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Abstract:We compute Skyrmion solutions of the Gross-Pitaevskii equations describing

binary Bose-Einstein condensates and discuss parameter regimes in which they exist.

1. Introduction

Experimental advances in the formation and control of ultracold atomic gases are allowing

detailed studies of the properties of Bose-Einstein condensates (BECs) with both single

and multiple components. The condensate wavefunctions satisfy coupled Gross-Pitaevskii

equations and these can have topological soliton solutions, providing an experimental setup

in which the properties of various types of soliton may be studied. In the case of a sin-

gle component the Gross-Pitaevskii equation has a vortex solution in two dimensions, in

which the phase of the wavefunction changes by 2π around a closed loop containing the

vortex core. Extending such solutions into three space dimensions yields vortex strings

which have been created experimentally and their properties studied in some detail [7].

Multiple component condensates have a much richer structure and in particular they of-

fer the possibility of supporting truly three-dimensional solitons, such as monopoles [10]

and Skyrmions [1, 8]. However, preliminary studies of Skyrmions found that although it

was possible to construct configurations with the topology of a Skyrmion there were no

associated stationary solutions of the Gross-Pitaevskii equation – essentially a Skyrmion

configuration was found to be unstable to collapse. Subsequently the present authors [2]

found that stable Skyrmion solutions do exist, for particular parameter regimes, which do

not include those used in the earlier studies but do include physically relevant situations.
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Here we shall extend the results in [2] by removing some of the approximations made there;

in particular we include the total density as a dynamical degree of freedom. After reviewing

the Gross-Pitaevskii equations we describe the topology of a Skyrmion solution and derive

the requirement of phase separation before finally presenting the results of our numerical

computations.

2. The Gross-Pitaevskii equations

For a binary BEC, that is, the wave function has two components ψα with α = 1, 2, the

energy density is given by

E =
∑
α

(
1

2mα
|∇ψα|2 + V trapα |ψα|2

)
+
1

2

∑
α β

Uαβ |ψα|2|ψβ |2 (2.1)

where mα is the atomic mass of species α and the interaction coefficients Uαβ are propor-

tional to the two-body scattering lengths, which we take to be positive, since we consider

only repulsive interactions. V trapα is the trapping potential, which we take to be harmonic

V trapα = 12mαω
2
αr
2, where r is the distance from the centre of the trap.

The variation of the energy yields the Gross-Pitaevskii equations

i
∂ψα
∂t
=

δE
δψ̄α

= − 1

2mα
∇2ψα + Uαα|ψα|2ψα + ψα

∑
β 6=α
|ψβ |2 + V trapα ψα. (2.2)

There are several conserved quantities associated with this evolution, and three of these

are the energy E and number of atoms of each species Nα given by

E =

∫
E d3x, Nα =

∫
|ψα|2 d3x. (2.3)

We shall be concerned with stationary solutions of (2.2) which have the form ψα(x, t) =

e−iµαtΨα(x) where the positive real parameters µα are the chemical potentials. Substi-
tuting this stationary ansatz into (2.2) produces a static equation for Ψα (which we shall

rename ψα from now on, since we can restrict to discussing the solution at t = 0 as the

time evolution is simply through the constant phase rotation). The static equations for ψα
are the variational equations which arise as the critical points of the modified energy

Ẽ = E −
∑
α

∫
µα|ψα|2 d3x. (2.4)

This implies that a solution ψα may also be obtained by minimization of the energy (2.1)

subject to the constraint of fixed values of Nα, with µα the associated Lagrange multipliers.

3. A scaling argument

In three space dimensions a classical field theory with only scalar fields and no higher

derivative (Skyrme) terms in the energy generally does not have topological soliton solutions

because of the Derrick-Hobart theorem [4, 6]. A simple spatial rescaling of the fields of a
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candidate soliton configuration reduces its energy, so there is no local minimum with a finite

soliton scale. Here, we give a simple explanation of how the system under consideration

evades the Derrick-Hobart theorem, and hence can have soliton solutions.

