda

)
+
1

2
s̄aΓ

µ
LubūbΓ

R
µda

to be contrasted with

Q(3/2)8 ≡ s̄aΓµLdb
(
ūbΓ

R
µua − d̄bΓRµda

)
+ s̄aΓ

µ
LubūbΓ

R
µda

as used previously in Ref. [2]. In particular, one has

〈(ππ)I=2|Q(3/2)8 |K0〉 = 2〈(ππ)I=2|Q8|K0〉 .

In the chiral limit, 〈(ππ)I=2|Q8|K0〉 is proportional to vacuum matrix elements 〈O1,8〉, [2]

lim
p=0
〈(ππ)I=2|Q7|K0〉µ = −

2

F
(0)3
π

〈O1〉µ ,

lim
p=0
〈(ππ)I=2|Q8|K0〉µ = −

2

F
(0)3
π

[
1

3
〈O1〉µ +

1

2
〈O8〉µ

]
,

where

O1 ≡ q̄γµ
τ3
2
q q̄γµ

τ3
2
q − q̄γµγ5

τ3
2
q q̄γµγ5

τ3
2
q ,

O8 ≡ q̄γµλa
τ3
2
q q̄γµλa

τ3
2
q − q̄γµγ5λa

τ3
2
q q̄γµγ5λ

a τ3
2
q .

In the above, the superscript ‘(0)’ denotes evaluation in the chiral limit, q = u, d, s, τ3 is a

Pauli (flavor) matrix, {λa} are the Gell Mann color matrices and the subscripts on O1, O8
refer to the color carried by their currents.

The purpose of this talk is to derive dispersive expressions for 〈O1,8〉, to describe their
evaluation and to present preliminary numerical results.

2. Analytical Developments

The key ingredient is study of the amplitude

M≡ g22
16F 2π

∫
d4x D(x,M2W )〈0|T (V

µ
3 (x)Vµ,3(0)−A

µ
3 (x)Aµ,3(0)) |0〉 .

This quantity has a familiar form - the exhange of a W-boson between two currents.

However, the chiral structure of these currents differs from the LH weak currents which

appear in the Standard Model. The amplitude M is of interest for two reasons. On the

one hand, it can be cast in terms of an effective theory which involves 〈O1,8〉µ,

M ' GF

2
√
2F 2π
[c1(µ)〈O1〉µ + c8(µ)〈O8〉µ] .

If we can determine the Wilson coefficients c1,8(µ) then we will have direct access to 〈O1,8〉µ.
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On the other hand, one can relateM to a correlator ∆Π(Q2),

M =
3GFM

2
W

32
√
2π2F 2π

∫ ∞
0
dQ2

Q4

Q2 +M2W
∆Π(Q2) ,

where ∆Π ≡ Πv − Πa is the difference of isospin vector and axialvector correlators. The
imaginary part of ∆Π is proportional to a measurable spectral function ∆ρ,

∆Π(Q2) ≡ (ΠV,3 −ΠA,3)(Q2) =
1

Q4

∫ ∞
0
ds

s2

s+Q2
∆ρ(s) ,

where Q2 ≡ −q2 is the variable for spacelike momenta. The dependence upon ∆ρ will allow
us to use ALEPH data from τ decays [3] as an aid in determiningM and thus 〈O1,8〉µ.

2.1 Wilson Coefficients

A two-loop analysis of c1,8(µ) requires matching between the effective and full theories

at the scale µ = MW using one-loop amplitudes. [2] This is followed by renormalization

group (RG) evolution to smaller µ using a two-loop anomalous dimension matrix (e.g.

see Ref. [4]). The matching and RG evolution are performed in MS renormalization and

contains explicit scheme dependence (NDR, HV). Special care must be taken for HV RG-

evolution to allow for a weak current anomalous dimension. In order that QCD perturba-

tion theory continue to make sense, the renormalization scale µ should be kept sufficiently

high (µ ≥ 2 GeV). We obtain for the case of Nc = 3 and nf = 4 the results

cMS1 (µ) = 1 +

(
αs(µ)

π

)2 [3A1
16
ln
M2W
µ2
+
1

4
ln2
M2W
µ2

]
,

cMS8 (µ) =
αs(µ)

π

[
3

8
ln
M2W
µ2
− 3
8

(
3

2
+ 2ds

)]
+

(
αs(µ)

π

)2 [3A8
16
ln
M2W
µ2
− 1
16
ln2
M2W
µ2

]
.

