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1. Introduction

The determination of elementary excitations in physical systems is of vital importance.

In quantum field theory, the spectrum of the Hamiltonian determines the nature and the

masses of the particles and the time evolution of the system. In non-equilibrium statistical

mechanics for systems which admit a Markovian dynamics, the excitation spectrum of

the generator of the dynamics determines the rate at which the system approaches the

equilibrium. In the case of equilibrium statistical mechanics for classical spin systems, a

reorganization of the partition function in terms of a transfer matrix is a useful way to

analyze the behavior of correlation functions; minus the logarithm of the transfer matrix

is a quantum Hamiltonian operator and its spectrum gives information on the falloff rate

of equilibrium correlation functions.

In a recent series of papers given in Ref. [1], we have considered the low-lying part

of the excitation spectrum of diverse Zd lattice quantum systems, involving an infinite

number of degrees of freedom and belonging to all the three categories of models described

above. We have analyzed, for various values of the dimension d: Euclidean lattice scalar

quantum fields, O(N) ferromagnetic spin systems with nearest neighbor interactions and a

Ginzburg-Landau type stochastic model with a Langevin dynamics and continuous time.

This proceedings report encompasses the separate oral presentations by each of the two

authors and deals with the understanding of the spectral results emerging from the above

spectral analysis and covers the material discussed in Ref. [2]. Also, some new results have

been added not found elsewhere in the literature.

Using translation operators on the lattice, we can define unitary momentum operators,

one for each space direction of the system under consideration. They commute with the

(usually!) bounded from below ‘Hamiltonian’ or dynamics generator for the system, as

described above, and we look at the joint spectrum for these operators. We refer to this

joint spectrum as the energy-momentum (e-m) spectrum and we call mass spectrum its

restriction to zero system momentum. We adopt the familiar quasi-particle terminology to

describe this spectrum and denote by E and ~p the associated values energy and momenta.

A curve E = w(~p) in this joint spectrum is called a dispersion curve.

As a general feature of the analyzed generalized e-m spectra we considered is a vacuum

or lowest state, associated with no e-m excitations, i.e. zero energy and zero momentum

state, and also an isolated dispersion curveE = w1(~p), associated with a single particle state

with massM ≡ w1(~p = ~0). Above this dispersion curve is a finite band, associated with the
spectrum corresponding to two unbounded particles. Going higher in the spectrum, other

finite bands also exist, associated with states with three, four,..., ` ∈ IN , ..., unbounded
particles, which are well separated in the beginning provided the system particle mass is

large enough but eventually collapse and overlap as ` becomes large.

This is in contrast with e.g. the case of quantum fields in the continuum where the two-

particle band extends to infinity (see e.g. [3]), as a consequence of the fact that momenta

are unbounded in the continuum, whereas each of its components lives in [−π, π] for the
lattice Zd.

In the weak coupling regime, this spectral pattern is completed considering other points
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in the spectrum corresponding to stable states of two bounded particles or, simply, bound

states given by isolated dispersion curves located in the neighborhood of the two-particle

band.

To analyze the spectrum of single-particles, after establishing a Feynman-Kac formula

for the two-point translation invariant correlation function on the lattice and providing

a spectral representation for its Fourier transform G̃(p0, ~p), we consider the zeros of its

convolution inverse Γ̃(p0, ~p), for p0 in the imaginary axis.

Next, using a standard hyperplane decoupling expansion in the generalized time di-

rection (here denoted with a 0 upper index), as formulated e.g. in Ref. [4], we can use

the faster decay of the inverse Fourier transform Γ(x0, ~x), in comparison with G(x0, ~x), to

provide a meromorphic extension of Γ̃(p0, ~p) above the energy scales lying above the one

particle dispersion curve.

