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Abstract: It is the aim of this talk to review our understanding of the high-energy

limit of QCD, focussing, in particular, on recent theoretical developments. After a brief

introduction, I will recall why the true high-energy limit of QCD scattering processes is

genuinly non-perturbative and why it has so far not been possible to apply lattice methods

to this type of physics. Given the experimental fact of slowly rising hadronic cross sections,

we are thus faced with a fundamental problem comparable to that of confinement but

without the promise of the lattice. During the last years, the experimental side of this field

has largely been driven by the HERA accelerator, which has, naturally, also influenced

recent theoretical work in high-energy QCD. I will therefore devote the second part of

the talk to small-x deep inelastic scattering, in particular the physics of diffraction, and

attempt to describe its impact on the wider field of non-perturbative high-energy QCD.

1. Introduction

On the basis of an overwhelming amount of experimental data and its quantitative

description by various theoretical methods, we can confidently say that quantum chromo-

dynamics (QCD) is the correct theory of strong interactions. Structurally, this theory is

extremely simple. It is defined by the gauge group SU(3) and the presence of a certain

number of quark fields ψ in the fundamental representation,

L = −1

2
trFµνF

µν + iψ̄(iD/ −m)ψ . (1.1)

The coupling constant αs = g2/(4π) enters the above lagrangian via Dµ = ∂µ + igAµ and

Fµν = (1/ig)[Dµ,Dν ]. The renormalization group teaches us that αs is small in short-

distance (i.e., high-virtuality) processes and grows to large values in calculations relevant

to long-distance phenomena (see, e.g., [1]). Thus, while the first type of processes can

be controlled in perturbation theory, genuinely non-perturbative methods are needed to

describe the physics of hadrons and low-energy interactions. QCD is therefore arguably

the best-defined and at the same time most interesting example of a quantum field theory
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that we know. The latter statement refers to the physics of strong interactions and the

effect of confinement, which govern the low-energy domain. For a large and constantly

growing number of low-energy observables, numerical simulations on the lattice, i.e., in a

discretised euclidean version of the theory, provide a first-principles quantitative method

of calculation (see, e.g., [2]).

However, there exists a qual-

Figure 1: Total cross sections (from Ref. [3]).

itatively distinct class of observ-

ables, namely scattering processes

with large center-of-mass energies

but without large virtualities in

intermediate states, where both

perturbation theory and conven-

tional euclidean lattice methods

fail. These processes are the focus

of the present review. Maybe the

most prominent representative of

these processes are total hadronic

cross sections in the limit s→∞.

The most interesting qualitative

property of these cross sections

is their slow rise with s, which

is illustrated in Fig. 1. The two

cross sections (pp and pp̄) can be

parameterized by sδ (here δ =

0.07), ln s and ln2 s at high energy.

These parameterizations are at present indistinguishable on the basis of the data. It is sur-

prising and highly unsatisfactory that we have no genuine understanding of the striking

and universal phenomenon of asymptotically rising cross sections on the basis of the QCD

lagrangian.

2. Theoretical ideas concerning the asymptotic rise of cross sections

2.1 Geometrical picture

Let us start with the simple observation that the high-energy total cross section of two

hadrons (i.e., two complex extended objects) should, naively, be constant. They will simply

always interact if they overlap in impact parameter space.

It is amusing to note that a very simple quantum-mechanical extension of this naive

picture was given by Heisenberg as early as 1952 [4]. He assumed that the target hadron is

surrounded by a field with energy density ∼ e−mπr (motivated by the Yukawa potential).

Furthermore he conjectured that for an inelastic process to occur, the projectile has to pass

so close to the target that there is locally enough energy in the collision of projectile and

target field to create a pion pair. As the projectile energy grows, this effective maximal

impact parameter grows as well, and one finds σ ∼ (1/m2π) ln2(s/m2π) for the total cross
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section. However, I am not aware of any quantum field theoretic version of the above

argument.

Later it was shown on the basis of very general principles, such as unitarity and an-

alyticity, that cross sections can not grow faster than ln2(s/s0) in the limit s → ∞ [5]

(Froissart bound). However, in contrast to Heisenberg’s simple argument, the derivation

of this rigorous results does not provide a physical mechanism realising this growth. Thus,

there is at present no clear field theoretic understanding of the transverse ‘expansion’ of

hadrons at high energies.

2.2 Regge theory

Let us recall the basic underlying concepts of Regge theory, which, although not linked

directly to the QCD lagrangian, provides a well-defined framework for the discussion of

high-energy cross sections (see, e.g., [6, 7]).

Using analyticity and crossing symmetry, the am-
t

1

4

3

s

2

Figure 2: Scattering process 12 →
34 via reggeon exchange.

plitude T12→34(s, t), depicted in Fig. 2, can be related

to the amplitude T13̄→2̄4(s′, t′), where s′ = t, t′ = s,

and barred numbers denote antiparticles. The partial

wave expansion for this crossed amplitude reads

T13̄→2̄4(s′, t′) =

∞∑
l=0

(2l + 1)al(s
′)Pl(cos θ) , (2.1)

where θ is the centre-of-mass frame scattering angle,

which is a function of s′, t′ and the particle masses, and Pl are Legendre polynomials. Let

the two functions aη(l, t) with η = +1 and η = −1 be the analytic continuations to complex

l of the two sequences {al(t), l = 0, 2, 4, ...} and {al(t), l = 1, 3, 5, ...}. In the simplest non-

trivial case, the only singularity of aη(l, t) is a single t-dependent pole at l = α(t). It can

then be shown that, in the limit s→∞,

T12→34(s, t) = β13(t)β24(t) ζη(α(t))

(
s

s0

)α(t)
, (2.2)

where s0 is an arbitrary scale factor, β13 and β24 are two unknown functions of t, and

ζη(α(t)) =
1 + ηe−iπα(t)

sinπα(t)
(2.3)

is the signature factor, depending on the signature η of the relevant Regge trajectory α(t).