Decompose the energy E (the integral of (2.1)) as

E = Egrad + Etrap + Eint (3.1)

where the three terms denote the contribution to the energy of the gradient terms, the

trapping potential and the interaction terms respectively. We wish to consider the effect

on this energy of a spatial rescaling x 7→ λx. However, the crucial observation is that the

energy must be minimized with respect to fixed values for the total number of atoms, Nα as

defined in (2.3). Thus a simple rescaling is not a valid transformation, as it would change

the values of Nα, unless it is accompanied by the field transformation ψα 7→ ψαλ
−3/2.

Under these combined scalings the energy transforms as

E 7→ 1

λ2
Egrad + λ

2Etrap +
1

λ3
Eint. (3.2)

This shows that there is no need for a Skyrme term. Furthermore, without the trapping

potential the energy can be reduced by expanding a configuration, which is of course

the expected behaviour for a system of repulsive atoms. With a trapping potential the

energy (3.2) contains terms which scale with both positive and negative powers of λ, thus

allowing a minimum at a finite non-zero scale. This demonstrates that a simple scaling

transformation can not be used to rule out the possibility of topological solitons, though it

does not prove that, should they exist, they will be stable against collapse, since the form

of the collapse may be more complicated than the simple rescaling assumed above.

4. Skyrmion topology

Skyrmions [9] are topological solitons associated with maps S3 7→ S3. For a binary Bose-

Einstein condensate there are two complex scalar fields so they comprise a map (ψ1, ψ2) :

R
3 7→ R4, which has no topological structure, and hence naively no topological solitons.
However, as we now describe, the topology can enter in a more subtle way.

First, consider a trap loaded with species one. Deep inside the centre of this system,

say inside the ball r ≤ L, the density of species one, ρ1 = |ψ1|2, will be approximately
constant, falling to zero density far outside the ball r � L. Next we introduce the second

species, but with N1 � N2 so that ψ2 is non-zero only near the centre of the ball, and

is identically zero at the surface of the ball and outside it. The region in which we are

interested is the interior of the ball, so we may restrict our attention to this domain with

the boundary condition

(ψ1, ψ2)|r=L = (√ρ1, 0). (4.1)

The phase of ψ1 is fixed on the boundary of the ball by energetic considerations and there

is no loss of generality in choosing ψ1 to be real there. The interior of a 3-ball with all

points on the surface identified is topologically S3 and hence we have identified the domain

required for defining a Skyrmion. Note that the boundary condition (4.1) is a substitute
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for the role played by the trapping potential for species one, so that from now on we may

set ω1 = 0.

The submanifold of R4 consisting of all points that are a fixed positive distance from

the origin obviously yields an S3. Under the assumption that the total number density,

|ψ1|2+|ψ2|2, is fixed then the target space is restricted to this S3. This assumption was made
in [2] and when combined with the above argument we have identified the required map

S3 7→ S3. In fact to define this map between 3-spheres requires a much weaker assumption,

namely that the total density never vanishes. It is convenient to identify S3 as the group

manifold of SU(2) and define the SU(2)-valued matrix

M =
1

2
√|ψ1|2 + |ψ2|2

(
(ψ1 + ψ̄1)12 + (ψ1 − ψ̄1)σ3 + i(ψ2 + ψ̄2)σ2 + (ψ2 − ψ̄2)σ1

)
(4.2)

where 12 denotes the 2× 2 identity matrix and σi are the Pauli matrices. Clearly this field
is well-defined if the total density is non-zero and defines the map M : S3 7→ S3 where

the domain is the ball r ≤ L and the boundary condition is M(r = L) = 12. Due to the

homotopy group relation π3(S
3) = Z, maps between 3-spheres are classified by an integer,

the Skyrmion number, given explicitly in terms of the field M by the integral

Q =
1

24π2

∫
r≤L

εijk Tr

(
(∇iM)M−1(∇jM)M−1(∇kM)M−1

)
d3x. (4.3)