Together with the Bethe-Salpeter (B-S) equation, the above meromorphic extension

constitutes the basis of our bound state analysis. Our analysis adapts and improves, to the

lattice, some of the techniques developed to study quantum field theories in the continuum

(see [5]). In operator form the B-S equation reads

D = D0 +D0KD , (1.1)

and defines K. In terms of kernels, with x01 = x
0
2, x

0
3 = x

0
4, we obtain

D(x1, x2, x3, x4) = D0(x1, x2, x3, x4) +
∫
D0(x1, x2, y1, y2)K(y1, y2, y3, y4)

× D(y3, y4, x3, x4)δ(y
0
1 − y02) δ(y03 − y04) dy1dy2dy3dy4 ,

where,

D0(x1, x2, x3, x4) = εG(x1, x3)G(x2, x4) +G(x1, x4)G(x2, x3) ,

with ε = −1 if a space of anti-symmetric (fermions) ‘functions’ is considered, and ε = +1
in the symmetric case, and

D(x1, x2, x3, x4) = S(x1, x2, x3, x4)−G(x1, x2)G(x3, x4) ,
is the four-point correlation function, partially truncated for the x1, x2 and x3, x4 clusters.

We remark that the equal-time restrictions allow us to mathematically control the B-S

equation and is different than the customary Euclidean field theory where there are no

such restrictions.

The quantities D, D0 and K can be taken as matrix operators depending on the

specific model. Formally, we have K = D−10 −D−1, and we remark that after taking into
account the cancellation in D−1 due to its Gaussian-like (Wick theorem satisfied but with
fully renormalized ‘propagators’ !) equivalent contribution D−10 the B-S equation puts into
evidence a (channel) two-particle irreducible structure for K connecting the two clusters

x1, x2 and x3, x4. To see this in our formalism, we use the hyperplane decoupling expansion

method (see [4]), as before, allowing us to go above and near the two-particle threshold

which is twice the mass M of the single particle.

Using translation invariance on the lattice to pass first to difference coordinates, we

can re-write the B-S equation in terms of the lattice relative coordinates ξ = x2 − x1,
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η = x4 − x3 and τ = x3 − x2. In terms of (~ξ, ~η, τ), and taking the Fourier transform in τ
only, the B-S equation becomes

D̂(~ξ, ~η, k) = D̂0(~ξ, ~η, k) +

∫
D̂0(~ξ, ~ξ

′, k)K̂(−~ξ ′,−~η ′, k)D̂(~η ′, ~η, k) d~ξ ′d~η ′ .

K̂(−~ξ ′,−~η ′, k) acts as an energy-dependent non-local potential in the non-relativistic lat-
tice Schrödinger operator analogy.

The bound state analysis can then be done in a first step by considering L, the lad-

der approximation to K. This corresponds to a local potential approximation, which is

determined by keeping only the diagonal parts Dd of D and D0,d of D0. Once the ladder

approximation analysis is done, in Refs. [1, 5] it is shown how perturbations to the lad-

der approximation can be controlled to go beyond the ladder approximation and establish

spectral results for the full model.

To finish the description of our main spectral results, we make precise how the bound

state appears, if so, relatively to the two-particle band.

In all the models we considered in [1], we worked in the weak coupling regime and,

adopting the functional ‘integral’ formalism, we were able to express the model by a measure

on the space of field configurations (or spins) which, depending on the case, is or is not

a weak perturbation of a Gaussian. Let us convey that the plus sign of the perturbation

parameter (say λ ∈ R, |λ| << 1) corresponds to a system with a repulsive interacting
potential and an attractive potential for λ < 0.

For small |λ|, a bound state may or may not exist, depending on the system dimension
d. When it exists, it is below the band if λ is negative and above the band if λ is positive.

The distance from the band, i.e. the binding energy of this state, vanishes when |λ| ↘ 0.
This situation is depicted in Figure 1, and holds for all the models we considered but one.

In the general scenario, we have either the (mostly known) bound state below the band for

the attractive case, in which there is a decreasing in the energy of the particle pair, or the

energy increasing bound state above the band, for the repulsive case. For the exceptional

case of a scalar lattice field model with non-local interactions given in [1], we can have

both bound states simultaneously, no matter which sign of λ we consider. Furthermore,

we can observe that the bound state below the band and the one above the band are

approximately symmetrically located with respect to the center of the two-particle band.