If aη(l, t) has a more complicated analytic structure, the rightmost singularity in the l plane

dominates the behaviour at large s.

Within the present context, the essential predictions of the asymptotic expression

Eq. (2.2) are the power-like energy dependence sα(t) and the factorization of the two vertex

factors β13(t) and β24(t). This last feature, which underlies the graphic representation

of reggeon exchange in Fig. 2, is relevant if the same Regge trajectory governs different

scattering processes. Note also that, for positive t = s′ and integer l, α(t) describes the

positions of poles of the physical amplitude T13̄→2̄4(s′, t′). Such poles are expected whenever
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an on-shell particle with appropriate mass m2 = s′ and angular momentum l can be created

in the collision of 1 and 3̄. Indeed, most Regge trajectories pass through known physical

states with mass m2 = t and angular momentum α(t).

The Froissart bound implies that α(0) ≤ 1 for all Regge trajectories. However, it

was observed early on that a very good fit to pp and pp̄ cross sections could be obtained

assuming the dominance of a single pole with α(0) > 1. The corresponding trajectory

is known as the pomeron trajectory. Donnachie and Landshoff found that a large set of

different hadronic cross sections can be fitted with an intercept α(0) = 1.08 [8]. In spite

of the power-like growth of Eq. (2.2), the predicted cross sections are so small that the

Froissart bound is not violated below the Planck scale. It is then argued that unitarity

is not a serious problem at all realistic energies. However, one should keep in mind that

analyses based on a pomeron trajectory with α(0) > 1 are, strictly speaking, not self-

consistent in the framework of Regge theory. Therefore, it is likely that the rightmost

singularity in the complex l plane is not a single pole but a cut, in which case many of the

results obtained in this framework are called into doubt.

In connection with the observed strong rise of γ∗p cross sections at HERA, there has

recently been a lot of discussion of the possible need for a ‘second pomeron pole’ [9] (see [10]

for an update). However, as will be discussed below, this effect can also be understood in

QCD perturbation theory.

2.3 Ideas in euclidean field theory

As already mentioned, the best developed method for addressing non-perturbative prob-

lems in non-abelian gauge theories is the lattice. The numerical simulation of the path

integral forces one to work in euclidean field theory and to derive Minkowski-space observ-

ables by analytic continuation. There are well-known methods for the hadron spectrum,

certain decay processes, and for operators relevant to deep inelastic scattering (DIS), but

without the possibility to take the limit xBj → 0. However, no established procedure ex-

ists for the large-s limit of hadronic cross sections. The fundamental difficulty becomes

apparent by observing that the interesting dynamics resides in the soft fluctuations of the

hadronic wave function, which, at s→∞ are localized on the light cone.

An interesting idea to overcome this problem was put forward some time ago by Meg-

giolaro [11] (see [12] for recent results). The approach rests on the well-known relation be-

tween the high-energy scattering of hadrons and correlators of light-like Wilson lines (which

correspond to the trajectories of the constituent quarks) [13]. Meggiolaro showed that the

expectation value of two Wilson lines forming a certain hyperbolic angle in Minkowski

space and the expectation value of two Wilson lines forming a certain angle in euclidean

space are connected by analytic continuation in the angular variables. One may now hope

to describe the limit of light-like minkowskian Wilson lines (i.e., the physical limit s→∞)

on the basis of a lattice calculation of Wilson line correlators in the euclidean theory. Note

also that a conceptually related but different euclidean approach to the small-x limit of

DIS was suggested in [14].

Of course, in the above proposal it is still not clear how to technically obtain the

dependence on an angular variable with a precision that is high enough for analytic con-
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Figure 3: Two dipoles scattering via one-gluon exchange. Gluons can be radiated into the final

state.

tinuation. The fundamental difficulty of this is obvious since the lattice breaks rotation

invariance. This difficulty may be deeply related to the second fundamental problem of lat-

tice approaches to high-energy observables, namely, the vast discrepancy of the two scales

ΛQCD and s. Such two-scale problems are difficult to approach since, on the lattice, one is

confined to the region of scales between lattice spacing and the size of the simulated box.

A further new approach to the high-energy limit of QCD was proposed by Janik and

Peschanski [15] (see also [16]). The authors suggest using the AdS/CFT correspondence

(also known as the Maldacena conjecture) [17] to investigate high-energy scattering in non-

abelian gauge theories. The AdS/CFT correspondence claims the equivalence of weakly

coupled string theory in an Anti-de-Sitter (AdS) geometry with strongly coupled N = 4 su-

per Yang-Mills theory, which is a conformal field theory (CFT), in 4-dimensional Minkowski

space. Further, to make the connection to the realistic case of confining gauge theories, the

authors use Witten’s proposal [18] that a confining gauge theory is dual to string theory

in an AdS black hole background. As discussed above, the high-energy scattering of two

dipoles can be calculated from the correlation function of two Wilson loops in the euclidean

theory. Using AdS/CFT correspondence, the calculation of the latter can be reduced to a

minimal surface problem in an AdS black hole background.

2.4 The BFKL approach

In brief, one could say that the BFKL (Balitsky-Fadin-Kuraev-Lipatov) method attempts

to approach the rise of hadronic cross sections from the perturbative side, by summing ln s

enhancements appearing in higher orders of perturbation theory. Even though the technical

realization is rather involved [19] (see [7] for a modern introductory text, [20] for results

at next-to-leading order, and [21] for recent reviews), the main physical idea is simple.

