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Abstract: A proof is given of Polyakov conjecture about the auxiliary parameters of the

SU(1, 1) Riemann-Hilbert problem for general elliptic singularities. Such a result is related

to the uniformization of the the sphere punctured by n conical defects. Its relevance to

the hamiltonian structure of 2+1 dimensional gravity in the maximally slicing gauge is

stressed.

1. We shall deal with the proof of a conjecture put forward by Polyakov [1] about the

accessory parameters of the Riemann- Hilbert problem and with the role such a conjecture

plays in 2+1 dimensional gravity coupled to particles on an open universe. Such a theory

when formulated in the maximally slicing gauge (Dirac gauge)[2] shows a deep connection

with the Riemann- Hilbert problem which consists in determining a fuchsian differential

equation whose independent solutions transform according to a given representation of the

SL(2C) group when one encircles the singularities. In the second order canonical ADM

formulation [3, 4] of 2+1 dimensional gravity a variant of the Riemann-Hilbert problem

appears which is described in Sec. 2. Such a problem occurs in determining the conformal

factor e2σ in the ADM metric

ds2 = −N2dt2 + e2σ(dz +N zdt)(dz̄ +N z̄dt). (1)

In fact the hamiltonian constraint in the maximally slicing gauge can be written as [3]

4∂z∂z̄φ = e
φ + 4π

∑
n

δ2(z − zn)(−1 + µn) + 4π
∑
B

δ2(z − zB) (2)
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where

φ = −2σ + ln
[
1

2π2

∑
n

Pn
(z − zn)

∑
n

P̄n
(z̄ − z̄n)

]
(3)

being zn the particle positions, Pn the canonically conjugate momenta and 4πµn the particle

masses in Planck units. The zB are the zeros of
∑
n Pn/(z − zn) and are known as the

apparent singularities. In eq.(2) one recognizes the Liouville equation with point sources.

The particle equations of motion in the relative coordinates can be written as [4]

ż′n = −
∑
B

∂βB
∂µ

∂z′B
∂P ′n
, Ṗ ′n =

∂βn
∂µ
+
∑
B

∂βB
∂µ

∂z′B
∂z′n

(4)

where βB are the accessory parameters related to the apparent singularities. One is faced

with the problem of proving the hamiltonian nature of eqs.(4) and possibly to give the

hamiltonian. As we shall see this problem has a straightforward solution if one assumes

the validity of Polyakov’s conjecture to which now we come.

2. Polyakov [1] put forward the following conjecture on the accessory parameters βn which

appear in the solution of the SU(1, 1) Riemann-Hilbert problem

− 1
2π
dSP =

∑
n

βndzn + c.c. (5)

where SP is the regularized Liouville action [5], SP = limε→0 Sε with

Sε[φ] =
i

2

∫
Xε

(∂zφ∂z̄φ+
eφ

2
)dz ∧ dz̄ + i

2

∑
n

gn

∮
γn

φ(
dz̄

z̄ − z̄n −
dz

z − zn )

+
i

2
g∞
∮
γ∞
φ(
dz̄

z̄
− dz
z
)− π

∑
n

g2n ln ε
2 − πg2∞ ln ε2, where dz ∧ dz̄ = −2idx ∧ dy (6)

and Xε is the disk of radius 1/ε in the complex plane from which disks of radius ε around

all singularities have been removed; γn are the boundaries of the small disks and γ∞ is
the boundary of the large disk. In eq.(5) SP has to be computed on the solution of the

inhomogeneous Liouville equation which arises from the minimization of the action i.e.

