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Abstract:We review some recent results concerning the quantitative analysis of the univer-

sality classes of two-dimensional statistical models near their critical point. We also discuss the

exact calculation of the two–point correlation functions of disorder operators in a free theory

of complex bosonic and fermionic field, correlators ruled by a Painlevè differential equation.

1. Introduction

One of the most important successes of Quantum Field Theory (QFT) in recent years is the

quantitative analysis of the universality classes of two–dimensional statistical mechanical models

near their second order phase transition points. This has been possible, in particular, thanks

to new developments in the methods of computing off–critical correlation functions. The aim

of this talk is to review some of the recent results relative to these two important subjects. Our

discussion is divided in two parts: in the first part, we shall see how correlation functions can be

used to extract useful numbers (the so–called universal ratios) that can be directly compared

with experiments. In the second part, we shall concentrate on a particularly interesting class

of models, those of fermionic and bosonic theories with a Zn symmetry, for which there is an

elegant approach to derive differential equations satisfied by the two–point functions of their

disorder operators.

2. Universal Amplitude Ratios

Consider a statistical model with n relevant fields ϕi(x) at criticality. Near the critical point,

its action can be parameterised as

A = ACFT + gi
∫
ϕi(x)d

Dx , (2.1)

where ACFT is the action which encodes the data of the Conformal Field Theory of the critical
point. The short–distance behaviour of the two–point functions is given by

〈ϕi(x)ϕi(0)〉 ' 1

|x|4∆i
∗Speaker.
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for |x| → 0, where ∆i is the conformal dimension of the operator ϕi. Hence, their conjugate
coupling constants gi behave as gi ∼ ΛD−2∆i , where Λ is a mass scale. Away from criticality
there will be generally a finite correlation length ξ which in the thermodynamical limit scales

as ξ ∼ a (Kigi)−
1

D−2∆i , where a ∼ Λ−1 may be regarded as a microscopic length scale. The
dimensionless quantities Ki are non–universal metric factors specific of the system representing

the universality class and depending on the units chosen for measuring the external sources gi.

If there are several deformations of the conformal action, the most general expression for the

scaling form of the correlation length may be written as

ξ = ξi ≡ a (Kigi)−
1

D−2∆i Li
(
Kjgj

(Kigi)φji

)
, (2.2)

where φji ≡ D−2∆j
D−2∆i are the so–called crossover exponents whereas Li are universal homogeneous

scaling functions of the ratios
Kjgj

(Kigi)
φji
. There are of course several (but equivalent) ways of

expressing these scaling forms, depending on which coupling constant is selected as a prefactor.

In the limit where gl → 0 (l 6= i) but gi 6= 0, equation (2.2) becomes

ξi = a ξ
0
i g
− 1
D−2∆i

i , ξ0i ∼ K
− 1
D−2∆i

i . (2.3)

Let us consider now the free–energy f̂ [g1, . . . , gn], a dimensionless quantity defined by

e−f̂(g1,...,gn) =
∫
Dφ e−[ACFT+

∑n
i=1 gi

∫
ϕi(x)d

Dx] . (2.4)

Under the hypothesis of hyperscaling, its singular part (per unit of volume) f [g1, . . . , gn] is

proportional, in the thermodynamical limit, to the D-th power of the correlation length. De-

pending on the scaling form adopted for the correlation length, we have correspondingly several

(but equivalent) ways of parameterizing this quantity

fi[g1, . . . , gn] ≡ (Kigi)
D

D−2∆i Fi
(
Kjgj

(Kigi)φji

)
. (2.5)

The functions Fi are universal homogeneous scaling functions of the ratios Kjgj

(Kigi)
φji
.