Consider the scattering of two small (perturbative) dipoles (Fig. 3). At leading order, the

total cross section is determined by one-gluon exchange. At next-to-leading order, a gluon

can be radiated into the final state. The phase space open to this gluon is limited by the

rapidities of the two colliding dipoles and grows with s. This leads to a ln s enhancement of

the total cross section. More final state gluons give rise to higher powers of ln s. Keeping

only the dominant terms, the whole series can be summed, giving rise to a cross section

σ ∼ α2s sαBFKL−1, where the ‘BFKL intercept’ is given by αBFKL = 1 + 12(ln 2)αs/π.

The ln s enhancement of higher orders in perturbation theory, which underlies this re-

sult, is of fundamental importance because it represents our only lagrangian-based deriva-

tion of a growing high-energy cross section. Nevertheless, the BFKL method in its present

form is far from answering the fundamental question about the asymptotic high-energy

behaviour. Firstly, it is not applicable to realistic hadrons because there is no hard scale
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justifying the perturbative method. Further, even if one restricts oneself to fictitious small-

dipole (‘onium-onium’ – cf. [22]) collisions, BFKL does not provide the answer at s→∞.

On the one hand, it clearly violates the Froissart bound. On the other hand, it violates

unitarity at fixed impact parameter. This can be understood by interpreting the BFKL

gluon radiation as a growing ‘blackness’ of the target, which is then probed by the projec-

tile dipole. However, such an unlimited growth is impossible since the probability for the

projectile to interact with the target at a given impact parameter eventually reaches unity.

On the technical side, the two above difficulties are related to the problems of higher-

order corrections and of infrared diffusion (see, e.g. [23]). To understand the first problem,

observe that even though BFKL sums terms ∼ α2s(αs ln s)n for all n, one has all reason to

expect the sum of contributions ∼ α4s(αs ln s)n (e.g., ‘double pomeron exchange’) to grow

faster as s → ∞. More generally, one expects that even the extension of BFKL to any

finite higher order will not provide the true high-energy asymptotics of the cross section.

To understand the second problem, observe that the gluon ladder (the beginning of which

is shown in Fig. 3) ‘knows’ about the hard scale of the two scattering dipoles only via

its ends. As s increases, longer and longer gluon ladders become important and one sees

numerically that the IR region starts to dominate the inner-rung momentum integrals.

Much of the recent work in BFKL physics has focussed on the proper understanding

and implementation of the NLO corrections [20] which, naively, appeared to be extremely

large, and on tests of BFKL dynamics at the available colliders. According to [24], the use

of BLM scale setting improves the NLO situation dramatically. In a different approach,

the improved small-x evolution of [25], which incorporates the next-to-leading order BFKL

kernel as well as renormalization group constraints on the relevant collinear limits, stabilizes

the resummed results. For recent discussions of IR diffusion and of the relevancy of BFKL to

the high-energy limit of DIS the reader is referred to refs. [26] and [27,28]. Other theoretical

directions include the further study of reggeization (see, e.g. [29]) and the development of

a reggeon field theory approach [30]. Being, at least in principle, very close to the ideal

small-dipole case, the γ∗γ∗ cross section is an interesting testing field for BFKL methods.

However, recent experimental data [31] and theoretical analyses [32] show that it is difficult

to identify any direct evidence for BFKL dynamics in γ∗γ∗ collisions at presently available

energies. Note furthermore that recently total cross section measurements for the collision

of two real photons have been extended to very high energies and that a faster rise than

expected on the basis of soft pomeron parameterizations has been observed [33].

Before closing this very brief section on BFKL, I would like to reiterate that most

recent developments in this field are to be considered as work in perturbative QCD and

that direct contact to the fundamental problem of the high-energy asymptotics is difficult

to make. Therefore, in spite of its great interest in its own rights, the physics of BFKL lies

somewhat outside the main line of development of this review.

2.5 The method of high gluon densities

The gluon ladder of BFKL (see Fig. 3) can be interpreted as the consecutive radiation

of gluons by the target hadron, so that the growth of the cross section corresponds to a

growth of the target gluon distribution with increasing 1/x. This small-x enhancement
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of gluon distributions is also present in the more familiar DGLAP evolution of parton

distributions [34]. As already mentioned before, the growth is limited by unitarity at any

given point in impact space. The physical mechanism taming the growth is believed to be

the recombination of partons [35]. Thus, the region of high gluon densities appears to be

highly relevant to the question of how hadronic cross sections behave at very high energies.

A lot of interest has been

∼1/Λ

σ(   )

∼1/  ηΛ

∼η /Λ

∼1/Λ
2

22
large hadron

conventional
hadron
(radius ∼1/Λ)

(radius ∼η/Λ)

Figure 4: Qualitative behaviour of the dipole cross sec-

tion σ(%) (here Λ ∼ ΛQCD).

drawn to the the region of high

gluon densities since the McLerran-

Venugopalan approach has offered

the perspective of a new hardness

scale and thus perturbative calcula-

bility in this region. The original

proposal [36] dealt with large nuclei,

where the new hardness scale can

be understood by boosting the nu-

cleus to very large energy and ob-

serving that the thickness of the tar-

get translates to a high density (i.e.,

small transverse separation) of glu-

ons in impact parameter space. This hardness scale can also be derived by considering

small-x DIS off a large nucleus in its rest frame [37] (cf. also [38, 39]). In this approach,

the total cross section is given by the convolution of the γ∗ wave function (characterizing

the probability of a virtual photon to fluctuate into a qq̄ pair of transverse size %) and the

dipole cross section σ(%) (characterizing the probability of this dipole to interact with the

target). For conventional hadrons, even at high photon virtualities Q2, dipole sizes up to

∼ 1/Λ contribute (the region of the ‘knee’ in Fig. 4). For very large hadrons, one can see

by purely geometrical arguments that the region of the knee is shifted to smaller values

of %, the relevant scale being
√
ηΛ. Thus, the non-perturbative region is parametrically

suppressed in the total cross section. Intuitively, this effect can be explained by saying that

the largest dipoles that contribute are those for which saturation sets in, and that in large

(thick) targets saturation sets in already for small dipoles.

