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Abstract: We review concepts of integrability in higher dimensions and apply them

to construct Lorentz invariant field theories with an infinite number of local conserved

currents.

1. Non Abelian Stokes theorem.

One of the basic ingredients of two-dimensional integrable models is the so-called Lax-

Zakharov-Shabat zero curvature condition

∂µAν − ∂νAµ + [Aµ, Aν ] = 0 µ, ν = 0, 1 (1.1)

In 1+1 dimensions the relation (1.1) is a conservation law, since it is a sufficient condition

for the path ordered integral

W (Γ) = PΓ exp

∫
Γ
Aµdx

µ (1.2)

to be independent of the path Γ, as long as the end points are kept fixed. Consequently, by

choosing appropriate boundary conditions at space infinity (or taking space to be a circle

and so space-time a cylinder) one gets that the quantities

QN ≡ Tr
(
P exp

∫
space

Axdx

)N
(1.3)
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are conserved in time. These are the conservation laws responsible for the integrability of

a two dimensional theory possessing the zero curvature representation (1.1).

In 2 + 1 dimension, it is natural to replace line integrals by surface integrals:

V (Σ) = PΣ exp

∫
Σ
Bµν dx

µ ∧ dxν

We face the problem of defining PΣ. The answer given in[1] is as follows: scan Σ with

a family of loops γ(τ) with base point x0, each point of Σ belonging to exactly one loop

γ. Hence each point x of Σ can be localised by choosing the curve γ and a point with

coordinate σ on it. Introduce a gauge potential A, and define

A =
∫ 2π
0
dσBWµν(σ)

dxµ

dσ
δxν(σ), BWµν(σ) =W

−1(σ)Bµν(σ)W (σ)

where W (σ) is defined as in eq.(1.2) using A and the path γ, joining the point x to the

base point x0. Then we solve the differential equation

dV (τ)

dτ
= V (τ)A

(
dxν

dτ

)
, V (0) = 1

and define

V (Σ) ≡ V (τ)|τ=1
The quantity A can be viewed as a connection on loop space. Its curvature is:

C = δA+A ∧A
The flux of B will be surface independent if C vanishes. Therefore, imposing apropriated
boundary conditions, one can construct conserved quantities when C vanishes in a similar
way as in (1.3) for the 1 + 1 case. See [1] for details on the construction of the conserved

charges.

For infinitesimal loops around x0, vanishing of C reduces to the local conditions [1, 4]:

ω = 0, [ν,B] = 0 (1.4)

where

ω = dB +A ∧B, ν = dA+A ∧A−B
Note that we have the Bianchi type identities:

dν +A ∧ ν = −[ω, ·], dω +A ∧ ω = [ν,B]

The two form ν is called the fake curvature. In the setting we consider below, the local

equations (1.4) are sufficient to ensure the vanishing of C, even for big loops.
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2. Integrable models and submodels.

To get independence upon the way Σ is scanned by the loops γ, we choose the potential A

to be a pure gauge:

Fµν = 0 =⇒ ν = −B
To ensure C = 0 we furthermore require

ω = dB +A ∧B = 0 (2.1)

B in an abelian ideal of G =⇒ [ν,B] = 0 (2.2)

Introducing the dual form of B

B∗µ = εµνλB
νλ

the condition (2.1) becomes

DµAB
∗
µ = 0 (2.3)

This yields conserved currents, because setting

Jµ =W
−1B∗µW (2.4)

eq.(2.3) reads

∂µJµ = 0

The number of conserved currents is the dimension of the abelian ideal of G
Since, the potential B has to live on an Abelian ideal we consider a Poincaré type

non-semisimple Lie algebra G = T + P , satisfying
[T , T ] ⊂ T [T , P ] ⊂ P [P , P ] = 0 (2.5)

where T is a Lie algebra and P a representation of it. In order for the model to be integrable

we need an infinite number of conserved currents of the form (2.4), and consequently the

representation P has to be infinite dimensional. In order to get that, we shall use the

Schwinger’s construction. To implement these ideas, start from sl(2), and introduce its λ