From the above expression we can derive the expectation values of several quantities. We

will use the notation 〈...〉i to denote expectation values computed in the off–critical theory
obtained by keeping (at the end) only the coupling constant gi different from zero. Basic

quantities are the vacuum expectation values (VEV) of the fields ϕj which can be parameterized

as

〈ϕj〉i = − ∂fi
∂gj

∣∣∣∣
gl=0

≡ Bjig
2∆j
D−2∆i
i , (2.6)

with

Bji ∼ KjK
2∆j
D−2∆i
i . (2.7)

The above relations can be equivalently expressed as

gi = Dij (〈ϕj〉i)
D−2∆i
2∆j , (2.8)

– 2 –
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with

Dij ∼ 1

KiK

D−2∆i
2∆j

j

. (2.9)

The generalized susceptibilities of the model are defined by

Γ̂ijk =
∂

∂gk
〈ϕj〉i = − ∂

2fi
∂gk∂gj

∣∣∣∣
gl=0

. (2.10)

They are obviously symmetrical in the two lower indices. By extracting their dependence on

the coupling constant gi, they can be expressed as

Γ̂ijk = Γ
i
jk g

2∆j+2∆k−D
D−2∆i

i , (2.11)

with

Γijk ∼ KjKkK
2∆j+2∆k−D
D−2∆i

i . (2.12)

The various quantities obtained by taking the derivatives of the free–energy obviously contain

the quantities Ki which make their values not universal. However, it is easy and always possible

to consider special combinations thereof in such a way to cancel out all metric factors. Universal

Ratios usually considered in the literature are those given below

(Rc)
i
jk =

ΓiiiΓ
i
jk

BjiBki
; (2.13)

(Rχ)
i
j = Γ

i
jjDjjB

D−4∆j
2∆j

ji ; (2.14)

Riξ =
(
Γiii
)1/D

ξ0i ; (2.15)

(RA)
i
j = Γ

i
jjD

4∆j+2∆i−2D
D−2∆i

ii B

2∆j−D
∆i

ij ; (2.16)

(Q2)
i
jk =

Γijj

Γkjj

(
ξ0k
ξ0j

)D−4∆j
. (2.17)

From their definition, these quantities are pure numbers attached to the universality classes and

therefore they can be used to characterize them. Contrary to the critical exponents (which are

characteristic of the critical point) they carry information about the scaling region. Moreover,

the amplitude ratios are numbers which typically present significant variations between differ-

ent classes of universality, whereas the critical exponents usually assume small values which

only vary by a small percent when changing the universality class. Hence the universal ratios

may be ideal marks of the critical scaling regime [1]. It is also worth emphasizing that, from an

experimental point of view, it should be simpler to measure universal amplitude ratios rather

than critical exponents: to determine the former quantities one needs to perform several mea-

surements at a single, fixed value of the coupling which drives the system away from criticality

whereas to determine the latter, one needs to make measurements over several decades along

the axes of the off–critical couplings. Moreover, although not all of them are independent, the

universal ratios are a larger set of numbers than the critical exponents and therefore permit a

more precise determination of the class of universality.

– 3 –
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3. Quantum Field Theory Approach

It is interesting to see how in two dimensions Quantum Field Theory provides a powerful

approach to compute the Universal Ratios of a given class of universality in a non-perturbative

way. In the following we concentrate mostly our attention on the off–critical models obtained

as deformations of the so–called Minimal Models of two–dimensional Conformal Field Theory

[2, 3].

As we have seen before, each coupling constant gi relative to the relevant operator ϕi(x)

of the model under investigation is a dimensional quantity which can be related to the lowest

mass–gap mi = ξ
−1
i of the off–critical theory according to the formula

mi = Ci g
1

2−2∆i
i . (3.1)

When the QFT associated to the action (2.1) is integrable, the pure number Ci can be exactly
determined by means of the Thermodynamical Bethe Ansatz [4, 5]. When the theory is not

integrable, the constant Ci can be nevertheless determined by a numerical method, based on
the so–called Truncated Conformal Space Approach [6]. In conclusion, for all individual de-

formations of a given model, we are able to completely set the relationship which links the

coupling constant to the mass–gap of the theory and therefore to switch freely between these

two variables.

Additional quantities which can be determined by QFT are the matrix elements of the

order parameters, the simplest ones being the vacuum expectation values (VEV). They are

parameterised as

〈ϕj〉i = Bji g
∆j
1−∆i
i . (3.2)

When the theory is integrable, the constant Bji can be fixed exactly, thanks to the results

of a remarkable series of papers [7, 8]. When it is not integrable, the constant Bji can be

nevertheless estimated by means of a numerical approach, as firstly shown in [9]. Hence, we are

able to determine completely also these quantities. Moreover, as shown in [11], a generalization

of the numerical approach of ref. [9] often leads to a reasonable estimate of the matrix elements of

the order parameters between the vacuum states and some of the excited states, as for instance

〈0|ϕj |Ak〉i where Ak is a one–particle state of mass Mk. These quantities turn out to be useful
for obtaining sensible approximation of the large–distance behavior of several correlators.