Moreover, for small momentum, 0 < |~p| << 1, we show that the dispersion curve E = w2,↑
for the bound state above the band is concave while that of the bound state below the first

band, E = w2,↓, is convex.
It is natural to ask if there is some underlying reason for the above two-particle spectral

phenomenon. We show here that this phenomenon has its roots in the spectral behavior

of a one-particle non-relativistic Zd lattice Schrödinger operator with a delta potential at

the origin given by

H1 ≡ H0 + V ,

where H0 = −∆ is minus the lattice Laplacian and V (~x) = λ δ(~x), which are both

bounded operators.
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Figure 1: The approximate e-m spectrum for H1, in the case d = 1. E denotes

the energy and p the one-dimensional momentum for some fixed value

of |λ|. We clearly see the one particle dispersion curve (lowest curve)
and the two-particle band (first band from bottom to top) encircled

by two-particle bound state dispersion curves. For λ < 0, only the

isolated bound state lower dispersion curve appears; for λ > 0, only

the isolated upper curve appears. The picture indicates in the high-

est part the beginning of the second band, corresponding to three

unbounded particles, which in turn is well separated from the first

band if the single particle mass is large enough.

We know, for the attractive case (λ < 0), that this Schrödinger Hamiltonian has a

continuous spectrum in the interval [0, 4d], which is the same as the spectrum for minus

the Laplacian on the lattice Zd. Below the continuous spectrum, there is a negative-energy

bound state at −Eb, Eb > 0, for d = 1, 2, and any coupling constant. For d ≥ 3, a negative
energy bound state appears only for λ below a critical value λc. Not so familiar is the

spectrum for the repulsive case (λ > 0); there is the same continuum spectrum as before

but there is also an isolated bound state above 4d, the top of the continuous spectrum, at

Ea = 4d+ Eb.

We find that there is a transformation that interchanges high and low momenta (equiv-

alently, small and large gradients in configuration space) and maps the attractive Hamilto-

nian to the repulsive one and vice-versa. This transformation is the well-known staggering

transformation. In classical and quantum statistical mechanics, for example, it relates

ferromagnetic and anti-ferromagnetic spin systems.

The main observation is that, at zero spatial system momentum, the B-S equation

(1.1), is, roughly speaking, a relative coordinate lattice Schrödinger operator resolvent

equation

(H1 − zI)−1 = (H0 − zI)−1 − (H0 − zI)−1 V (H1 − zI)−1 , (1.2)

with a nonlocal potential. D0 corresponds to the free resolvent, D to the interacting

resolvent and K to minus the potential V .

In the ladder approximation, the nonlocal potential nearly is a local delta potential in
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the models we consider. The spectral relationship induced by the staggering transformation

is exact in the non-relativistic case but it is only approximate for our models. The bound

states above and below the two-particle band are not necessarily equidistant from the band,

as for the non-relativistic one-particle system. However, staggering transformations consist

of an useful tool to determine the low-lying part of the spectrum for the repulsive case,

once it is known for the attractive one, and vice-versa.

Before we close the section, we remark that the role of staggering transformations can

not only be put into evidence for the case of the single-particle Schrödinger Hamiltonian

H1 but also for a two-particle Schrödinger Hamiltonian H2 with a delta pair potential; of

which we will see thatH1 is a special case, corresponding to zero spatial system momentum.

We discuss these two Hamiltonians in the sequel.

The above formulation using staggering transformations gives a mathematical descrip-

tion of the spectral results for bound states. It turns out that there is also a nice physical

interpretation as the time-dependent Schrödinger eigenvalue equation is the same as the

normal mode equation for polarized oscillations of an infinite mass-spring system on the

lattice with an isotopic point-like defect at the origin, for the one-particle Hamiltonian H1,

or a line or hyperplane of defects for the two-particle Hamiltonian H2. Much effort was

devoted to the study of these classical vibrations. For example, see the Refs. [6, 7].

Similar problems appear in the study of quantum spin chains (see Refs. [8, 9, 10, 11,

12]).