– λ̄ realization:

T+ ≡ λ d
dλ̄
, T− ≡ λ̄ d

dλ
, T3 ≡ 1

2

(
λ
d

dλ
− λ̄ d
dλ̄

)
One can check that these operators satisfy the sl(2) algebra, namely

[T3, T±] = ±T± ; [T+, T−] = 2T3

The states of the representations corresponding to such realization are functions of λ

and λ̄. The action of the operators are given by

T3λ
p λ̄q =

p− q
2
λp λ̄q

T+λ
p λ̄q = q λp+1 λ̄q−1

T−λp λ̄q = p λp−1 λ̄q+1 (2.6)

– 3 –
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Notice from (2.6) that the action of T3, T± leaves the sum of the powers of λ and λ̄ invariant.
Therefore, one can construct irreducible representations by considering the states

| (p, q) ,m 〉 ≡ λp+m λ̄q−m (2.7)

with m ∈ ZZ and (p, q) being any pair of numbers (real or even complex). Then

T3 | (p, q) ,m 〉 =
(
p− q
2
+m

)
| (p, q) ,m 〉

T+ | (p, q) ,m 〉 = (q −m) | (p, q) ,m+ 1 〉
T− | (p, q) ,m 〉 = (p+m) | (p, q) ,m− 1 〉 (2.8)

On the subspace with fixed (p+ q), the Casimir operator acts as:(
T 23 +

1

2
(T+T− + T−T+)

)
| (p, q) ,m 〉 = s(s+ 1) | (p, q) ,m 〉, s = 1

2
(p+ q)

The parameter s is the spin of the representation. Take G be the semi-direct product of
T = sl(2) and the abelian algebra P = Func(λ, λ̄).

A ∈ sl(2), and B ∈ Func(λ, λ̄) ' {λpλ̄q}
We consider models with one complex scalar field u. Introduce the group element

W =
1√

1+ | u |2
(
1 iu

iu∗ 1

)
= eiuT+ eϕT3 eiu

∗T− (2.9)

with ϕ ≡ log (1 + uu∗). One can check that

W−1f
(
λ, λ̄
)
W = f

(
λ− iu∗λ̄√
1 + uu∗

,
λ̄− iuλ√
1 + uu∗

)
Define the flat potential Aµ by

Aµ = −∂µWW−1

and the field B
(s)∗
µ = εµνλB

νλ

Aµ ≡ 1

1+ | u |2
(
−i∂µuλ d

dλ̄
− i∂µu∗λ̄ d

dλ
+ (u∂µu

∗ − u∗∂µu) 1
2

(
λ
d

dλ
− λ̄ d
dλ̄

))

B∗(s)µ ≡ 1

1+ | u |2
(Kµλs+1λ̄s−1 −K∗µλs−1λ̄s+1) (2.10)

where Kµ is a functional of u, u∗ and their derivatives. Notice that we have chosen B(s)µ to
live in a representation where p = q = s. Performing the calculation one gets

DµB∗(s)µ = ∂µB∗(s)µ + [Aµ, B(s)µ ]

=
1

(1+ | u |2)2
(
(−i (s− 1) ∂µuKµ)λs+2λ̄s−2

+
(
i (s− 1) ∂µu∗K∗µ

)
λs−2λ̄s+2

+
(−i (s+ 1) (∂µu∗Kµ − ∂µuK∗µ))λsλ̄s

+
(((
1+ | u |2) ∂µKµ − 2u∗∂µuKµ))λs+1λ̄s−1

− (((1+ | u |2) ∂µK∗µ − 2u∂µu∗K∗µ))λs−1λ̄s+1) (2.11)

– 4 –
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Therefore, the zero curvature implies the following: For s 6= 1,−1 we get the equations
of motion

∂µKµ = 0 (2.12)

∂µuKµ = 0 (2.13)

∂µu∗Kµ − ∂µuK∗µ = 0 (2.14)

These conditions ensure that

DµB∗(s)µ = 0 ∀s
Hence, such a model has an infinite number of conserved currents.