To make the connection to the high-energy (small-xBj) limit, one now assumes that

in the above arguments the thickness of the large target can be replaced by the extreme

opacity that a usual hadronic target develops when probed by a very energetic projectile.

In other words, since the knee in Fig. 4 moves to the left in the small-xBj limit, saturation

becomes a phenomenon that is, at least in principle, accessible in perturbation theory.

Indeed, starting with [38, 40] (see [41] for earlier closely related work), over the last years

impressive progress has been made in deriving and analysing the evolution of the gluon dis-

tribution within the McLerran-Venugopalan or high-density approach. In this framework,

it is convenient to think of the hadron colour field as being characterized by the expecta-

tion value of Wilson lines penetrating the hadron. In the simplest case, these are the two

Wilson lines corresponding to the qq̄ pair into which the γ∗ fluctuates (cf. the quantity

σ(%) above). To understand the energy dependence, one needs to consider an arbitrary
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number of such Wilson lines and to calculate the evolution of the generating functional

for the corresponding expectation value in the target colour field. (Note that this can be

understood as a renormalization group equation in which more and more energetic gluon

field components are integrated out.) Even assuming the validity of perturbation theory

throughout, the problem at hand is formidable.

Recent work in the field is fo-
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Figure 5: Qualitative picture of the high-energy evolu-

tion of a hadronic target in impact parameter space.

cussing on the full understanding

of the above complicated non-linear

evolution equation and on first at-

tempts at physical applications [42–

47]. In particular, the reader is

referred to [42] for a comparative

analysis of the methods employed in

Refs. [40], [41], and [43]. Progress in

solving the evolution equation using functional Focker-Planck methods has been reported

in [44]. The application of the high gluon density regime, called ‘colour glass condensate’

in [45], to small-x DIS has been discussed, e.g., in [46,47].

However, one now has to ask how much closer the above developments bring us to

a solution of the fundamental problem – the high-energy limit of hadronic cross sections.

To discuss this question, consider the change of the impact parameter space picture of a

hadron with increasing energy, Fig. 5. Perturbation theory tells us that, at any given impact

parameter, the gluon density (or, equivalently, the interaction probability of an energetic

small colour dipole) increases with energy. In Fig. 5, this is symbolized by increasing black-

ness. For given impact parameter and given dipole size, this growth is limited by unitarity.

Technically, this is implemented by including non-linearities into the evolution equation

– this is precisely the program of the McLerran-Venugopalan approach sketched above.

Thus, one may indeed hope that this program will lead to a quantitative understanding of

how, in the high energy limit, the target becomes completely black at any impact param-

eter. However, if total hadronic cross sections continue to grow asymptotically as s→∞,

then this growth has to come from an effective transverse expansion in impact parame-

ter space. As illustrated in Fig. 5, this expansion is governed by the dynamics near the

edge of the disk, a region where gluon densities are not high and the applicability of the

McLerran-Venugopalan method is not justified in any obvious way. In my opinion, it is

this ‘transverse’ dynamics, i.e., the expansion of the target disk into the previously ‘white’

region, which represents the main challenge to the method of high gluon densities.

3. Small-x diffraction

3.1 Diffractive DIS as a tool to study high-energy QCD

The small-x limit of DIS (deep inelastic scattering) became experimentally viable only with

the advent of the electron-(or positron-)proton collider HERA. The large centre-of-mass

energy of the ep collision,
√
s ' 300 GeV, allows for a very high hadronic energy W (the
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P

γ

PP

γ * γ *
X

*

P

Figure 6: Forward Compton scattering and diffractive electroproduction.

cms energy of the γ∗p collision) and thus for the observation of events with both very high

photon virtuality Q2 and very small xBj = Q2/(Q2 +W 2).

Loosely speaking, diffraction is the subset of DIS characterized by a quasi-elastic inter-

action between virtual photon and proton. A particularly simple definition of diffraction is

obtained by demanding that, in the γ∗p collision, the proton is scattered elastically. Thus,

in diffractive events, the final state contains the scattered proton with momentum P ′ and

a diffractive hadronic state XM with mass M (see the r.h. side of Fig. 6).

Figure 6 illustrates that diffractive DIS can be understood as a very special type of

hadronic high-energy process. Inclusive small-x DIS, i.e., the total high-energy γ∗p cross

section, is linked by the optical theorem to forward Compton scattering (l.h. side of Fig. 6).

This is already a very interesting process since one has the additional variable Q2 at one’s

disposal. In this sense, diffraction (r.h. side of Fig. 6) is an even more interesting hadronic

high-energy reaction since one now can also use the momentum transfer t and the details

of the hadronic final state X to control the interaction between the two colliding objects.

Given our ability to measure small-x diffractive cross sections with high precision at the

HERA accelerator, diffractive DIS can be used as a very powerful and versatile tool for

the study of the high-energy behaviour of QCD, which significantly extends the physics

capacity of hadron-hadron colliders. For recent reviews of diffractive DIS, the reader is

referred to [48].

3.2 The aligned jet model and its modern versions

The aligned jet model [49] is based on a qualitative picture of DIS in the target rest frame,

where the incoming virtual photon can be described as a superposition of partonic states.