2. Delta Function Potential and Staggering

The e-m spectral behavior around the two-particle band, at zero spatial system momentum

(i.e. mass spectrum), for the various models described in the introduction can be under-

stood in terms of the spectral properties of a Zd lattice Schrödinger Hamiltonian H1 for a

non-relativistic particle in a delta potential at the origin, i.e., with ~x = (x1, . . . , xd) ∈ Zd,

H1 ≡ H0 + V = −∆ + V ; V (~x ) = λδ(~x ) , (2.1)

where H1 acts in `2(Z
d), the space of square summable functions on the lattice, and ∆ is

the lattice Laplacian (ej being the unit vector along the j th direction)

−∆f(~x ) = 2d f(~x ) −
d∑
j=1

f(~x + ej) −
d∑
j=1

f(~x − ej) ; f ∈ `2(Zd) . (2.2)

We point out that, unlike the continuum, the lattice delta potential is a bounded operator

in any d.

The resolvent equation (1.2) is a good approximation to the ladder approximation of

the relative coordinate lattice B-S equation of the models described above with the ladder

kernel of the B-S equation corresponding to −V , (H1 − z)−1 to D and (H0 − z)−1 to D0.
To determine the spectral properties of the Hamiltonian H1 of (2.1), we first define

a unitary staggering transformation U which interchanges low and high momentum in
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the Fourier dual lattice, and plays a key role in understanding the relation between the

spectrum of H1 with λ > 0 and λ < 0. The staggering transformation U is defined by

Uf(~x ) = (−1)
∑d
j=1 x

j

f(~x ) ; f ∈ `2(Zd) , (2.3)

and satisfies U2 = I, U−1 = U , and its momentum space representation has the form

(Uf)∼ (~p ) = f̃(~π − ~p )

where ~p ∈ Td, the d-dimensional torus (−π, π]d, ~π denotes the constant vector (π, π, . . . , π)
and, with the usual notation for the Euclidean scalar product, we have f̃(~p ) =

∑
~x∈Zd e

−i~p.~x

f(~x). For example, U transforms constant functions f(~x) = c into Uf(~x) = (−1)
∑d
j=1 x

j

c .

In terms of non-`2 eigenfunctions of H0, f(~x) = c has energy eigenvalue zero and Uf(~x)

has eigenvalue 4d. In words, U takes smooth functions into rough (large lattice gradient)

functions and vice-versa.

It is easy to show that U has the intertwining property

−∆ + λδ = U [−1 (−∆ − λδ − 4d)] U−1 . (2.4)

For example, if E is a point in the spectrum of H1, with corresponding eigenfunction

ψ for an attractive potential (λ < 0), then −E + 4d and Uψ are the corresponding eigen-
value and eigenfunction of H1 with a repulsive potential (λ > 0). Thus, it is enough to

consider the familiar attractive case; the repulsive case (unlike that of the one-dimensional

continuum Hamiltonian) exhibits unusual spectral properties.

We now consider the spectral properties of H1 for the attractive case λ < 0. The

resolvent (H1 − z)−1 contains all the spectral information of H1, and is now obtained
explicitly. With an abuse of notation, the resolvent equation (1.2) in kernel form is

(H1 − z)−1 (~x, ~y) = (H0 − z)−1 (~x, ~y) − (H0 − z)−1 (~x,~0)λ (H1 − z)−1 (~0, ~y) ,

for z ∈ C, z /∈ [σ(H1) ∩ σ(H0)], where σ(A) denotes the spectrum of A.
Setting ~x = ~0 and solving for (H1 − z)−1 (~0, ~y), we obtain

(H1 − z)−1 (~x, ~y) = (H0 − z)−1 (~x, ~y)

− (H0 − z)−1 (~x,~0) λ

1 + λ (H0 − z)−1 (~0,~0)
(H0 − z)−1 (~0, ~y) .

(2.5)

In momentum space, the unperturbed Hamiltonian H0 is the multiplication operator

by the function

2
d∑
j=1

(
1 − cos pj) ≡ −∆̃(~p)

so that the spectrum ofH0 is the interval [0, 4d], and is absolutely continuous. The resolvent

of H0 is given by, for z /∈ [0, 4d],

(H0 − z)−1 (~x, ~y) =
1

(2π)d

∫
Td

ei~p.(~x−~y)

−∆̃(~p) − z
d~p .
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Outside the interval [0, 4d], the spectrum of H1 arises from z singularities of (2.5).