Although this topological charge is integer-valued it is not necessarily a conserved quantity

since the evolution may produce a point inside the 3-ball at which the total density vanishes,

hence M and Q are not well-defined at this point and time respectively, allowing the

configuration to unwind and Q to jump by integer values. In [2] it was pointed out that if

all the interaction coefficients Uαβ are approximately the same and the solution varies on

a length scale much larger than the healing length ξ = 1/
√
2m1ρ1U11 then energetically it

is unfavourable for large variations in the total number density to arise. Thus, it is a good

approximation to assume that the total number density is constant, and in particular this

rules out the possibility that it might vanish. In this paper we test this approximation by

unfreezing the degree of freeedom associated with the total number density. The numerical

results of Section 7 confirm that it is a good approximation for the regime we consider,

with the total density varying by the order of only one percent over the entire domain, and

hence it is certainly non-zero.

5. Skyrmions as vortons

In this Section we consider the structure of a Skyrmion by describing a simple Q = 1

configuration in terms of its constituent fields ψα. The simplest Q = 1 configuration has

the hedgehog form

M = cos f12 + i
sin f

r
x · σ (5.1)

where f(r) is a real profile function, which is monotonically decreasing, and satisfies the

boundary conditions that f(0) = π and f(L) = 0. In the Skyrme model [9] the sin-

gle Skyrmion solution has exactly the SO(3) symmetric form (5.1), in which any spatial
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rotation can be compensated by acting with the global SO(3) symmetry of the model.

However, a BEC Skyrmion solution will not be given by such a simple expression since

(for generic values of the interaction coefficients) the energy (2.1) does not have an SO(3)

global symmetry but only a global U(1) × U(1) symmetry, associated with independent
phase rotations of the fields ψ1 and ψ2. Nevertheless it is useful to examine the configura-

tion (5.1) in terms of the fields ψα as it gives an insight into the composition of a Skyrmion

which is topologically correct.

A comparison of (5.1) and (4.2) shows that ψ1 vanishes on a circle in the plane x3 = 0,

with a radius r∗, where this is the unique value such that f(r∗) = π/2. Therefore there is

a vortex ring in component one. The core of this vortex ring is filled with component two,

that is, ψ2 6= 0, and moreover the phase of ψ2 rotates by 2π as one moves around the vortex
ring once. It is this twisting of the second component that provides a force to balance the

expected contraction of a vortex ring due to its tension. The vortex ring in component

one is threaded by a vortex string in component two, which lies along the x3-axis, where

ψ2 = 0. The core of this vortex string is filled with component one and the phase of ψ1
twists by 2π along the string.

In terms of this vortex description the Skyrmion has obvious similarities with the

cosmic vorton [3]. Vortons are spinning vortex rings in U(1) × U(1) models that may

have formed in phase transitions in the early universe and are candidates for dark matter.

Vortons arise in models with both local and global U(1)×U(1) symmetries and the salient
feature is that the potential term in the Lagrangian has the form

V = λ1(|ψ1|2 − v21)2 + λ2(|ψ2|2 − v22)2 + β|ψ1|2|ψ2|2 (5.2)

where the parameters are chosen such that in the vacuum there is a spontaneous symmetry

breaking U(1)×U(1) 7→ U(1). Ignoring the gradient and trapping terms this is exactly the

form of the energy density Ẽ (the integrand of the energy Ẽ defined in (2.4)) so a direct
mapping can be established between the parameters of the vorton model and those of the

BEC. In the following Section we shall adapt the techniques used to study vorton stability

[11] in order to determine parameter regimes in which stable Skyrmion solutions exist.

In this Section we have shown how a BEC Skyrmion may equally well be viewed as a

vorton, and this may be a useful perspective in providing a further interesting link between

low-temperature laboratory experiments and cosmology.

6. Phase separation and stability

In [2] it was shown that a crucial property of a binary BEC in order to allow stable Skyrmion

solutions to exist was that of phase separation. In this Section we rederive this result from

a different perspective.