The large virtuality Q2 sets the scale, so that states with low-p⊥ partons, i.e., aligned

configurations, are suppressed in the photon wave function. However, in contrast to high-

p⊥ configurations, these aligned states have a large interaction cross section with the proton.

Therefore, their contribution to DIS is expected to be of leading twist (of leading order in

1/Q2). Since the above low-p⊥ configurations represent transversely extended, hadron-like

objects, which have a large elastic cross section with the proton, part of this leading twist

contribution is diffractive. This very simple picture explains on a qualitative level the

large cross section for diffractive or ‘rapidity gap’ events the observation of which caused

significant excitement in the beginning of the HERA era [50].

The above intuitive picture was implemented in the framework of perturbative QCD

in [51], where the perturbative fluctuation of the γ∗ into a qq̄ pair was considered as the

dominant process and the subsequent colour singlet exchange between the proton and the

qq̄ pair was realized by two gluons. A further essential step is the inclusion of higher Fock
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states in the photon wave function. In the framework of two gluon exchange, corresponding

calculations for the qq̄g state were performed in [52]. The main shortcoming of the two-

gluon approach is the problem of justifying perturbation theory. As should be clear from

the qualitative discussion of the aligned jet model, the diffractive kinematics is such that

the t channel colour singlet exchange does not feel the hard scale of the initial photon.

Thus, more than two gluons can be exchanged without suppression by powers of αs.

This problem was systematically addressed in the semiclassical approach [53,54], where

the interaction with the target was modelled as the scattering off a superposition of soft

colour fields. In the high-energy limit, the eikonal approximation can be used to calculate

the scattering of the energetic partons of the γ∗ fluctuation. Diffraction occurs if both the

target and the partonic fluctuation of the photon remain in a colour singlet state. Thus,

both the diffractive and inclusive DIS cross section can be calculated if a model for the wave

functional of the proton is provided. A simple phenomenologically successful model for the

proton colour field, which is based on the Glauber formula justified by the large-target

approximation, was developed in [55].

Both the two-gluon-exchange and the semiclassical approach contain, as a first step, the

perturbative calculation of the partonic γ∗ wave function, i.e., of the transition amplitude

from the γ∗ to the qq̄ or qq̄g state. In the simpler qq̄ case, this wave function is then

convoluted with the amplitude for the elastic interaction of the colour dipole and the

target hadron. At t = 0, this amplitude is determined by the dipole cross section σ(%)

(cf. Sect. 2.5). Thus, one can now discuss different models for the target on the basis of

σ(%). In particular, σ(%) can be modelled by perturbative two-gluon exchange with an

ad-hoc IR cutoff or by the expectation value of two Wilson lines in the proton state (which

is IR finite for a finite-size proton).

As far as σ(%) is concerned, certain relatively model-independent general statements

can be made. The firmest one is probably the well-known relation to the inclusive gluon

distribution xg(x, µ2) [56],

σ(%) =
π2

3
αs[xg(x, 1/%

2)]%2 +O(%4) , (3.1)

valid at small %. Note that this implies a dependence of σ(%) on the x (or, equivalently, on

the energy of the projectile qq̄ pair) since xg(x, µ2) is known to increase with 1/x in the

small-x limit.

An intuitively obvious but quantitatively less clear statement is that this quadratic

rise of σ(%) will eventually be tamed by non-perturbative effects, .i.e., a saturation of σ(%)

has to occur at large %. In the case of a very large target, this saturation sets in when % is

still in the perturbative domain and a Glauber-type formula for σ(%) can be derived [55].

For a realistic hadron, the situation is less clear and the functional form of the saturation

is unknown. Furthermore, one has to worry that saturation occurs at non-perturbative

values of %, where the dipole picture itself is questionable (see below).

A very simple parameterisation of σ(%), which takes into account the above generic
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features and which has been very popular recently, was suggested in [57]. It reads

σ(%, x) = σ0

{
1− exp

(
− %2

4R20(x)

)}
, (3.2)

with R0 = (1/GeV)(x/x0)
λ/2, i.e., it assumes a power-like growth of xg(x, µ2) and a

Glauber-type shape of saturation. The strength of this parameterisation lies in its sim-

plicity and in the fact that it captures several important qualitative features of the dipole

cross section. One shortcoming is that, in this parameterisation, the level at which σ(%)

saturates is given by σ0 and is therefore independent of the energy. This contradicts our

experimental knowledge that soft hadronic cross sections grow with s. An interesting re-

sult of the application of the above parameterisation to diffractive and inclusive DIS is

that both processes have a similar energy dependence. This remarkable scaling behaviour

was previously pointed out in [58] and derived from very general considerations in the

semiclassical framework in [53].

Unfortunately, there is one rather fundamental criticism that applies to all the above

calculations based on the perturbative transition of the γ∗ to a set of partons and their

subsequent interaction with the target proton. The problem is that the bulk of diffrac-

tion comes from partonic configurations, in particular qq̄ pairs, which are not parametri-

cally small on a scale of ΛQCD. Therefore, strictly speaking there is no reason to neglect

non-perturbative gluonic interactions between quark and antiquark, and even worse, the

interaction of the non-perturbative gluon field between the quarks with the gluon field

of the target. To the best of my knowledge, the only case where this problem is under

control is diffractive DIS of an optically very thick target described above. The required

optical thickness can also arise in diffraction of protons at extremely high energies, but the

applicability of this argument in the HERA domain is less than obvious.