Another important and useful piece of information on the off–critical models can be ob-

tained by exploiting the properties of the stress–energy tensor Tµν(x). In the presence of the

perturbing field ϕi, the trace of the stress–energy tensor is given by

Θ(x) = 2πgi(2− 2∆i)ϕi . (3.3)

It enters a useful sum rule, the so called ∆–theorem [12]

∆j = − 1

4π〈ϕj〉i
∫
d2x 〈Θ(x)ϕj(0)〉ci , (3.4)

which relates the conformal dimension ∆j of the field ϕj to its VEV and to the integral of

its connected off–critical correlator with Θ(x). It is easy to see that the above formula sim-

ply expresses the content of the fluctuation–dissipation theorem and when the above integral

– 4 –
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diverges, so does the VEV in the denominator, in such a way that eq. (3.4) always keeps its

validity [11].

As discussed above, basic quantities entering the universal ratios are the generalized sus-

ceptibilities Γijk. By using the fluctuation–dissipation theorem, they are given by

Γ̂ijk =

∫
d2x〈ϕj(x)ϕk(0)〉ci . (3.5)

By extracting their dependence on the coupling constant gi, we have Γ̂
i
jk = Γ

i
jk g

∆j+∆k−1
1−∆i

i with

Γijk = C2∆j+2∆k−2i

∫
dτ

1

τ2∆j+2∆k
Qjk(τ) . (3.6)

Some of the above susceptibilities can be determined exactly, such as the components Γiik, whose

values are provided by the ∆–theorem sum rule

Γiik = −
∆k
1−∆kBki . (3.7)

In all other cases, when an exact formula is not available, the strategy to evaluate the generalized

susceptibilities relies on two different possible representations of the correlators. As we will see,

these representations have the advantage of converging very rapidly in two distinct regions and

to smoothly join in between.

The first representation is based on Conformal Perturbation Theory (with the use of the

non–analytic expression of the VEV) [13]. In this approach the two–point correlators are

expressed as

〈ϕi(x)ϕj(0)〉 =
∑
p

Cpij(g;x)〈Ap(0)〉 (3.8)

where the structure functions Cpjk(g;x) admit the expansion

Cpij(g;x) = r
2(∆p−∆i−∆j)

∞∑
n=0

C
p(n)
i,j (gr

2−2∆Φ)n , (3.9)

(r =| x |) and can be computed perturbatively in g, the coupling conjugated to the perturbing
operator ϕ. For instance, the first order correction to the conformal structure constant C

p(0)
i,j is

determined by [13]

C
p(1)
i,j = −

∫ ′
d2w 〈Ap(∞)ϕ(w)ϕi(1)ϕj(0)〉CFT , (3.10)

where the prime indicates a suitable infrared (large distance) regularization of the integral. This

representation allows a very efficient estimate of the correlation function in its short distance

regime r � ξ.
The second representation is based on the Form Factors (which will be discussed in more

detail below) and allows an efficient control of the large distance behavior, i.e. when r � ξ. In
this second representation, one makes use of the knowledge of the off–critical mass spectrum of

the theory to express the correlators as

〈ϕi(x)ϕj(0)〉 =
∞∑
n=0

g
(n)
i,j (r) , (3.11)

– 5 –
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where

g
(n)
i,j (r) =

∫
θ1>θ2...>θn

dθ1
2π
. . .
dθn
2π
e−r

∑n
k=1mk cosh θk

×〈0|ϕi(0)| . . . Aan(θn)〉〈. . . Aan(θn)|ϕj(0)|0〉 .
|Aa1(θ1) . . . Aan(θn)〉 are the multi–particle states relative to the excitations of mass mk, with
relativistic dispersion relations given by E = mk cosh θ, p = mk sinh θ, where θ is the rapidity

variable. The spectral representation (3.12) is an expansion in the parameter e−
r
ξ , where