Phase separation is the tendency for a two-component condensate to arrange into

regions in space in which the density of one component is high only if the density of the

other component is low. Phase separation occurs if the interaction coefficients satisfy the

relation U212 > U11U22, as is easily derived below.
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Ignoring the gradient and trapping terms the energy density, including the chemical

potential terms, is given by

V =
U11
2
|ψ1|4 + U12|ψ1|2|ψ2|2 + U22

2
|ψ2|4 − µ1|ψ1|2 − µ2|ψ2|2. (6.1)

Critical points of this potential satisfy

∂V

∂|ψ1|2 = U11|ψ1|
2 + U12|ψ2|2 − µ1 = 0 and ∂V

∂|ψ2|2 = U22|ψ2|
2 + U12|ψ1|2 − µ2 = 0 (6.2)

but the determinant of the Hessian is

det
∂2V

∂|ψα|2∂|ψβ |2 = det
(
U11 U12
U12 U22

)
= U11U22 − U212. (6.3)

Thus if U212 > U11U22 then the Hessian has a negative eigenvalue and the critical points

with |ψ1|2 > 0 and |ψ2|2 > 0 are unstable. The stable minima are therefore obtained at the
boundary of the domain of the variables |ψ1|2 and |ψ2|2, that is, where |ψ1|2|ψ2|2 = 0. In
other words the stable minima are where one or other of the components vanish and there

is phase separation. Obviously this simple picture of regions where one or other of the

components vanishes identically is an approximation based on the fact that the gradient

terms have been neglected, but the general picture of regions where the density of only one

component is high remains valid after the gradient energy smoothing.

Let us rewrite the potential term (6.1) as

V =
1

2
U11

(
|ψ1|2 − µ1

U11

)2
+
1

2
U22

(
|ψ2|2 − µ2

U22

)2
+ U21|ψ1|2|ψ2|2 − µ21

2U11
− µ22
2U22

(6.4)

which makes it clear that it has the vorton form (5.2). If we think in terms of the vorton

description of a Skyrmion then we can easily adapt the stability analysis used for vortons

[11].

In the vortex string along the x3-axis we have ψ2 = 0, and hence |ψ1|2 = µ1
U11

. Since

we require ψ2 = 0 to be a stable solution in this background this means that the effective

mass of the ψ2 field must be positive

1

2
m2eff = −µ2 + U12

µ1
U11

> 0. (6.5)

Similarly in the core of the vortex ring where ψ1 = 0 we have |ψ2|2 = µ2
U22
and for stability

the effective mass of the ψ2 field must be positive in this background

1

2
m̃2eff = −µ1 + U12

µ2
U22

> 0. (6.6)

Combining (6.5) and (6.6) yields

U12
U11

>
µ2
µ1

>
U22
U12

(6.7)
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which in particular implies that there is phase separation

U212 > U11U22. (6.8)

Obviously the above argument relies on an idealized description of the vorton and

should not be treated as a rigorous result but rather as an approximate condition. Attempts

at estimating the corrections due to the neglected effects suggest that the phase separation

relation (6.8) is a necessary but not sufficient criterion to obtain a Skyrmion solution. This

explains why the earlier study [8] failed to find a solution, since it made the assumption

that all the interaction coefficients were exactly equal – so there was no phase separation.

There are physically realizable BECs which do satisfy the phase separation condition

(6.8). In principle, two-component BECs could be formed with each component represent-

ing a different atomic species, but in practice current experiments have been performed

in which the two components represent two different hyperfine levels of the same atomic

species. The system 87Rb |F = 2,mF = 1〉 |1,−1〉 has been studied experimentally and
phase separation observed [5]. For this system the interaction coefficients are approximately

equal, but more precisely have the relative ratios

U11 : U12 : U22 = 0.94 : 0.97 : 1.00 (6.9)

so that U212 = 1.00096U11U22 > U11U22, confirming phase separation. In the following

Section we discuss some numerical results using these values.