4∂z∂z̄φ = e
φ + 4π

∑
n

gnδ
2(z − zn) (7)

with behavior at infinity φ = −g∞ ln zz̄+O(1). Such a conjecture plays an important role
in the quantum Liouville theory [5, 6] and in the ADM formulation of 2 + 1 dimensional

gravity [3, 4]. The conjecture is interesting in itself as it gives a new meaning to the rather

elusive accessory parameters [7] of the Riemann-Hilbert problem. In particular it implies

that the form ω =
∑
n βndzn + c.c. is exact. Zograf and Takhtajan [6] provided a proof

of eq.(5) for parabolic singularities. In addition they remark that the same technique can

be applied when some of the singularities are elliptic of finite order. On the other hand in

2+1 gravity one is faced with general elliptic singularities and here the mapping technique

cannot be applied. Picard [8] proved that eq.(7) for real φ with asymptotic behavior at
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infinity φ(z) = −g∞ ln(zz̄) + O(1), −1 < gn, 1 < g∞ and
∑
n gn + g∞ < 0 admits one

and only one solution (see also [9]). The interest of such results is that they solve the

following variant of the Riemann-Hilbert problem: at z1, . . . zn we are given not with the

monodromies but with the class, characterized by gj , of the elliptic monodromies with

the further request that all such monodromies belong to the group SU(1, 1). The last

requirement is imposed by the fact that the solution of eq.(7) has to be single valued.

From eq.(7) one can easily prove [11], that

e−
φ
2 =

1√
8|w12|

[ȳ2(z̄)y2(z)− ȳ1(z̄)y1(z)] (8)

being y1, y2 two independent solutions of

y′′ +Q(z)y = 0 where Q(z) =
∑
n

−gn(gn + 2)
4(z − zn)2 +

βn
2(z − zn) . (9)

w12 is the constant wronskian and the βn are the accessory parameters [7].

3. The result of Picard assures us that given the position of the singularities zn and the

classes of monodromies characterized by the real numbers gn there exists a unique fuchsian

equation which realizes SU(1, 1) monodromies of the prescribed classes. In particular the

uniqueness of the solution of Picard’s equation tells us that the accessory parameters βi
are single valued functions of the parameter zn and gn. We shall examine in this section

how such dependence arises from the viewpoint of the imposition of the SU(1, 1) condition

on the monodromies. Starting from the singularity in z1 we can consider the canonical pair

of solutions around z1, y
1
1 = ζ

gm
2
+1A(ζ), y12 = ζ

− gm
2 B(ζ) with A(ζ) = 1 + O(ζ), B(ζ) =

1+O(ζ), ζ = z−z1, i.e. those solutions which behave as a single fractional power multiplied
by an analytic function with first coefficient one. Let (y1, y2) the solutions which realize

SU(1, 1) around all singularities. Obviously all conjugations with any element of SU(1, 1) is

still an equivalent solution in the sense that they provide the same conformal factor φ. The

canonical pairs around different singularities are linearly related i.e. (y11, y
1
2) = (y

2
1, y
2
2)C21.

We fix the conjugation class by setting (y1, y2) = (y
1
1 , y
1
2)Kwith K = diag(k, k

−1) being
the overall constant irrelevant in determining φ. Moreover if the solution (y1, y2) realizes

SU(1, 1) monodromies around all singularities also (y1, y2) × diag(eiα, e−iα) accomplishes
the same purpose being diag(eiα, e−iα) an element of SU(1, 1). Thus the phase of the
number k is irrelevant and so we can consider it real and positive. This choice of the

canonical pairs is always possible in our case. If Dn denote the diagonal monodromy

matrices around zn, we have that the monodromy around z1 is D1 and the one around z2 is

M2 = K
−1C12D2C21K,where with C12 we have denoted the inverse of the 2×2 matrix C21.

In the case of three singularities (one of them at infinity) by using the freedom on K we

can reduceM2 to the SU(1, 1) form. The possibility of such a choice is assured by Picard’s

result and in this simple case also by the explicit solution in terms of hypergeometric

functions [2, 3]. We come now to a qualitative description of the case of four singularities.