ξ−1 = m1 is the lowest mass–gap.
Basic quantities of the large distance approach are the Form Factors (FF), i.e. the matrix

elements of the operators ϕi on the physical asymptotic states

Fϕia1,...,an(θ1, . . . , θn) = 〈0|ϕi(0)|Aa1(θ1) . . . Aan(θn)〉 . (3.12)

For scalar operators, relativistic invariance requires that the FF only depend on the rapidity

differences θi− θj . In integrable quantum field theories the FF are solutions of some functional
equations [22, 23] which will be recalled in the next section. It is worth to stress that for most

of the operators, it is sufficient to insert into the spectral representations only their one–particle

and two–particle FF in order to reach a very reasonable estimate of the correlators.

In conclusion, both the expansions (3.8) and (3.11) converge very rapidly in their domain

(see, for instance [13, 14, 15]) and therefore it is possible to estimate the integral (3.5) by

following this procedure:

1. Express the integral in polar coordinates as

Γ̂ijk = 2π

∫ +∞
0

dr r 〈ϕj(r)ϕk(0)〉ic , (3.13)

and split the radial integral into two pieces as

I =

∫ +∞
0

dr r 〈ϕj(r)ϕk(0)〉ic

=

∫ R
0
dr r 〈. . .〉ic +

∫ +∞
R

dr r 〈. . .〉ic
≡ I1(R) + I2(R) . (3.14)

2. Use the best available short–distance representation of the correlator to evaluate I1(R) as

well as the best available estimate of its large–distance representation to evaluate I2(R).

3. Optimize the choice of the parameter R in such a way to obtain the best evaluation of the

whole integral. In practice, this means looking at that value of R for which a plateau is

obtained for the sum of I1(R) and I2(R). Said in another way, R belongs to that interval

where there is an overlap between the short–distance and the long–distance expansion of

the correlator.

The above methods have been applied to compute universal ratios of several interesting univer-

sality classes, such as the one of the Ising model [16], the Tricritical Ising Model [10, 11], the Self–

Avoiding Walks[14], the q–state Potts model and percolation [17], to quote few. These field the-

oretical results have been confirmed through direct lattice estimates (see Refs. [18, 19, 20, 21]).

– 6 –
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4. Disorder Operator and Fermion-Boson Correspondence

From the above discussion, we have seen that a great deal of information can be extracted

for the scaling region of a model also in the absence of an exact expression of the correlation

functions. It is however an important theoretical problem to see whether it is possible to obtain

a closed and exact formula for these quantities. It goes without saying that, in general, this

is quite a difficult problem, partially solved only for few models. In the second part of this

talk, we shall discuss a particularly interesting example of such a computation, which leads to a

differential equation ruling the correlators. Our presentation is based on the results presented

in the paper [24].

In order to start our discussion, let us consider the (euclidean) action

A =
∫
d2x [∂µφ

∗∂µφ+m2φ∗φ+W (φ∗, φ)] , (4.1)

where the potential W is invariant under the ZN transformation φ→ e2iπ/Nφ, φ∗ → e−2iπ/Nφ∗.
Let |0j〉, j = 0, 1, . . . ,N − 1, be the N vacuua of the broken phase of this theory, with µk(x),
k = 1, . . . ,N −1, the disorder operators which create the excitations (kink states) interpolating
between the vacua |0j〉 and |0j+k(modN)〉. These operators carry k units of topological charge
and satisfy the conjugation relation µ∗k(x) = µN−k(x). The mutual non-locality between the
order and disorder operators gives rise to a phase factor when they go around each other in the

euclidean plane (z = x1 + ix2, z̄ = x1 − ix2) :

φ(ze2iπ, z̄e−2iπ)µk(0, 0) = e
2iπk
N φ(z, z̄)µk(0, 0) ,

φ∗(ze2iπ, z̄e−2iπ)µk(0, 0) = e−
2iπk
N φ∗(z, z̄)µk(0, 0) .