These singularities can only occur as zeroes of the denominator in (2.5), i.e. for z = −Eb,
Eb > 0, we have the condition

λ (H0 − z)−1
(
~0,~0
)
=

λ

(2π)d

∫
Td

1

−∆̃(~p) + Eb
d~p = − 1 . (2.6)

Hence, due to the |~p|2 behavior of −∆̃(~p), for small |~p|, there is a unique bound state
energy −Eb, for d = 1, 2 and any λ < 0. For d ≥ 3, the integral in (2.6) converges for
Eb = 0 so that there is a critical value for the coupling λc < 0 for the occurrence of a

bound state.

From the Perron-Frobenius theorem for the positivity improving operator e−H1 (see
[13]), the associated bound and ground state eigenfunction ψ(~x) is positive (i.e., ψ(~x) > 0,

for all ~x) and, using the spectral theorem, there exists a unique spectral measure dE(µ)

that allows us to write

(H1 − z)−1 =
∫ +∞
−∞

1

µ − z
dE(µ)

such that the bound state eigenfunction is given by

ψ(~x) =

[
lim
z↗−Eb

(− (−Eb)− z) (H1 − z)−1 (~x, ~x)
]1/2

,

and is normalized, meaning that
∑
~x∈Zd |ψ(~x)|2 = 1.

Moreover, expanding 1 + λ (H0 − z)−1(~0,~0) about z = −Eb, we find

ψ(~x) =


 1

(2π)d

∫
Td

d~p(
−∆̃(~p) + Eb

)2


−1/2

1

(2π)d

∫
Td

ei~p.~x d~p

−∆̃(~p) + Eb

which is even. Also, since the above integrand admits an analytic extension to a momentum

strip around the real ~p-axis, by the Paley-Wiener theorem (see [14]) the eigenfunction ψ(~x)

decays exponentially. Furthermore, using Stone’s formula (see [15]) for E(a′) − E(a), 0 ≤
a′ ≤ a < 4d, shows that H1 has absolutely continuous spectrum in [0, 4d]. Of course, ψ(~x)
can also be obtained explicitly assuming ψ(x) = cρ|~x|, and solving for ρ in the eigenvalue
equation H1 ψ(~x) = −Ebψ(~x). This completes the description of H1 for the attractive
delta potential.

By (2.4), the spectrum of H1 for the repulsive potential is (4d + Eb) ∪ [0, 4d]. The
surprising feature is the existence of a bound state above the continuous spectrum at

Ea ≡ 4d + Eb. As the bound state eigenfunction for the attractive case is positive, the
bound state eigenfunction in the repulsive case has maximum oscillation, by (2.3). We can

also see the condition for the positive energy state with energy Ea from (2.6). Making the

change of variables ~q = ~p− ~π, (2.6) for the attractive potential becomes, setting z = Ea,

− λ

(2π)d

∫
Td

1

−∆̃(~q) + Eb
d~q = −1 ,

– 8 –
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i.e. the condition for the existence of a bound state at Ea, for the repulsive potential

(λ > 0).

For comparison with the ladder approximation to the lattice B-S equation in the models

considered in the ensuing sections, it is convenient to have the momentum space form of

the resolvent (2.5). With H0 = −a∆, and with a > 0 introduced here for later use, it
reads

(H1 − z)−1∼ (~p, ~q) = (2π)d
1

−a∆̃(~p)− z δ(~p + ~q)

− 1

−a∆̃(~p)− z
λ

1 +
λ

(2π)d

∫
Td

d~u

−a∆̃(~u)− z

1

−a∆̃(~q)− z .
(2.7)

Before closing the analysis for H1, we determine the effect of the staggering transfor-

mation on the wave and scattering operators (see [16]). Making explicit the λ dependence

in H1 ≡ H1(λ), we define the wave operators W±(λ) = s − limt→±∞ eiH1(λ)t e−iH0t. We
have, recalling that U−1H1(λ)U = −H1(−λ),

W±(λ)U = s− limt→±∞ UU−1eiH1(λ)tUU−1e−iH0tU
= U

[
s− limt→±∞ e−iH1(λ)teiH0t

]
= UW∓(−λ) .