We recall that the accessory parameters βn are bound by two algebraic relations known

as Fuchs relations [7]. Thus after choosing M1 of the form M1 = D1K, in imposing
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the SU(1, 1) nature of the remaining monodromies we have at our disposal three real

parameters i.e. k, Re β3 and Im β3. It is sufficient to impose the SU(1, 1) nature of

M2 and M3 as the SU(1, 1) nature of M∞ is a consequence of them. As the matrices
Mn = K

−1C1nDnCn1K satisfy identically detMn = 1 and TrMn = 2cos πgn we need to
impose generically on M2 only two real conditions e.g. Re b2 = Re c2 and Im b2 = −Im c2.
The same for M3. Thus is appears that we need to satisfy four real relations when we

can vary only three real parameters. The reason why we need only three and not four is

that for any solution of the fuchsian problem the following relation among the monodromy

matrices is identically satisfied D1KM2M3M∞ = 1.The above reported discussion can be
put on rigorous grounds [10] for any number of singularities by exploiting the existence and

uniqueness of the solution and using some basic results of the theory of analytic function

of several complex variables, reaching the result that βn are analytic functions of zm, z̄m in

the neighborhood of any point of the complex plane, except for a finite number of points.

4. Being defined through a limit procedure the action SP is somewhat uncomfortable

to work with. It is however possible, introducing a background field to rewrite SP as a

simple integral. In the global coordinate system z on C one writes φ = φM + φ0 + φB
where φB is a background conformal factor which is regular and behaves at infinity like

φB = −2 ln(zz̄) + cB +O(1/|z|) while φ0 is given by
φ0 =

∑
n

gn ln |z − zn|2 − αφB + c0 where α = −(
∑
n

gn + g∞ − 2)/2. (10)

Then we have for φM

4∂z∂z̄φM = e
φ0+φB+φM + (α− 1)4 ∂z∂z̄φB . (11)

φM is a continuous function on the Riemann sphere. The action which generates the above

equation is

S =

∫
[∂zφM∂z̄φM +

eφ

2
+ 2(α − 1)φM∂z∂z̄φB ] idz ∧ dz̄

2
. (12)

The integral in eq.(12) converges absolutely. S computed on the solution of eq.(11) is

related to the original Polyakov action SP also computed on the solution of eq.(11) by

SP = S − (α− 1)2
∫
φB∂z∂z̄φB

idz ∧ dz̄
2

+ 2π(α − 1)2cB+

+ π
∑
m

∑
n 6=m
gmgn ln |zm − zn|2 + 4πc0(1− α). (13)

Our aim now is to compute the derivative of SP with respect to zn. Again computing the

derivative of the new action S is not completely trivial because one cannot take directly the

derivative operation under the integral sign. In fact such unwarranted procedure would

give rise to an integrand which is not absolutely summable. One can device however a

subtraction procedure [10] which allows to perform such operations. The rigorous result

for the derivative, using the equation of motion (11) is [10]

∂S

∂zm
= lim
ε→0

∫
Xε

[∂z(
∂φM
∂zm

∂z̄φM ) + ∂z̄(
∂φM
∂zm

∂zφM ) +
∂φ0
∂zm

eφ

2
]
idz ∧ dz̄
2

(14)
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which can be computed by using eq.(11) to obtain

∂S

∂zm
= −igm lim

ε→0

∮
γε

1

z − zm ∂z (φM − (α− 1)φB) dz. (15)

Using φM − (α− 1)φB = φ−
∑
n gn ln |z− zn|2 and the expansion of A = 1+ c1ζ + · · · and

B = 1 + c2ζ + · · · which are obtained by substituting into the differential equation (9) to
obtain

c1 = − βm
2(gm + 2)

and c2 =
βm
2gm

(16)

finally we have
∂S

∂zm
= −2πβm − 2π

∑
n,n 6=m

gmgn
zm − zn (17)

equivalent to Polyakov conjecture eq.(5) due to the relation (13) between S and SP . From

eqs.(4,5) we see that the hamiltonian is given by H = 1
2π
∂SP
∂µ , because

∂H

∂P ′n
= −

∑
B

∂βB
∂µ

∂z′B
∂P ′n

and − ∂H
∂z′n
=
∂βn
∂µ
+
∑
B

∂βB
∂µ

∂z′B
∂z′n
. (18)
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