These relations are valid along any ZN -invariant renormalization group trajectory flowing out of

the phase transition point and characterise the operators µk(x) beyond their initial role of kink

creation operators in the broken phase. The theory (4.1) with W = 0 is a particularly simple

example of such a trajectory for which, as we will see, the correlation functions of disorder

operators remain non-trivial due to the non-locality with respect to the boson.

The correlation functions of non-local operators in two-dimensional free massive theories

were extensively studied from the point of view of the isomonodromy theory of differential

equations in Ref. [26] and a series of related papers. Several works (see for instance Refs.[27, 28,

29, 30, 31]) have been devoted afterwards to dealing with this problem through more direct and

general methods of quantum field theory. As we have seen above, an important approach to

compute the correlation functions is the one based on the form factors, in which the correlators

are expressed as sums over multiparticle asymptotic states. In our example this series can be

explicitly resummed and the correlators are given in terms of solutions of non-linear differential

equations. Moreover, there is a simple unified treatment of the bosonic and fermionic cases,

with the final result expressed by the correspondence1

〈µ̃j(x)µ̃k(0)〉 = 1

〈Ṽj/N (x)Ṽk/N (0)〉
, (4.2)

1We use the notation Φ̃(x) ≡ Φ(x)/〈Φ〉.

– 7 –
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where the correlators on the l.h.s. are computed in the theory (4.1) with W = 0, and those on

the r.h.s. refer to the operators Vα(x) = exp[i
√
4π αϕ(x)] in the sine-Gordon theory

AsG =
∫
d2x

[
1

2
∂νϕ∂

νϕ− µ cos βϕ
]
, (4.3)

with β =
√
4π and µ a suitably chosen mass scale. The theory (4.3) with β =

√
4π is in fact a

free fermionic theory [32]. For generic values of β the elementary excitations are the solitons and

antisolitons interpolating between adjacent vacua of the periodic potential. Their interaction is

attractive as long as β <
√
4π and they form topologically neutral bound states, the lightest one

being the particle interpolated by the bosonic field in the action (4.3). These neutral particles

are absent from the spectrum of asymptotic states in the repulsive region β >
√
4π, and at the

point β =
√
4π where the solitons behave as free Dirac fermions.

Since the solitons are non-local in terms of the field ϕ(x), the evaluation of both sides

of Eq. (4.2) amounts to computing correlation functions of operators which are non-local with

respect to non-interacting particles, bosons for the l.h.s. and fermions for the r.h.s. The different

statistics of the two particles is responsible for the inversion in Eq. (4.2).

Consider then a theory of free, charge conjugated particles A and Ā with mass m, and

denote by Φα(x) a scalar operator having a non-locality phase e
2iπα (e−2iπα) with respect to

(the field which interpolates) the particle A (Ā). Acting on the vacuum state |0〉, such an
operator produces neutral states consisting of pairs A(θ)Ā(β). The equations satisfied by the

form factors of these theories

fαn (θ1, . . . , θn, β1, . . . , βn) = (4.4)

= 〈0|Φ̃α(0)|A(θ1), . . . , A(θn), Ā(β1), . . . , Ā(βn)〉
are a particular case of those holding for generic integrable theories (see e.g. [29])

fαn (θ1, . . . , θi, θi+1, . . . , θn, β1, . . . , βn) =

= S fαn (θ1, . . . , θi+1, θi, . . . , θn, β1, . . . , βn),

fαn (θ1 + 2iπ, θ2, . . . , θn, β1, . . . , βn) =

= S e2iπαfαn (θ1, . . . , θn, β1, . . . , βn),

Resθ1−β1=iπf
α
n (θ1, . . . , θn, β1, . . . , βn) =

= iSn−1(1− e2iπα)fαn−1(θ2, .., θn, β2, .., βn),
where

S =

{
1 for free bosons

−1 for free fermions . (4.5)

It is easy to check that the solution of the above system of equations is given by

fαn (θ1, . . . , θn, β1, . . . , βn) = S
n(n+2)/2(− sinπα)n

× e(α− 12 δS,1)
∑n
i=1(θi−βi) |An|(S) , (4.6)

where An is a n× n matrix (A0 ≡ 1) with entries

Aij =
1

cosh
θi−βj
2

, (4.7)