In the above the scheme dependence appears in the constants ds, A1 and A8,

ds A1 A8 B

NDR −5/6 2 205/36 −1/6
HV 1/6 −10/3 169/36 11/6

We have also listed another scheme dependent quantity B which will appear below.

2.2 Correlator ∆Π(Q2)

Let us partition the amplitude M respectively into low momentum (M<(µ)) and high

momentum (M>(µ)) componentsM = M<(µ) + M>(µ), where

M<(µ) =
3GF

32
√
2π2F 2π

∫ µ2
0
dQ2 Q4 ∆Π(Q2) + . . .

M>(µ) =
3GFM

2
W

32
√
2π2F 2π

∫ ∞
µ2
dQ2

Q4

Q2 +M2W
∆Π(Q2)
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We can substitute the operator product expansion (OPE) for ∆Π(Q2) in the high momen-

tum componentM>(µ). Recall [5] that in the chiral limit, the leading term in the OPE for

∆Π carries dimension-six (d = 6) while the so-called higher orders comprise d = 8, 10, . . .,

∆Π(Q2) ∼ 1

Q6

[
a6(µ) + b6(µ) ln

Q2

µ2

]
+∆Π(Q2) .

The quantity ∆Π(Q2) consists of all OPE contributions with d > 6.

2.3 Analytical Results

Upon equating the effective theory form ofM with the correlator form, we obtain expres-

sions in MS renormalization for the d = 6 part of the OPE,

aMS6 (µ) = 2π〈αsO8〉MSµ +A8〈α2sO8〉MSµ +A1〈α2sO1〉MSµ ,

bMS6 (µ) = −
2

3
〈α2sO8〉MSµ +

8

3
〈α2sO1〉MSµ .

We also obtain two sum rules DG1 and DG2 which extend earlier versions found by

Donoghue and Golowich [2]. The sum rule DG1 is given by

〈O1〉MSµ −
3B

8π
〈αsO8〉MSµ =

3

(4π)2
[I1(µ) +H1(µ)]

whereas DG2 has the form

2π〈αsO8〉MSµ +A1〈α2sO1〉MSµ +A8〈α2sO8〉MSµ ≡ a6(µ) = I8(µ)−H8(µ) .

The quantities I1,8 are spectral integrals,

I1,8(µ) ≡
∫ ∞
0
ds K1,8(s, µ

2) ∆ρ(s) ,

in which the spectral function ∆ρ(s) is multiplied by the weights K1,8(s, µ),

K1 ≡ s2 ln
s+ µ2

s
K8 ≡ s2

µ2

s+ µ2
.

There appear also the quantities H1(µ) and H8(µ),

H1(µ) ≡ −
∫ ∞
µ2
dQ2 ∆Π(Q2) , H8(µ) ≡ µ6 ∆Π(µ2) ,

which each contain the OPE component ∆Π associated with higher dimensions d > 6.

3. Numerical Analysis

Our discussion thus far has dealt with a dispersive analysis of 〈O1,8〉 which leads rather
naturally to expressions for 〈O1,8〉 which involve integrals of spectral functions times certain
weights. It would seem that there is nothing left to do at this point aside from the easy task

of merely evaluating these integrals. However, we have found such evaluations to be highly

nontrivial. This is especially the case if weights are large in regions where the spectral

function is unknown. Given the difficulty of the problem, realistic error bars should be

provided along with central values in such evaluations.

– 4 –
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3.1 The Numerical Problem

The numerical problem defined by our dispersive analysis amounts to the linear system

T ransfer · Output = Input ,

where the transfer matrix is given in terms of the known (scheme dependent) constants

A1,8, B and the strong fine structure constant αs(µ),(
16π2/3 −2παs(µ)B
α2s(µ)A1 αs(µ) (2π + 2A8αs(µ))

)
.

There is an output vector of the vacuum matrix elements we wish to evaluate,

(〈O1〉MSµ
〈O8〉MSµ

)

and an input vector of the spectral integrals I1,8 and higher dimension contributions H1,8,(
I1(µ) +H1(µ)

I8(µ)−H8(µ)

)
.