For the scattering operator S(λ) ≡W+(λ)∗W−(λ), we find
US(λ)U−1 = UW+(λ)∗UU−1W−(λ)U−1

=W−(−λ)∗W+(−λ) = S(−λ)∗ .
In terms of the Fourier transform of the transition matrix T̃ (~p,~k;λ),

S̃(~p,~k) = δ(~p − ~k)− 2πi δ
(
E(~p)− E(~k)

)
T̃ (~p,~k;λ)

and S̃(~p,~k) is the Fourier transformed kernel of S. By considering the effect of a staggering

transformation in momentum space, for ~p 6= ~k but E(~p) = E(~k), we have

T̃ (~p,~k;λ) = − ¯̃T (~π − ~k, ~π − ~p;−λ) ,
which is seen to hold for the explicit solution obtained above i.e., for ε > 0,

T̃ (~p,~k;λ) =
λ

1 + λ(H0 − E − iε)−1(0, 0) , (2.8)

where we take the ε↘ 0 limit in the operator kernel.
We remark that the transition matrix can also be obtained from the Lippmann-

Schwinger equation,

ψ(~x,~k) = φ(~x;~k)−
[
(H1 −E(~k)− iε)−1V φ(.;~k)

]
(~x;~k) (2.9)

where φ(~x;~k) = ei
~k.~x is an eigenfunction of H0, and E ∈ (−2d, 2d). For the localized

potential V (~x) = λδ(~x), Eq. (2.9) has the solution

ψ(~x,~k) = φ(~x;~k)− λ(H0 − E − iε)−1(~x, 0)
1 + λ(H0 − E − iε)−1(0, 0) . (2.10)
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The scattering amplitude is, in terms of the solution of Eq. (2.10) of the Lippmann-

Schwinger equation (2.9), is given by

(
φ(.;~k′), V ψ(., ~k)

)
= λφ(~0, ~k′)ψ(~0, ~k) ,

which gives Eq. (2.8).

Furthermore, for real F (E) and D(E), writing the free resolvent as

(H0 − E − iε)−1(0, 0) = F (E)− iπD(E) ,

D(E) being the density of states, we can write the differential cross section as

|f(E)|2 = λ2

(1 + F (E))2 + π2λ2D(E)2
.

More explicitly, we have

D(E) =
1

(2π)d

∫
Td

δ (E − E(~q)) d~q , (2.11)

and, for P denoting the Cauchy’s principal value,

F (E) = P
∫ 2d
−2d

D(E′)
E − E′ dE

′ ,

which has the interpretation of an electric field of a two-dimensional line charge distribution

D(E).

The explicit determination of the quantities D(E) and F (E) has been the subject of

much research. For d = 1, by elementary integration, we obtain




D(E) =



[
π
√
1− E2

]−1
, |E| < 2

0, |E| > 2

F (E) =

{
0, |E| < 2

sign(E)√
E2−1 , |E| > 2

; d = 1 .

For d = 2, a non-trivial analysis allows F (E) and D(E) to be expressed completely in

terms of the complete elliptic integral of the first kind K(u) ≡ ∫ π/20 (1 − u2 sin2 θ)−1/2dθ.
As given in [17, 18, 19, 20, 21], we obtain




D(E) =

{
π−2K(12

√
4− E2), |E| < 4

0, |E| > 4

F (E) =



π−1sign(E)K(|E|/2), 0 < |E| < 4
π−1sign(E)K(2/|E|), |E| > 2
0, E = 0

; d = 2 .
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A compact representation for d = 3 has been found only recently. A deep structural

result of Ref. [22] has been discovered which allows D(E) and F (E) to be also expressed

in terms of the function K. In this case, we have, for |E| < 6,



D(E) = π−1GI(E)
F (E) = GR(E)

limε↘0G(E ± iε) ≡ GR(E) + iGI(E)

G(E) =
1− 9ζ4

E(1 − ζ)3(1 + 3ζ)
[
2

π
K(α)

]2

α2 =
16ζ2

(1− ζ)3(1 + 3ζ) , ζ ≡
(
1 +

√
1− 9

E2

)−1/2(
1 +

√
1− 1

E2

)1/2
; d = 3 .