Let Kµ be the tensor

Kµ = (∂
νu∗∂νu)∂µu− (∂νu∂νu)∂µu∗

Then, for any real function F(u, u∗, ∂u, ∂u∗)

Kµ = FKµ
satisfies identically the conditions eq.(2.13,2.14). So the model reduces to a single equation

eq.(2.12) which reads:

∂µ(FKµ) = 0 (2.15)

Remark 1. Setting Kµ = ∂µu, we get the equations

∂2u = 0 (∂u)2 = 0 (2.16)

which define a submodel of the CP 1 model:(
1+ | u |2) ∂2u = 2u∗ (∂u)2 (2.17)

This submodel has an infinite number of conserved currents.

Remark 2. Similarly, setting Kµ = Lµ with

Lµ = m
2∂µu− 4

e2
Kµ

(1+ | u |2)2 (2.18)

where Kµ is as above, we get

∂µ(∆∂µu) = 0 ∂µu∂
µu = 0 (2.19)

where

∆ = m2 − 4
e2
∂νu∂

νu∗

(1+ | u |2)2 (2.20)

which is a submodel of the Skyrme-Faddeev model:(
1+ | u |2) ∂µLµ − 2u∗∂µuLµ = 0

In this note we restrict ourselves to models and will not consider submodels.

– 5 –
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3. Lagrangian

The question then arises to know what are the models eq.(2.15) which can be derived from

an action principle

S =

∫
d4xL

The Lagrangian is local, Lorentz invariant and depends only on first order derivatives.

Hence it is of the form L = L(V, V ∗,W, u, u∗) where V = ∂µu∂µu, V ∗ = ∂µu∗∂µu∗,
W = ∂µu∂µu

∗. So, we want

∂µ
(
−2 ∂L
∂V
∂µu− ∂L

∂W
∂µu

∗
)
+
∂L
∂u
= Λ∂µ(FKµ) + Φ∂µ(FK∗µ)

The functions L and F should be real. The solution is that [5]

L = L
(
h2

2f2

)
, h2 = hµνh

µν = 2(V V ∗ −W 2)

where

hµν = ∂µu∂νu
∗ − ∂νu∂µu∗

and f is a function of u and u∗ only f = f(u, u∗). The equations of motion are

∂µ (FKµ) = 0

where

F = 1
f
L′, Kµ = hµν∂νu

The particularly nice models are obtained by choosing

L =
(
h2

2f2

)3/4
(3.1)

This has the advantage of circumventing Derrick’s theorem, so that stable static solutions

may exist. The equations of motion read

E ≡ (hµν ∂νu∂µh2 − 4h2∂µhµν ∂νu)− (h2)2∂u∗ log f = 0 (3.2)

In the case where the target space is the sphere S2 we have f = (1 + uu∗)2 where u and
u∗ are the stereographic projection coordinates on S2:

~n =
1

1 + uu∗
(u+ u∗,−i(u− u∗),−1 + uu∗), ~n2 = 1, u =

nx + iny
1− nz (3.3)

For finite energy static solutions, ~n tends to a constant at infinity. Such solutions can be

viewed as maps from S3 → S2, hence are classified by the Hopf invariant. So, in this case
we can have solutions with non trivial topological charges.

– 6 –
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4. Conserved currents

These models have an infinite number of conserved currents. For any s, the current

J (s)µ =W
−1B(s)µ W

is conserved. We see from eq.(2.10) that

B(s)µ = (λλ̄)
(s+1)B(−1)µ

If we consider a general Bµ =
∑
s bsB

(s)
µ , we have Bµ = b(λλ̄)B

(−1)
µ , where b(z) =

∑
s bsz

s+1

is essentially an arbitrary function. At the level of currents, this means

Jµ = b

(
(λ− iu∗λ̄)(λ̄− iuλ)

1 + uu∗

)
J (−1)µ

We can write this in the form:

Jµ = Kµ δG
δu
−K∗µ

δG

δu∗

where

G = i

∫ v(u,u∗) dz
z2
b(z), v(u, u∗) =

(λ− iu∗λ̄)(λ̄− iuλ)
1 + uu∗

If we now introduce the conjugate momentum of the field u,

π =
∂L
∂u̇
=
1

f
K∗0

the conserved charges become

QG = i

∫
d3xf

(
π∗
δG

δu
− π δG
δu∗
)

If we impose the Poisson bracket

{π(x), u(y)} = δ(x− y)

we immediately get

{QG, u} = −if∂u∗G
The meaning of the conserved currents is now clear: QG generates area preserving diffeo-

morphisms. Indeed the Lagrangian reads

L = L(AµνAµν)

where

A =
1

f
hµνdx

µ ∧ dxν = 1
f
du ∧ du∗

The form A is the pullback of an area form on target space. The action is invariant

under area preserving diffeomorphisms. The conserved currents are the associated Noether

currents [3].

– 7 –
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5. Conformal symmetries

The special case of the models defined in eq.(3.1) brings up the possibility of extra symme-

tries related to scale transformations. We apply S. Lie theory. To say that x→ x+ ξ is a
symmetry of a differential equation E(x, u(x), u′(x)) = 0 means that if u(x) is a solution
so is u(x− ξ) , i.e.,

E(x, u(x− ξ), d
dx
u(x− ξ)) = 0

or E(x, u(x− ξ), u′(x− ξ)− ξ′u′(x− ξ)) = 0
or E(x+ ξ, u(x), u′(x)− ξ′u′(x)) = 0
or (ξ∂x − ξ′u′∂u′)E(x, u, u′) = 0

More generally, if the vector field of the symmetry reads

V =
∑
µ

ξµ∂µ

the first prolongations are

δu = 0

δ ∂µu = −∂µξν∂νu
δ ∂µ∂νu = −(∂µ∂νξρ)∂ρu− ∂µξρ ∂ρ∂νu− ∂νξρ ∂ρ∂µu

It follows that

δh2 = −2(∂µξρ + ∂ρξµ)hρνh ν
µ

To have any chance to get an invariance of the equations of motion, we require:

∂µξν + ∂νξµ = 2Dηµν (5.1)

where D is the common value of ∂µξ
µ (no summation). Then, we have

δ h2 = −4Dh2

So that

δE = −8DE − 4(d− 3) ∂µD hµν∂νu h2

where E = 0 is the equation of motion eq.(3.2). Hence
• If d = 3, i.e. for the static theory, we have a symmetry of the equations of motion for
all D. The structure of eqs.(5.1) is such however that D has to be a linear function

of xµ. We get translations, rotations, dilatation and a special set of vectors V (i) with

components

V (i)j = xixj − 1
2
ηijx2

This is the full conformal group in 3 dimensions.

• If d = 4, we have a symmetry only if ∂µD = 0. The above special transformations
are excluded and we are left with the Poincaré group plus the dilatation.

– 8 –
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5.1 Target space symmetries

This time, the symmetry we start with is of the form

V = Φ(u, u∗)∂u +Φ∗(u, u∗)∂u∗

Then

δhµν = (∂uΦ+ ∂u∗Φ
∗)hµν =⇒ δh2 = 2(∂uΦ+ ∂u∗Φ∗)h2

and we find easily [5]

δE = (4∂uΦ+ 3∂u∗Φ∗) E − ∂u∗Φ E∗ +Q (h2)2

where

Q = ∂u∗(∂uΦ+ ∂u∗Φ
∗)− ∂u log f ∂u∗Φ− ∂u∗ log f ∂u∗Φ∗

−∂u∂u∗ log f Φ− ∂u∗∂u∗ log f Φ∗

So, we have a symmetry only if Q = 0. Setting

Φ = f Φ̃

this condition becomes

∂u∗(f [∂uΦ̃ + ∂u∗Φ̃
∗]) = 0

Integrating once, we get (choosing the integration constant equal to 2)

∂uΦ̃ + ∂u∗Φ̃
∗ =
2

f

Setting, for real G and F :

Φ̃ = ∂u∗(G+ iF )

the equation becomes

∂u∂u∗G =
1

f
(5.2)

The function F has disappeared. It corresponds to area preserving diffeomorphisms. The

function G generates a new symmetry, not preserving the area. For the sphere, we have

f = (1 + uu∗)2 and we find

G = log(1 + uu∗), =⇒ Φ = (1 + uu∗)u

6. Toroidal solutions

Let us consider the static case d = 3. There is a nice description of conformal symmetries

of Euclidean space. Just consider points of Euclidean space as spheres of radius zero!