– 8 –
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and |An|(S) denotes the permanent2 of An for S = 1 and the determinant of An for S = −1.
The two-point correlators are then given by

G
(S)
α,α′(t) = 〈Φ̃α(x)Φ̃α′(0)〉 =

∞∑
n=0

1

(n!)2 (2π)2n∫
dθ1 . . . dθndβ1 . . . dβn g

(α,α′)
n (t |θ1, . . . , βn) ,

where

g(α,α
′)

n (t) = fαn (θ1, . . . , βn)f
α′
n (βn, . . . , θ1) e

−ten

= (S sin πα sinπα′)n e(α−α
′)
∑n
i=1(θi−βi) (4.8)

× |An|2(S) e−ten ,

and

t = m|x| , en =
n∑
k=1

(cosh θk + cosh βk) .

Analogously to the procedure followed in [31], we define a new n× n matrix Mn with entries

Mij ≡M(θi, βj) = (sinπα sinπα′)1/2 e− t2 cosh θi

×h(θi)h
−1(βj)

cosh
θi−βj
2

e−
t
2
cosh βj , (4.9)

where

h(θ) = e(α−α
′) θ/2 ,

and rewrite g(α,α
′) as

g(α,α
′)

n = Sn |Mn|2(S) =
∣∣∣∣∣ 0 MnMTn 0

∣∣∣∣∣
(S)

. (4.10)

Finally we symmetrise with respect to the two sets of rapidities by introducing a charge index

ε which is 1 for a particle A and −1 for Ā, so that we express the correlation functions as

G
(S)
α,α′(t) =

∞∑
L=0

1

L! (2π)L

∑
ε1...εL

∫
dθ1 . . . dθL

× ∣∣Kεiεj(θi, θj)∣∣(S) , (4.11)

where we have introduced the L× L matrices with entries

K+−(θ, β) =M(θ, β) ,

K−+(θ, β) =M(β, θ) , (4.12)

K++(θ, β) = K−−(θ, β) = 0 .

The last equation in (4.12) ensures that only the terms with L = 2n occur in (4.11). Notice

that the dependence on the statistics in (4.11) only reduces to taking the permanent or the

2The permanent of a matrix differs from the determinant by the omission of the alternating sign factors

(−1)i+j .

– 9 –
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determinant of the same matrix. According to the theory of Fredholm integral operators (see

e.g. [33]) the above expression is equal to

G
(S)
α,α′(t) = Det(1 + 2πK)

−S , (4.13)

so that the correlators of operators having the same non-locality phase in the free fermion and

free boson theories are the inverse of each other. This conclusion was first obtained in [26]

studying the deformation theory of differential equations. The result (4.2) follows from the fact

that the operators Vα(x) have a non-locality phase e
2iπα around the solitons at the sine-Gordon

free fermion point (see e.g. [34]), so that µj(x) and Vj/N (x) have the same non-locality with

respect to the corresponding particles. Since j runs between 1 and N − 1, we are actually
working with 0 < α = j/N < 1.

Once Eq. (4.2) has been obtained by using the large distance expansion of the correlators,

it is an interesting check to see how this inversion relation between the two correlators works

in the short distance limit. Both in the bosonic and fermionic case the operators Φα(x) satisfy

the OPE

〈Φα(x)Φα′(0)〉 ∼ |x|−Γ
(S)

α,α′ 〈Φα+α′〉+ . . . , (4.14)

with

Γ
(S)
α,α′ = X

(S)
α +X

(S)
α′ −X(S)α+α′ , (4.15)

X
(S)
α being the scaling dimensions. In the bosonic case the index α+α′ is taken modulo 1. The
scaling dimensions can be computed through the formula [12]

X(S)α = − 1
2π

∫
d2x〈Θ(x)Φ̃α(0)〉connected , (4.16)

where Θ(x) is the trace of the energy-momentum tensor. Since the only non-zero form factor

of this operator in the free theories is

〈0|Θ(0)|A(θ)Ā(β)〉 = 2πm2
[
−i sinh θ − β

2

]δS,−1
, (4.17)

one easily finds

X(S)α =

{
α(1 − α) , S = 1
α2 , S = −1 (4.18)

in agreement with the conjugation properties µ∗j = µN−j and V ∗α = V−α. These results coincide
with those of conformal field theory with ‘twist’ fields (see [35, 36]). It follows