These representations allow the determination of the scattering amplitude f(E) for all

values of the energy E and the coupling constant λ. The scattering amplitudes exhibit

Lorentzian resonances, bumps (non-Lorentzian), dips and extinction. Also, one can see

manifestations of Van Hove singularities.

The relationship with quantum mechanical Hamiltonians does not stop here. We also

consider, to be closer to the particle contents of the B-S equation (1.1), the two-particle

Hamiltonian in `2(Z
d)× `2(Zd) taken as

H2 =
−∆1
2m1

+
−∆2
2m2

+ v12(~x1 − ~x2) ≡ H0 + V2 , (2.12)

with ∆1 = ∆ ⊗ I and ∆2 = I ⊗∆, where m1,m2 > 0 are the particle masses, ~x ∈ Zd and
∆ is the lattice Laplacian as before.

For V2 = 0, the Hamiltonian H2 has also a band spectrum. The system lattice unitary

translation operator commutes with H2, and we can define self-adjoint momentum oper-

ators Pj , satisfying [Pi, Pj ] = 0, i, j = 1, . . . , d. Here, we will be interested in the joint

spectrum of
(
H2, ~P

)
, i.e. the e-m spectrum.

For H2 of Eq. (2.12), we distinguish two cases, depending on whether or not the

two masses m1 and m2 are equal. We will first consider the case m1 = m2. For an

attractive delta potential, we find a bound state below the band for d = 1, 2, and the binding

energy increases as the system momentum increases, i.e. the bound state curve does not

approach the band. This result is in contrast to the well-known case of the nonrelativistic

continuum, where the binding energy is independent of the system momentum; and the

case of two particles obeying relativistic kinematics where, based on purely kinematical

grounds, the binding energy decreases as the system momentum increases. For d ≥ 3, and
momentum zero, there is a bound state only for λ less than a critical value λc < 0. However,

for arbitrarily small |λ|, λ < 0, there is a bound state for sufficiently high momentum

|q| > qc > 0. Here, the binding energy goes to zero as |q| → q+c , and the bound state

approaches the band. This result is in contrast to the continuum case, where the Birman-

Schwinger bound (see [13]) excludes bound states for sufficiently small potentials.

– 11 –
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Next, we consider the case m1 6= m2, and the attractive delta potential. If d = 1, 2,

there exists a bound state for any small |λ|, λ < 0. For dimension d ≥ 3, for all values of the
system momentum, no bound state exists for small |λ|, in agreement with the continuum.

3. Spectrum for H2: Generalities

To determine the spectrum ofH2, we introduce the lattice translation operator, T~a f(~x1, ~x2)

= f(~x1−~a, ~x2−~a ), with ~a ∈ Zd. This operator commutes with H2 and is unitary. We write
T~a = exp [i ~P .~a] which defines the self-adjoint system momentum operators Pj , j = 1, . . . , d,

and system momentum ~q ∈ Td, with Td = (−π, π]d. Since [Pj ,H2] = 0, we determine the
joint energy-momentum spectrum of (H2, ~P ).

We define the staggering transformation acting in the two-particle space `2(Z
d)×`2(Zd)

by

U f(~x1, ~x2) = (−1)
∑d
j=1 (x

j
1+x

j
2) f(~x1, ~x2) , (3.1)

which is unitary and, since U2 = I, we have U−1 = U . From Eq. (3.1), it is easily seen

that [U, T~a] = 0 and [U,S] = 0, where S is the projection on the symmetric (even) subspace
given by S = 1

2 (I + P), where P is the permutation operator P f(~x1, ~x2) = f(~x2, ~x1).
For V = λδ, we find that H2 has the following intertwining property

U H2 = U
[
−∆⊗I
2m1

+ I⊗−∆2m2
+ λδ

]
=
[
4d
(
1
2m1
+ 1
2m2

)
−
(
−∆⊗I
2m1

+ I⊗−∆2m2
− λδ

)]
U ,

so that, for each system momentum ~q, the negative bound state eigenfunction for the

attractive case, λ < 0, is transformed by U into the positive bound state eigenfunction

for the repulsive case, λ > 0. Keeping this in mind, it is enough to determine e.g. the

spectrum below the band.