3.3 Diffractive parton distributions

The conventional partonic interpretation of inclusive DIS appears to be most natural in

the Breit frame (the frame where the photon momentum has the form q = (0, 0⊥, Q) and

the proton energy becomes very large as x → 0). Viewing diffractive DIS in analogy to

inclusive DIS, one arrives at a picture that is very different from the target rest frame

picture of Sect. 3.2. In this approach, the concept of fracture functions [59] or, more

specifically, the diffractive parton distributions of [60] provide a framework firmly rooted

in perturbative QCD. Recall that conventional parton distributions can be considered as

probabilities for finding a parton with a certain momentum fraction in the fast moving

proton. In short, diffractive parton distributions are conditional probabilities. A diffractive

parton distribution dfDi (y, ξ, t)/dξ dt describes the probability of finding, in a fast moving

proton, a parton i with momentum fraction y, under the additional requirement that the

proton remains intact while being scattered with invariant momentum transfer t and losing

a small fraction ξ = xIP of its longitudinal momentum. Thus, the corresponding γ∗p cross

section can be written as [61]

dσ(x,Q2, ξ)γ
∗p→p′X

dξ
=
∑
i

∫ ξ
x

dy σ̂(x,Q2, y)γ
∗i
(
dfDi (y, ξ)

dξ

)
, (3.3)
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Figure 7: Diffractive DIS in the proton rest frame (left) and the Breit frame (right); asymmetric

quark fluctuations correspond to diffractive quark scattering, asymmetric gluon fluctuations to

diffractive boson-gluon fusion.
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Figure 8: Inclusive DIS in the proton rest frame (left) and the Breit frame (right); asymmetric

fluctuations correspond to quark scattering (a), symmetric fluctuations to boson-gluon fusion (b).

where σ̂(x,Q2, y)γ
∗i is the total cross section for the scattering of a virtual photon charac-

terized by x and Q2 and a parton of type i carrying a fraction y of the proton momentum.

The above factorization formula holds in the limit Q2 →∞ with x, ξ and t fixed. Factor-

ization proofs were given in [62] in the framework of a simple scalar model and in [63] in

full QCD.

As in inclusive DIS, there are infrared divergences in the partonic cross sections and

ultraviolet divergences in the parton distributions. Thus, a dependence on the factorization

scale µ appears both in the parton distributions and in the partonic cross sections. The

claim that Eq. (3.3) holds to all orders implies that these µ dependences cancel, as is

well known in the case of conventional parton distributions. Therefore, the diffractive

distributions obey the usual DGLAP evolution equations [61,64].

The connection of the above picture of diffractive and inclusive DIS with the previously

discussed aligned jet or target rest frame picture is illustrated in Figs. 7 and 8. Consider, for
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example, the diffractive quark distribution (Fig. 7a). The leading twist contribution arises

from fluctuations where one of the two quarks carries only a small longitudinal momentum

fraction of the γ∗. Boosting to the Breit frame, one finds that this less energetic antiquark

can be interpreted as a quark coming from the diffractive quark distribution of the proton.

Putting this and the other subprocesses in Figs. 7 and 8 into equations, one finds that

the diffractive and inclusive parton distributions can be expressed in terms of expectation

values of Wilson loops in the proton colour field (or, similarly, in terms of the colour dipole

cross sections σ(%)) [55,65]. One can then perform phenomenological analyses of inclusive

and diffractive DIS on the basis of a model for the proton at some low scale Q20 using

conventional DGLAP evolution to make predictions at all Q2 ≥ Q20 [55, 66,67].

Historically, the concept of diffractive parton distributions has a predecessor in the

partonic interpretation of the pomeron [68]. In this approach, the quasi-elastic high-energy

scattering of photon fluctuation and proton is interpreted in terms of pomeron exchange

and it is assumed that the pomeron can, like a real hadron, be characterized by a parton

distribution. This distribution is assumed to factorize from the pomeron trajectory and

the pomeron-proton-proton vertex, which are both obtained from the analysis of purely

soft hadronic reactions. The problem with this approach is the lacking justification of

the pomeron idea and the factorization assumption in QCD. Furthermore, the observed

energy dependence of diffractive DIS disagrees with the universal soft pomeron expectation,

and the universality between diffraction in DIS and in hadron-hadron collisions, which is

expected in this approach, is not observed [69]. As reported at this conference [70], a unified

description of diffractive DIS and hadronic diffraction at the Tevatron can be achieved in

Monte-Carlo models based on soft colour exchange [71]. For other approaches to this

difficult problem see, e.g., [72].

3.4 Hard colour dipole exchange

Diffractive processes where the t channel colour singlet exchange is governed by a hard scale

include the electroproduction of heavy vector mesons [73], electroproduction of light vector

mesons in the case of longitudinal polarization [74] or at large t [75], and virtual Compton

scattering (the process γ∗p → γp′) [76–78]. In the leading logarithmic approximation,

the relevant two-gluon form factor of the proton can be related to the inclusive gluon

distribution [73]. Accordingly, a very steep energy dependence of the cross section, which

is now proportional to the square of the gluon distribution, is expected.

To go beyond leading logarithmic accuracy, the non-zero momentum transferred to the

proton has to be taken into account. This requires the use of skewed parton distributions

(see [76] and refs. therein), which were discussed in [77] within the present context. Al-

though their scale dependence is predicted by well-known evolution equations, only limited

information about the relevant input distributions is available (see, however, [79] for pos-

sibilities of predicting the non-forward from the forward distribution functions). For the

application of an NLO analysis to virtual Compton scattering the reader is referred to [80]

and refs. therein.
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The perturbative calculations of meson electro-
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Figure 9: The measured diffrac-

tive structure function, plotted as

xIPF
D(3)
2 (β,Q2, xIP ) (red data points),

as a function of β for various val-

ues of Q2 and a fixed value xIP =

0.003. Also shown is the result of a

QCD fit to the data as described in

the text of conference paper 808. The

solid curves correspond to the sum of

pomeron and leading reggeon exchange

contributions, whereas the dotted curves

indicate the contribution from pomeron

exchange only. (Figure from H1 confer-

ence paper 808 [86]).

production discussed above were put on a firmer

theoretical basis by the factorization proof of [81].