Γ
(−)
α,α′ = −2αα′ , (4.19)

Γ
(+)
α,α′ =

{
2αα′ , α+ α′ < 1
2[αα′ + 1− (α+ α′)] , α+ α′ > 1 . (4.20)

The agreement for 1 < α + α′ < 2 is obtained by observing that in this range of α + α′, the
leading short distance term in the fermionic case is not the one in (4.14) but the first off-critical

contribution

µ/2

∫
d2y〈Vα(x)Vα(0)[V1(y) + V−1(y)]〉µ=0 , (4.21)

– 10 –
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which indeed behaves as |x|2[αα′+1−(α+α′)] when x→ 0.
In general, the two–point functions we are dealing with can be expressed as

G
(S)
α,α′(t) = e

SΥα,α′ (t) . (4.22)

where Υα,α′(t) is given by [26, 31]

Υα,α′(t) =
1

2

∫ ∞
t/2
ρdρ × (4.23)

×
[
(∂ρχ)

2 − 4 sinh2 χ− (α− α
′)2

ρ2
tanhχ

]
,

with χ(ρ) satisfying the differential equation

∂2ρχ+
1

ρ
∂ρχ = 2 sinh 2χ+

(α− α′)2
ρ2

tanhχ (1 − tanh2 χ) (4.24)

with suitable boundary conditions. The short distance behaviour for α+ α′ < 1 is given by

lim
t→0G

(S)
α,α′(t) =

(
Cα,α′ t

2αα′
)−S

, (4.25)

with an amplitude that can be deduced from the work of Ref. [7] on vacuum expectation values

in the sine-Gordon model:

Cα,α′ = 2
−2αα′ × (4.26)

exp

{
2

∫ ∞
0

dt

t

[
sinhαt cosh(α+ α′)t sinhα′t

sinh2 t
+

−αα′e−2t]} .
Finally, let us discuss the case in which we have a Z2 symmetry. This is somehow special

since a broken phase with two degenerate vacua can be realised in terms of a neutral boson. In

fact, a disorder operator with non-locality factor −1 is present also in the theory of a neutral
bosonic free particle. It is easy to check that, for S = 1 and α = 1/2, the form factors (4.6)

imply the factorisation

µ1 = µ(1) × µ(2) , N = 2 (4.27)

where µ(j) is the disorder operator with scaling dimension X
(+)
1/2 /2 = 1/8 associated to the

neutral boson Aj entering the decomposition A = (A1 + iA2)/
√
2, Ā = (A1 − iA2)/

√
2.

The fermion-boson correspondence observed above for charged particles has an analogue

in the neutral case, and the correlation function

G(t) = 〈µ̃(j)(x)µ̃(j)(0)〉 =
[
G
(+)
1/2,1/2(t)

]1/2
(4.28)

can be related to correlators computed in the theory of a free neutral fermion, i.e. in the Ising

field theory without magnetic field. To see this, let us recall that the correlators of the spin

and disorder operators in the unbroken phase of the scaling Ising model can be written as [25]

τ±(t) ≡ 〈µ̃(x)µ̃(0)〉 ± 〈σ(x)σ(0)〉 = (4.29)

= exp

[
±1
2
χ(t/2)− 1

2
Υ1/2,1/2(t)

]
,

– 11 –
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where the functions χ and Υ are those of Eqs. (4.23), (4.24). Hence, it follows from (4.22) and

(4.28) that

G(t) = [τ+(t)τ−(t)]−1/2 . (4.30)

Concerning the short distance behaviour of this correlator, the power law (4.25) acquires in this

case a logarithmic correction due to the ‘resonance’ with the leading off-critical contribution

(4.21). Such a contribution to the correlator 〈Ṽα(x)Ṽα(0)〉 behaves as −Cα,αt1/2[1+(2−4α) ln t]
in the limit α→ 1/2, so that

lim
t→0G

(−)
1/2,1/2(t) = limt→0G

−2(t) = B t1/2 ln(1/t) , (4.31)

with

B = −4Resα=1/2 Cα,α = 0.588353.. . (4.32)

and this amplitude coincides with that of the product τ+(t)τ−(t) in the Ising model.
The considerations of this section have recently been extended to the case of massive ghost

theories [37]. In all these cases the correlation functions of disorder operators can be computed

exactly for free theories and are related to the same differential equation (4.24). In absence of

interaction, the correlators are non-trivial due to the non-locality between the operators and the

particles. The resummation of the spectral series for interacting theories remains a challanging

task even in presence of integrability.