3.2 Calculational Procedures

We have considered two methods for obtaining numerical solutions to our equations:

1. Direct Evaluation of the Dispersive Integrals: Although it is possible to formulate

sum rules for the higher dimension quantities H1,8, an accurate determination of such

sum rules is questionable. As such, it is best to somehow avoid H1,8 altogether. We

therefore evaluate the input vector at a sufficiently high renormalization scale (say

µ = 4 GeV) to suppress the contributions of H1,8 relative to I1,8. The evaluation of

I1,8 at µ = 4 GeV is performed with a procedure we call the Residual Weight Method

(RWM), to be described in the following subsection. Finally we employ the two-loop

RG anomalous dimension matrix to evolve from µ = 4 GeV down to µ = 2 GeV.

2. Finite Energy Sum Rules (FESR): This approach is performed at low scales, in the

vicinity of µ = 2 GeV. It yields values for the d = 6 coefficient a6 = I8−H8 as well as
the d > 6 contributions which embody the higher dimension quantities H1,8. Since

the FESR method relies heavily on the OPE, we assume its validity here. Work is

underway to test this assumption.

3.2.1 Residual Weight Method (RWM)

There are powerful constraints on ∆ρ(s) which assist in the evaluation of the spectral

integrals. In the low energy region (s ≤ m2τ ) there is data from tau decay. In the high energy
region (s ≥ sasy) one has the two-loop OPE, which it suffices to write here schematically
as

∆ρ(s) ∼ tiny
s3

(s ≥ sasy)

– 5 –
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Last but not least are the classical chiral sum rules (W1, W2, W3),

W1 ≡
∫ ∞
0
ds ∆ρ(s) = F (0)2π

W2 ≡
∫ ∞
0
ds s ∆ρ(s) = 0

W3 ≡
∫ ∞
0
ds s ln

s

1 GeV2
∆ρ(s)

= −16π
2F
(0)2
π

3e2
∆m(0)2π

which constrain ∆ρ(s) over all energy scales. Recall that superscript ‘(0)’ indicates evalu-

ation in the chiral limit. We employ numerical values for F
(0)2
π and ∆m

(0)2
π from Ref. [6].

Consider evaluation of a spectral integral which contains weight K(s),

I ≡
∫ ∞
0
ds K(s) ∆ρ(s) ,

by utilizing an auxiliary fitting function,

C(s) ≡ x+ y s+ z s ln s

where x, y, z are arbitrary coefficients. The function C(s) is constructed with the dual

purpose of having a close relation to the chiral sum rules and also providing a good fit to

the weight K(s) over some specified fitting window, say 2.5 ≤ s(GeV2) ≤ 5.0. We fix the
coefficient y to minimize the norm ||C(s)−K(s)|| over the fitting window.
In the RWM, we add and subtract the fitting function C(s) to express the original

weight K(s) in the form

K(s) = C(s) + [K(s)− C(s)] ≡ C(s) + ∆K(s) ,

where ∆K(s) is the residual weight. Substitution of the above expression into the spectral

integral I results in a two-component form (‘chiral’ and ‘residual’) I = Ichiral +∆I, where

the chiral part is simply

Ichiral = x ·W1 + z ·W3 .

The residual component partitions naturally into a low energy part where data is accessible,

∆Idata =

∫ m2τ
0
∆K(s, µ2) ∆ρ(s) ,

a negligible intermediate part (∆ρ is small and ∆K is highly suppressed)

∆Iint =

∫ sasy
m2τ

∆K(s, µ2) ∆ρ(s) ,

and a negligible asymptotic part (∆ρ is tiny)

∆Iasy =

∫ ∞
sasy

∆K(s, µ2) ∆ρ(s) .

– 6 –
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The final step in the RWM is to add in quadrature errors from the various components,

E(x, z) = [E2chiral + E
2
data + E

2
int + E

2
asy]
1/2 ,

and then to minimize the overall error function E(x, z). This fixes the remaining coefficients

x, z.

4. Results and Conclusions

I will cite results based on three distinct approaches:

1. RWM: Choose µ = 4 GeV; neglect H1,8(4 GeV). Use RWM to find I1,8 at µ = 4 GeV.

RG-evolve 〈O1,8〉 down to µ = 2 GeV.