Note, however, that the naive power counting ex-

pectation of the Q2 dependence of cross sections is

significantly modified by the anomalous dimension

of the gluon distribution (cf. [82], where even the

notoriously difficult ratio of longitudinal and trans-

verse cross section is explained in a perturbative

calculation). An interesting new field, closely re-

lated to exclusive vector meson production, are the

semi-exclusive processes discussed in [83].

In connection with inclusive diffraction, it is in-

teresting to point out that F
D(3)
2 (β,Q2, ξ) at β → 1

is dominated by hard colour singlet exchange and

can therefore be calculated from the skewed gluon

distribution [84] (see also [85]). Given the growing

precision of the data, this perturbative character of

FD2 at large β will be essential for a full quantitative

understanding of inclusive diffraction.

3.5 New precision data from HERA

The purpose of this section is to emphasize that new

small-x data from HERA is at present transforming

diffractive DIS into a precision field. This transfor-

mation will be taken even further once the data

from the HERA high-luminosity run starts to be-

come available. As an illustration of the new qual-

ity of the data, consider the diffractive structure

function measurement shown in Fig. 9 (for previ-

ous results see [87]). To understand this quantity,

recall that, in addition to the conventional kine-

matic variables of DIS, Q2 and xBj, the diffrac-

tive process is characterized by M , the mass of the

diffractive final state X. Alternatively, the vari-

ables β = Q2/(Q2 + M2) or ξ = xIP = x/β can be

used. Now, F
D(3)
2 (x,Q2, ξ) is defined precisely as

F2(x,Q
2), but on the basis of a cross section that

is differential in ξ as well as in x and Q2. Alternatively, one can replace x by β and

write F
D(3)
2 (β,Q2, ξ). The Q2 evolution of the β dependence, an essential ingredient of the

method of diffractive parton distributions, is clearly visible in Fig. 9. Furthermore, the β

dependence is measured so well that one can now really hope to use diffraction as a tool to

study the colour field of the proton. (Recall that, using the semiclassical framework, the
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Figure 10: W dependence of the cross section σ(γ∗p → %0p) for various Q2 values as denoted in

the figure. The data for Q2 < 1GeV2 obtained in previous ZEUS measurements [88] are shown

for completeness. The dashed lines represent the results of fitting σ ∼ W δ at each Q2 value and

the results of the fit are shown in the figure. The shaded area indicates additional normalization

uncertainties due to proton dissociation background (Figure from ZEUS conference paper 594 [89]).

β dependence of the diffractive structure function is linked to the functional form of the

expectation value of a Wilson loop in the proton state.)

Furthermore, as can be seen in Fig. 10, the energy dependence of vector meson electro-

production can now be measured in detail for different values of the photon virtuality Q2.

Since Q2 is linked to the typical size of the qq̄ dipole probing the proton field, one has yet

another tool to study the energy dependence of the dipole cross section or, in other terms,

the energy evolution of the effective proton colour field. Figure 10 shows the expected

steeper energy dependence for small dipoles, where perturbative calculations are relevant.

Note that it is an important long-term goal to experimentally verify that the fast growth

of small-dipole cross sections softens above a certain energy (saturation in energy).

An interesting new result reported at the conference [90] concerns the odderon exchange

(a gluonic t channel exchange with C = P = −1). Given the observed suppression of the

odderon in pp and pp̄ cross sections, it was suggested in [91] that the reason lies in the

quark-diquark structure of the proton. If this is the case, then the diffractive production

of pseudoscalar mesons at HERA with proton breakup in the final state should provide

an ideal testing ground for the odderon. Employing a stochastic vacuum based approach
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in the description of the soft t-channel exchange [92], a prediction for, e.g., σγp→π0X was

derived [91]. However, the measurements show no trace of this and similar odderon induced

reactions [90] and thus the absence of the odderon remains mysterious.

In the future, it will be very interesting to see precision measurements of the diffractive

structure function based on a tagged leading proton. First of all, such a measurement

corresponds to the simplest and cleanest definition of diffractive DIS from the theoretical

perspective. In particular, only in processes where the scattered proton is tagged can one

be certain that the γ∗ partonic fluctuation was really probing the proton colour field and

not some more complicated field corresponding to the transition between the proton and

one of its excitations. Second, tagging the proton opens up the possibility of measuring the

t dependence of diffraction, i.e., F
D(4)
2 (β,Q2, ξ, t), and this has the potential of resolving

the transverse form of the target proton as seen at very high energy. This last possibility

has already been exploited in [93] in the context of elastic meson production. Note that new

and interesting diffractive measurements with tagged leading proton have been reported

at this conference [94].

4. Conclusions and outlook

The high-energy limit of hadronic cross sections is a longstanding and fundamental problem

in our understanding of the known interactions. In my opinion, it is at present not clear

from which direction a solution might eventually emerge. There exist only few conceptually

clean, lagrangian-based ideas of how to approach this problem. Among those are attempts

of a translation of the problem to euclidean field theory, with the aim to perform a lattice

calculation, as well as attempts to make use of the non-perturbative understanding of

non-abelian gauge theories obtained in the framework of the AdS/CFT correspondence.

The only well-established QCD-based method of obtaining growing hadronic cross

sections is, at present, the summation of ln s enhanced diagrams in perturbation theory.