5. Non-integrable Deformations

The free bosonic and fermionic theories discussed above can also be regarded as describing

phases of spontaneously broken ZN symmetry. In this dual vision, the excitations are free

kinks |Kj,j±1(θ)〉 interpolating between two adjacent vacua |0j〉 and |0j±1〉 (the indices are
taken modulo N). Let us denote by Φk/N , k = 0, 1, . . . ,N − 1, the operators we are interested
in. They correspond to the exponential operators Vk/N in the fermionic case

3, and to the

operators σk, dual to the disorder operators µk, in the bosonic case. These operators create

multikink excitations with zero topologic charge, i.e. starting and ending in the same vacuum

state. Form factors on kink states were discussed in [17]. Consider for the sake of simplicity

the two-kink matrix elements

F±j,k(θ1 − θ2) ≡ 〈0j |Φk/N (0)|Kj,j±1(θ1)Kj±1,j(θ2)〉 , (5.1)

satisfying the equations

F±j,k(θ) = S F
∓
j,k(−θ) ,

F±j,k(θ + 2iπ) = F
∓
j±1,k(−θ) ,

Resθ=iπF
±
j,k(θ) = i

[〈0j |Φk/N |0j〉+
−〈0j±1|Φk/N |0j±1〉

]
.

3In this case the N degenerate vacua can be identified with those of the periodic potential in (4.3) identified

modulo N.

– 12 –
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Since the generator Ω of ZN transformations (Ω
N = 1) acts on states and operators as (ω ≡

e2iπ/N )

Ω |Kj,j+1(θ1)Kj+1,j+2(θ2) . . .〉 =
= |Kj+1,j+2(θ1)Kj+2,j+3(θ2) . . .〉 ,
Ω−1Φk/N (x)Ω = ωk Φk/N (x) ,

the above form factor equations can be rewritten as

F±j,k(θ + 2iπ) = S ω
±kF±j,k(θ) ,

Resθ=iπF
±
j,k(θ) = i (1 − ω±k)〈0j |Φk/N |0j〉 .

Once the identifications A←→ Ki,i+1, Ā←→ Ki,i−1 are made, these relations are equivalent to
the previous equations for the Form Factors with n = 1. This correspondence is easily extended

to all values of n and leads to the same form factors and correlation functions discussed for the

unbroken phase.

The introduction of a ‘magnetic field’ pointing in the k direction and breaking explicitely

the ZN symmetry corresponds to adding to the free action a term

h

∫
d2xΨk(x) , (5.2)

where

Ψk(x) =
1

N

N−1∑
l=0

ω−kl Φl/N (x) . (5.3)

The first order corrections to the energy density εj of the vacuum state |0j〉 and to the mass
mj,j±1 of the kink Kj,j±1 can be computed according to the Form Factor Perturbation Theory
proposed in [38]

δεj ∼ h 〈0j |Ψk|0j〉 = h v δj,k ,
δm2j,j±1 ∼ h 〈0j |Ψk(0)|Kj,j±1(iπ)Kj±1,j(0)〉 .

It follows from the residue equation written above that

Resθ=iπ〈0j |Ψk(0)|Kj,j±1(θ)Kj±1,j(0)〉 =
iv

N
(δj,k − δj,k∓1) , (5.4)

This formula implies that the correction to the mass of the kinks interpolating between the

vacua |0k〉 and |0k±1〉 is infinite. This divergence simply reflects the fact that these kinks become
unstable because the magnetic field removes the degeneracy of the vacuum |0k〉 with the two
adjacent vacua. These kinks are then confined in pairs Kk,k±1Kk±1,k and the confinement gives
rise to a string of bound states with zero topologic charge, as discussed in more details in [39].
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