2. Mainly FESR: FESR for a6 (= I8 −H8), H1 at µ = 2 GeV. Obtain I1(2 GeV) as in
Strategy I.

3. Hybrid: Use FESR for H1, H8 at µ = 2 GeV. Obtain I1,8(2 GeV) via Strategy I.

For the NDR and HV renormalization prescriptions, we obtain respectively

Strategy B
NDR
7 B

NDR
8 B

HV
7 B

HV
8

RWM/RG 0.16± 0.10 2.22 ± 0.67 0.49 ± 0.07 2.46± 0.70

FESR 0.22 ± 0.034 1.51 ± 0.20 0.47 ± 0.04 1.84± 0.20

HYBRID 0.22 ± 0.034 1.72 ± 0.51 0.50 ± 0.12 2.07± 0.85
These three solution sets are seen to be mutually consistent.

4.1 Concluding Remarks

Our work [1] is seen to divide into two parts, analytical and numerical:

1. We analytically implement two-loop matching of an effective theory to a dispersive

framework used in our earlier work. Our approach guarantees the same renormaliza-

tion scheme dependence as used in the calculation of OPE coefficients.

2. A numerical procedure (RWM method) for evaluating the spectral integrals H1,8 was

constructed to make maximal use of ALEPH data and chiral sum rules. Assuming

validity of the FESR approach led to additional numerical insights.

Finally, we compare our results given above for matrix elements of the operators Q7,8 with
those from a lattice simulation, a 1/Nc analysis and a so-called X-boson procedure:

〈(ππ)I=2|Q7|K0〉 〈(ππ)I=2|Q8|K0〉
Method NDR HV NDR HV

This work 0.16 ± 0.10 0.49 ± 0.07 2.22 ± 0.67 2.46 ± 0.70
Lattice [7] 0.11 ± 0.04 0.18 ± 0.06 0.51 ± 0.10 0.57 ± 0.12
Large Nc [8] 0.11 ± 0.03 0.67 ± 0.20 3.5 ± 1.1 3.5± 1.1
X− boson [9] 0.26 ± 0.03 0.39 ± 0.06 1.2 ± 0.5 1.3± 0.6

– 7 –



P
r
H
E
P
 
h
e
p
2
0
0
1

International Europhysics Conference on HEP Eugene Golowich

References

[1] V. Cirigliano, J. F. Donoghue, E. Golowich and K. Maltman, “Determination of

〈(ππ)I=2|Q7,8|K0〉 in the chiral limit,” [hep-ph/0109113].

[2] J. F. Donoghue and E. Golowich, J. F. Donoghue and E. Golowich, “Dispersive calculation of

B
(3/2)
7 and B

(3/2)
8 in the chiral limit,” Phys. Lett. B 478, 172 (2000) [hep-ph/9911309].

[3] R. Barate et al. [ALEPH Collaboration], “Measurement of the spectral functions of

axial-vector hadronic tau decays and determination of αs(m
2
τ ),” Eur. Phys. J. C 4, 409

(1998).

[4] A. J. Buras, M. Jamin, M. E. Lautenbacher and P. H. Weisz, “Two loop anomalous

dimension matrix for ∆S = 1 weak nonleptonic decays. 1. O(α2s),” Nucl. Phys. B 400, 37

(1993) [hep-ph/9211304].

[5] V. Cirigliano, J. F. Donoghue and E. Golowich, “Dimension-eight operators in the weak

OPE,” JHEP0010, 048 (2000) [hep-ph/0007196].

[6] G. Amoros, J. Bijnens and P. Talavera, “QCD isospin breaking in meson masses, decay

constants and quark mass ratios,” Nucl. Phys. B 602, 87 (2001) [hep-ph/0101127].

[7] A. Donini, V. Gimenez, L. Giusti and G. Martinelli, “Renormalization group invariant

matrix elements of ∆S = 2 and ∆I = 3/2 four-fermion operators without quark masses,”

Phys. Lett. B 470, 233 (1999) [hep-lat/9910017].

[8] M. Knecht, S. Peris and E. de Rafael, “A critical reassessment of Q7 and Q8 matrix

elements,” hep-ph/0102017.

[9] J. Bijnens, E. Gamiz and J. Prades, “Matching the electroweak penguins Q7, Q8 and spectral

correlators,” hep-ph/0108240.

– 8 –


