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Abstract: PCT , a fundamental symmetry of quantum field theory, is derived from the
assumption of Lorentz invariance and positivity of the spectrum. What happens if we

assume only Lorentz invariance and PCT symmetry? Hamiltonians having this property
need not be Hermitian but, except when PCT is spontaneously broken, the energy levels
of such Hamiltonians are all real and positive! In this talk I examine quantum mechanical

and quantum field theoretic systems whose Hamiltonians are non-Hermitian but obey

PCT symmetry. These systems have weird and remarkable properties. Examples of such
Hamiltonians are H = p2+ ix3 and H = p2−x4. Hamiltonians such as these are complex
deformations of conventional Hermitian Hamiltonians. Thus, in this talk I study the

analytic continuation of conventional quantum mechanics into the complex plane.

In a recent series of papers we showed that when properly defined, the ix3 and −gx4
potentials in quantum mechanics possess positive definite spectra. The positivity of the

spectrum is apparently due to the PT symmetry of the Hamiltonian[1–21]. In this talk
we extend these ideas to quantum field theory. We argue that in a −x4 theory the ex-
pectation value 〈x〉 is not zero. The corresponding result for a −gφ4 quantum field theory
in D-dimensional Euclidean space is that the one-point Green’s function G1 = 〈φ〉 is also
nonzero. This finding may allow us to construct new models for the Higgs boson. We also

examine bound states in a −gφ4 quantum field theory.
In 1952 Dyson argued heuristically that perturbation series in quantum electrodynam-

ics must diverge[22]. Applied to the quantum anharmonic oscillator,

H = p2/2 +m2x2/2 + gx4/4 (g > 0), (1)

the argument goes as follows: If the coupling constant g is replaced by −g, then the
potential is no longer bounded below, so the resulting theory has no ground state. Thus,

the ground-state energy E0(g) has an abrupt transition at g = 0. If we represent E0(g) as

a series in powers of g, this series must have a zero radius of convergence because E0(g)

has a singularity at g = 0 in the complex-coupling-constant plane. Hence, the perturbation
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series must diverge for all g 6= 0. While the perturbation series does indeed diverge, this
heuristic argument is flawed because the spectrum of the Hamiltonian

H = p2/2 +m2x2/2− gx4/4 (g > 0) (2)

is ambiguous due to the lack of well-specified boundary conditions for the eigenfunctions.

The spectrum depends crucially on how this Hamiltonian with a negative coupling

constant is obtained. One way to obtain the Hamiltonian (2) is to substitute g = |g|eiθ
into the Hamiltonian (1) and rotate from θ = 0 to θ = π. Under this rotation, the ground-

state energy E0(g) becomes complex. Evidently, E0(g) is real and positive when g > 0 and

complex when g < 0.1 One can also obtain (2) as a limit of the Hamiltonian

H = p2/2 +m2x2/2 + gx2(ix)α/4 (g > 0) (3)

as α : 0 → 2. Having studied Hamiltonians like that in (3) in great detail, we and others
have shown that for α ≥ 0 the spectra of such Hamiltonians are real, positive, and discrete.
The spectrum of the limiting Hamiltonian (2) obtained in this manner is similar to that of

the Hamiltonian in (1); it is entirely real, positive, and discrete. Very recently, the reality

and positivity of the spectra have been established rigorously[23].

How can one Hamiltonian (2) possess two different spectra? The answer lies in the

boundary conditions satisfied by the eigenfunctions ψn(x). In the first case, in which

θ = arg g is rotated from 0 to π, ψn(x) vanishes in the complex-x plane as |x| → ∞ inside
the wedges −π/3 < argx < 0 and −4π/3 < arg x < −π. In the second case, in which
α runs from 0 to 2, ψn(x) vanishes in the complex-x plane as |x| → ∞ inside the wedges
−π/3 < arg x < 0 and −π < arg x < −2π/3. In this case the boundary conditions hold in
wedges that are symmetric with respect to the imaginary axis; these boundary conditions

enforce the PT symmetry of H and account for the reality of the spectrum.
Weak-Coupling Calculation of G1: There is another striking difference between

the two theories corresponding to H in (2). The one-point Green’s function G1(g) is