Equation of spheres is of the form

α~x2 − 2~β · ~x+ γ = 0

– 9 –
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or (
~x−

~β

2α

)2
=
~β2 − αγ
α2

So Euclidean space is described by

~β2 − αγ = 0, ~x =
~β

2α

Any linear transformation which preserves the first condition, acts on ~x through the second

equation. These are the conformal transformations.

Write the quadrics as

β21 + β
2
2 + β

2
3 +
(aα− a−1γ

2

)2 − (aα+ a−1γ
2

)2
where a is an arbitrary scale. From this, it is apparent that the conformal group is O(4, 1).

It is also very obvious that there is at most only 2 commuting, compact rotations. One can

be chosen as the rotation (β1, β2), the other one as the rotation
(
β3,

aα−a−1γ
2

)
.

Transported to ~x, the vector fields corresponding to the two rotations are

∂θ = x∂y − y∂x
∂ξ =

zx

a
∂x +

zy

a
∂y +

1

2a
(z2 − x2 − y2 + a2)∂z

Ansatz for solutions of the equations of motion are constructed by imposing invariance

under the two commuting vector fields

[∂θ − in(u∂u − u∗∂u∗)]u = 0
[∂ξ − im(u∂u − u∗∂u∗)]u = 0

then we have [2]

u = f(ζ)einθ+imξ

where ζ is such that ∂θζ = ∂ξζ = 0. This invariant can be chosen as

ζ =
a2(x2 + y2)

(x2 + y2 + z2 + a2)2

Comparing with toroidal coordinates,

x = aq−1 sinh η cos θ

y = aq−1 sinh η sin θ

z = aq−1 sin ξ

q = cosh η − cos ξ

we find

ζ =
1

4
tanh2 η

– 10 –
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The two cyclic coordinates θ, ξ, will disappear from the equations of motion. So we know

we will get a single differential equation for f(ζ). We find [2]

f2 =
cosh η −

√
n2/m2 + sinh2 η√

1 +m2/n2 sinh2 η − cosh η
(6.1)

The Hopf charge and the energy are

QH = −nm, E = (2π)2
√
|n||m|(|n|+ |m|)

7. Flux calculation

Under the extra target space symmetry eq.(5.2), we have

δL = 3L
When d = 4, we can compensate this variation by a dilatation to get a symmetry of the

action.

δu = ε(1 + uu∗)u, δxµ = −3εxµ

We can compute the associated Noether current [5]

Jµ = −2xµL+
(
h2

2f2

)−1/4
1

f2

(
hµν(Φ∂νu

∗ − Φ∗∂νu)− 3xρhρνhνµ
)

This current is conserved. Then

dQ

dt
=

∫
d3x ∂0J

0 = −
∫
d3x ∂iJ

i = −
∫
dΣiJi

The surface term does not vanish in general, and so such the charge is not conserved. For

instance, for static configurations we have that

dQ

dt
= −

∫
d3x L = E ≡ static energy

Hence the energy of the toroidal solutions eq.(6.1) can be written as a flux of a current

concentrated along a small tube around the z–axis.

8. Conclusion.

The ideas of [1] to extend in higher dimensions some notions of integrability, do provide

us with models with an infinite number of conserved currents. It turned out that these

currents, in the case of the models discussed here, are associated to an invariance of the

Lagrangian under area preserving diffeomorphisms. It is intriguing that they do not play

an important role in the construction of the static solutions of the equations of motion.

That role is played instead by the conformal symmetry of the static equations of motion,

which leads to the construction of the relevant Ansatz. It remains to see the role of the

conserved currents in the scatterring processes of these solutions.
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