However, even though very impressive technical progress in this framework has been made

over the past few years (NLO BFKL calculation, non-linear evolution equations at high

gluon densities) it appears unlikely that the true high-energy asymptotics will become

accessible with the methods available at present.

On the phenomenological side, the HERA accelerator is providing a rich and fruit-

ful testing ground for theoretical ideas and methods. In particular, the measurement of

diffractive and inclusive DIS allows for the study of hadronic reactions where one of the

‘hadrons’, the partonic fluctuation of the γ∗, can be tuned to one’s needs. The most re-

cent HERA results on small-x physics have reached an impressive precision, and future

results from the HERA high-luminosity run will transform diffractive high-energy scatter-

ing into a precision field. One may hope that, in the more distant future, the realisation

of TESLA×HERA (THERA) will further expand the energy reach of the very promising,

multifaceted reaction channel γ∗p [95].

We look forward to the forthcoming precision data, the careful analysis of which we

hope will provide essential clues to finding a first-principles theoretical approach to the

complicated problem of the high-energy limit of QCD cross sections.
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[48] M. Wüsthoff and A.D. Martin, J. Phys. G 25 (1999) R309 [hep-ph/9909362];

A. Hebecker, Phys. Rept. 331 (2000) 1 [hep-ph/9905226];

J. Bartels and H. Kowalski, Eur. Phys. J. C 19 (2001) 693 [hep-ph/0010345].

[49] J.D. Bjorken and J.B. Kogut, Phys. Rev. D 8 (1973) 1341.

[50] ZEUS Collab., M. Derrick et al., Phys. Lett. B 315 (1993) 481;

H1 Collab., T. Ahmed et al., Nucl. Phys. B 429 (1994) 477.

[51] N.N. Nikolaev and B.G. Zakharov, Z. Phys. C 49 (1991) 607.

[52] N.N. Nikolaev and B.G. Zakharov, Z. Phys. C 64 (1994) 631 [hep-ph/9306230].

[53] W. Buchmüller and A. Hebecker, Nucl. Phys. B 476 (1996) 203 [hep-ph/9512329].

[54] W. Buchmüller, M.F. McDermott and A. Hebecker, Nucl. Phys. B 487 (1997) 283

[hep-ph/9607290].

[55] W. Buchmüller, T. Gehrmann and A. Hebecker, Nucl. Phys. B 537 (1999) 477

[hep-ph/9808454].

[56] L. Frankfurt, G.A. Miller and M. Strikman, Phys. Lett. B 304 (1993) 1 [hep-ph/9305228].
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J. Blümlein, these proceedings.

[65] A. Hebecker, Nucl. Phys. B 505 (1997) 349 [hep-ph/9702373].

[66] F. Hautmann, Z. Kunszt and D.E. Soper, Nucl. Phys. B 563 (1999) 153 [hep-ph/9906284].

[67] K. Golec-Biernat and M. Wusthoff, Eur. Phys. J. C 20 (2001) 313 [hep-ph/0102093].

[68] G. Ingelman and P. Schlein, Phys. Lett. B 152 (1985) 256;

A. Donnachie and P.V. Landshoff, Phys. Lett. B 191 (1987) 309.

[69] L. Alvero et al., Phys. Rev. D 59 (1999) 074022 [hep-ph/9805268].

[70] R. Enberg, G. Ingelman and N. Timneanu, hep-ph/0106246;

N. Timneanu, these proceedings.

– 19 –



P
r
H
E
P
 
h
e
p
2
0
0
1

International Europhysics Conference on HEP Arthur Hebecker

[71] A. Edin, G. Ingelman and J. Rathsman, Phys. Lett. B 366 (1996) 371 [hep-ph/9508386].

[72] E. Gotsman, E. Levin and U. Maor, Phys. Rev. D 60 (1999) 094011 [hep-ph/9902294];

A. B. Kaidalov, V. A. Khoze, A. D. Martin and M. G. Ryskin, Eur. Phys. J. C 21 (2001) 521

[hep-ph/0105145].

[73] M.G. Ryskin, Z. Phys. C 57 (1993) 89.

[74] S.J. Brodsky et al., Phys. Rev. D 50 (1994) 3134.

[75] J.R. Forshaw, M.G. Ryskin, Z. Phys. C 68 (1995) 137.

[76] D. Müller et al., Fortsch. Phys. 42 (1994) 101.

[77] X. Ji, Phys. Rev. Lett. 78 (1997) 610;

A.V.Radyushkin, Phys. Lett. B 380 (1996) 417.

[78] A.V. Belitsky and D. Müller, these proceedings, hep-ph/0111037.

[79] A.G. Shuvaev, K.J. Golec-Biernat, A.D. Martin and M.G. Ryskin, Phys. Rev. D 60 (1999)

014015.

[80] A. Freund and M. F. McDermott, [hep-ph/0106319].

[81] J.C. Collins, L. Frankfurt and M. Strikman, Phys. Rev. D 56 (1997) 2982.

[82] A. D. Martin, M. G. Ryskin and T. Teubner, Phys. Rev. D 55 (1997) 4329 [hep-ph/9609448]

and D 62 (2000) 014022 [hep-ph/9912551].

[83] S.J. Brodsky, M. Diehl, P. Hoyer and S. Peigne, Phys. Lett. B 449 (1999) 306

[hep-ph/9812277].

[84] A. Hebecker and T. Teubner, Phys. Lett. B 498 (2001) 16 [hep-ph/0010273].

[85] J. Bartels, J. R. Ellis, H. Kowalski and M. Wüsthoff, Eur. Phys. J. C 7 (1999) 443
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