G1(g) = 〈0|x|0〉/〈0|0〉 ≡
∫
C

dxxψ20(x)
/ ∫

C

dxψ20(x), (4)

where C is a contour that lies in the asymptotic wedges described above. The value of

G1(g) for H in (2) depends on the limiting process by which we obtain H. If we substitute

g = g0e
iθ into the Hamiltonian (1) and rotate from θ = 0 to θ = π, we get G1(g) = 0

for all g on the semicircle in the complex-g plane. Thus, this rotation in the complex-g

plane preserves parity symmetry (x → −x). However, if we define H in (2) by using the
Hamiltonian in (3) and by allowing α to run from 0 to 2, we find that G1(g) 6= 0. Indeed,
G1(g) 6= 0 for all values of α > 0. Thus, in this theory PT symmetry (reflection about the
imaginary axis, x→ −x∗) is preserved, but parity symmetry is permanently broken.
These two different results for G1(g) emphasize the ambiguity in Dyson’s argument and

show that the boundary conditions in the integrals in (4) are crucial for determining the

1Rotating from θ = 0 to θ = −π, we obtain the same Hamiltonian as in (2) but the spectrum is the
complex conjugate of the spectrum obtained when we rotate from θ = 0 to θ = π.
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one-point Green’s function. We are concerned in this talk with the theory that preserves

PT symmetry. In this theory the energy spectrum is real and positive and G1(g) is nonzero.
We have extended these quantum-mechanical arguments to the quantum field theory

whose D-dimensional Euclidean space Lagrangian is L = (∇φ)2/2+m2φ2/2−gφ4/4. What
is remarkable about this “wrong-sign” field theory is that, when it is obtained using the

PT -symmetric limit, the energy spectrum is real and positive, and the one-point Green’s
function is nonzero. Furthermore, the field theory is renormalizable, and in four dimensions

is asymptotically free (and thus nontrivial). Based on these features of the theory, we

believe that the theory may provide a useful setting to describe the Higgs particle.

The one-point Green’s function G1 is a complex functional integral in Euclidean space:

G1 =
∫
C Dφφ(0)e−L[φ]/

∫
C Dφ e−L[φ]. Here, L[φ] =

∫
dDxL and C is a contour in the

complex-φ plane defined as follows: Functional integrals are infinite products of ordinary

integrals, one integral for each lattice point in Euclidean space. For these ordinary integrals

the contour of integration must lie within 45◦ wedges that lie in the lower-half plane and
are centered about −45◦ and −135◦. In D-dimensional space we use ε = gmD−4/4 to
represent the dimensionless coupling constant. The small-ε asymptotic behavior of G1 is

determined by a soliton (not an instanton). In general, G1 has a negative imaginary value:

D = 0 : G1 ∼ −
i

m
2−1/2ε−1/2e−1/ε (ε→ 0+);

D = 1 : G1 ∼ −
i√
m
16
√
πe(2/ε)2/3e−16/(3ε)3−1/6/Γ2(1/3) (ε→ 0+). (5)

In dimension D, G1 ∼ e−4Λ[D]/ε as ε → 0+, where Λ[D] is determined by a spherically
symmetric soliton. Numerical values of Λ[D] for 0 ≤ D ≤ 4 are given in Ref. [14].
Bound States: A significant difference between the Hermitian Hamiltonian (1) and

the PT -symmetric Hamiltonian (2) is that when g is sufficiently small, the latter Hamil-
tonian possesses bound states while the former does not. The bound states persist in the

corresponding non-Hermitian PT -symmetric −gφ4 quantum field theory for all dimensions
0 ≤ D < 3 but are not present in the conventional Hermitian gφ4 field theory.