7. Numerical results

The numerical approach used is to minimize the energy (2.4) using a simple finite differ-

ence discretization on a grid containing 1013 points and a gradient flow algorithm for the

relaxation. The initial condition is taken to be of the hedgehog form (5.1) with a suitable

profile function f(r). Our simulation will be confined to the region |xi| ≤ L, for some L,

this being the numerical analogue of the earlier theoretical 3-ball r ≤ L outside which

the density of component one begins to decay to zero. The numerical implementation of

the boundary condition (4.1) is therefore to fix (ψ1, ψ2) = (
√
ρ1, 0) on the boundary of

the grid with ρ1 = µ1/U11 the appropriate constant density. We keep the experimentally

relevant ratios (6.9) but choose all other parameter values for convenience. Explicitly we

set µ1 = U11 so that ψ1 = 1 on the boundary of the grid, m1 = m2 = 0.5, ω2 = 0.01,

L = 50, and U22 = 200. The remaining free parameter is µ2, which determines the number

of atoms of component two. In choosing this value recall the inequality (6.7), which for

the experimental parameters (6.9) determines the range 1.0309 < µ2/µ1 < 1.0319. This

is an extremely narrow range for µ2, which would be difficult to find by trial and error.

The numerical results described below are for the value µ2/µ1 = 1.0318, which is within

the required range and produces good results. Values tried which were outside the above

range did not produce Skyrmion solutions. Note that it may seem that the fine tuning

of µ2 might make it difficult to construct Skyrmions experimentally. However, this is not

the case since the variable under experimental control is the number of atoms N2, which
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turns out to be highly sensitive to changes in µ2. Thus a large range of values of N2 can be

obtained, and in fact it appears that a more convenient approach is the minimization of the

energy subject to a constraint on N2 itself, rather than employing the chemical potential

µ2. With this numerical approach it is also possible to dispense with the trapping of the

second component and set ω2 = 0. This shows that the trap is not an important feature in

the study of Skyrmions in BECs.

The numerical results for µ2 = 1.0318µ1 are displayed in fig. 1. In fig. 1(a) we display

Figure 1: The Q = 1 Skyrmion. (a) The isosurface |ψ2|2 = 0.5, with a section cut to view the
interior. (b) As (a) but including an isosurface of topological charge density. (c) |ψ2|2 in the plane
x3 = 0. (d) |ψ2|2 in the plane x2 = 0.

the isosurface |ψ2|2 = 0.5, with a section cut out so that the interior structure is visible. The
vortex string can clearly be seen as the tube along the x3-axis. The region surrounding the

tube and inside the shell is where the second condensate is large and is associated with the

core of the vortex ring. In fig. 1(b) we reproduce the isosurface in (a) but overlay a surface of

constant topological charge density (the integrand in equation (4.3)). This shows that the

baryon density, whose integration produces the value one to within a reasonable numerical

accuracy, is highly localized around the vortex tube along the x3-axis, corresponding to a

boundary between two phase separated regions. This distribution of the topological charge

density is very different to that in the Skyrme model, where it is spherically symmetric and

decays with the distance from the origin, and demonstrates that although the topological

– 8 –
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features are similar for Skyrmions in BECs the qualitative details are very different. In

fig. 1(c) we plot the density of component two |ψ2|2 in the plane x3 = 0, which contains
the vortex ring, and in fig. 1(d) we plot the same quantity in the plane x2 = 0, which

reveals the vortex anti-vortex pair associated with slicing the ring in a plane containing

the symmetry axis.

8. Conclusion

We have described some aspects of Skyrmions in binary BECs, focusing on finding param-

eter regimes in which stable Skyrmions exist. Appropriate conditions have been identified

and tested by a numerical solution of the Gross-Pitaevskii equations. It would clearly be

very interesting if Skyrmions could be created experimentally in BECs and in this direction

future numerical work on the dynamical creation of Skyrmions, extending the initial inves-

tigations of [8] to regimes with Skyrmion solutions, would be worthwhile. Other aspects

to be studied include examining how the properties of a Skyrmion change with its angular

momentum and the structure of multi-Skyrmion solutions.
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