We calculate the bound states perturbatively. For the anharmonic oscillator Hamil-

tonian (1), the perturbation series for the kth energy level Ek begins Ek ∼ m[k + 1/2 +

3(2k2 + 2k + 1)ε/4 + O(ε2)] as ε → 0+, where ε = g/(4m3). The renormalized mass M is

the first excitation above the ground state: M ≡ E1 − E0 ∼ m[1 + 3ε+O(ε2)] as ε→ 0+.
To determine if the two-particle state is bound, we examine the second excitation above

the ground state. We define B2 ≡ E2 − E0 ∼ m
[
2 + 9ε+O(ε2)

]
as ε → 0+. If B2 < 2M ,

then a two-particle bound state exists and the (negative) binding energy is B2 − 2M . If
B2 > 2M , then the second excitation above the vacuum is interpreted as an unbound

two-particle state. In the small-coupling regime, where perturbation theory is valid, the

conventional anharmonic oscillator does not possess a bound state. Indeed, using WKB,

variational methods, or numerical calculations one can show that there is no two-particle

bound state for any g > 0. Thus, the gx4 interaction represents a repulsive force.2

2In general, a repulsive force in a quantum field theory is represented by an energy dependence in
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We obtain the perturbation series for H in (2) from the perturbation series for the

conventional anharmonic oscillator by replacing ε with −ε. Thus, while the conventional
anharmonic oscillator does not possess a two-particle bound state, the PT -symmetric os-
cillator does indeed possess such a state. We give the binding energy of this state in units

of the renormalized mass M and we define the dimensionless binding energy ∆2 by

∆2 ≡ (B2 − 2M)/M ∼ −3ε+O(ε2) (ε→ 0+). (6)

This bound state evaporates when ε increases beyond ε = 0.0465 . . .. As ε continues to

grow, ∆2 reaches a maximum of 0.427 at ε = 0.13 and then approaches 0.28 as ε→∞.
In the PT -symmetric anharmonic oscillator, there are not only two-particle bound

states for small coupling constant but also k-particle bound states for all k ≥ 2. The
dimensionless binding energies are ∆k ≡ (Bk − kM)/M ∼ −3k(k − 1)ε/2 + O(ε2) as
ε → 0+. Since the coefficient of ε is negative, the dimensionless binding energy becomes
negative as ε increases from 0, and there is a k-particle bound state. The higher k-particle

bound states cease to be bound for smaller values of ε; the binding energies ∆3, ∆4, ∆5,

and ∆6 become positive as ε increases past 0.039, 0.034, 0.030, and 0.027.

For any value of ε there are always a finite number of bound states and an infinite

number of unbound states. The number of bound states decreases with increasing ε until

there are no bound states at all. Note that there is a range of ε for which there are only

two- and three-particle bound states. This situation is analogous to the physical world in

which one observes only states of two and three bound quarks. In this range of ε if one has

an initial state containing a number of particles (renormalized masses), these particles will

clump together into bound states, releasing energy in the process. Depending on the value

of ε, the final state will consist either of two- or of three-particle bound states, whichever

is energetically favored. Note also that there is a special value of ε for which two- and

three-particle bound states can exist in thermodynamic equilibrium.

These results generalize from quantum mechanics to the D-dimensional PT -symmetric
−gφ4 quantum field theory. There exists a bound state because to leading order in the
dimensionless coupling constant ε the binding energy becomes negative as ε increases from 0.

We calculate the bound-state energy by summing all “sausage-link” graphs and identifying

the bound-state pole. The dimensionless binding energy to leading order in ε is

∆2 ∼ −(4π)(D−1)/(D−3)[3Γ(3/2 −D/2)]2/(3−D)ε2/(3−D), (7)

which reduces to (6) atD = 1. Equation (7) holds for 0 ≤ D < 3 because we have performed

mass renormalization (but not wave function or coupling-constant renormalization).

We conclude by comparing a gφ3 theory with a gφ4 theory: A gφ3 theory represents

an attractive force. The bound states that arise as a consequence of this force can be

found by using the Bethe-Salpeter equation. However, the gφ3 field theory is unacceptable

which the energy of a two-particle state decreases with separation. The conventional anharmonic oscillator

Hamiltonian corresponds to a field theory in one space-time dimension where there cannot be any spatial

dependence. The repulsive nature of the force is understood to mean that the energy B2 needed to create

two particles at a given time is more than twice the energy M needed to create one particle.
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because the spectrum is not bounded below. If we replace g by ig, the spectrum becomes

real and positive, but the force becomes repulsive and there are no bound states. The same

is true for a two-scalar theory with interaction of the form igφ2χ. This latter theory is an

acceptable model of scalar electrodynamics, but has no analog of positronium.
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