Here, we obtain the spectral representation of H2 via an eigenfunction expansion. Let

us first remark that, although we do not have separation of the Hamiltonian in center of

mass and relative coordinates, as in the continuum, H2 commutes with T~a. So, we consider

expanding a function f(~x1, ~x2) in terms of the non-`2 functions

ψ(~x1, ~x2, ~p ,~k ) =
1

(2π)2d
ei
~k.(~x1+~x2) ei~p.(~x1−~x2) .

The function ψ is an eigenfunction of the system momentum operator ~P , with eigenvalue

2~k ≡ ~q . Also, ψ is an eigenfunction of the free system Hamiltonian H0, with eigenvalue

K(~p,~k ) ≡ − 1
2m1
∆̃(~p+ ~k )− 1

2m2
∆̃(~p − ~k )

= 1
2m1

∑d
j=1 2

[
1− cos(pj + kj)]

+ 1
2m2

∑d
j=1 2

[
1− cos(pj − kj)] .

Here, we see that the eigenvalue does not split into a sum of center of mass and relative

kinetic energy as in the continuum using center of mass and relative coordinates. However,

– 12 –
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H0 is still a multiplication operator. It has a band spectrum for any d, with a finite width

which can become zero if the system masses are equal and the system momentum ~q is equal

to ~π ≡ (π, . . . , π). Furthermore, the ψ’s obey the following orthogonality and completeness
relations ∫ ∫

ψ̄(~x1, ~x2, ~p1, ~k1)ψ(~x1, ~x2, ~p2, ~k2) d~x1d~x2 = δ(~k1 − ~k2) δ(~p1 − ~p2) ;∫
Td

∫
Td ψ̄(~x1

′, ~x2 ′, ~p,~k)ψ(~x1, ~x2, ~p,~k) d~p d~k = δ(~x1 − ~x1 ′) δ(~x2 − ~x2 ′) .
Turning now to the time dependent Schrödinger equation, we write

Ψ(~x1, ~x2, t) =
1

(2π)d

∫
a(~k)φ(~x1, ~x2, ~k) e

−iE(~k)t d~k ,

where Ψ satisfies i∂Ψ∂t = H2Ψ, if we take φ such that

H2 φ = E(~k)φ , (3.2)

with φ(~x1, ~x2, ~k) = ei
~k.(~x1+~x2)χ(~x2 − ~x1, ~k ) and ~χ(~x,~k ) = (2π)−d

∫
b(~p,~k)ei~p.~x d~p. Substi-

tuting in Eq. (3.2), cancelling the ei
~k.(~x1+~x2) factor, and taking the Fourier transform in

the relative coordinate ~x = ~x2 − ~x1, we obtain

[K(~p,~k )− E(~k )]b(~p,~k) + λ

(2π)d

∫
b(~p ′, ~k) d~p ′ = 0 . (3.3)

Multiplying Eq. (3.3) by (K − E)−1(~p,~k) and integrating over ~p leads to the eigenvalue
equation

1 +
λ

(2π)d

∫
Td

d~p

K(~p,~k )− E(~k) = 0 . (3.4)

The corresponding eigenfunction is proportional to ei
~k(~x1+~x2)

∫
Td {ei

~k(~x1−~x2)/[K(~p,~k ) −
E(~k )]} d~p.
We point out that for a general potential V (~x1 − ~x2), we still reduce the two-particle

problem to that of solving a one-particle problem. In this case, Eq. (3.3) becomes, after

cancelling the ei
~k.(~x1+~x2) factor, and setting ~x ≡ ~x2 − ~x1,

1

(2π)d

∫
Td
[K(~p,~k )− E(~k )] b(~p,~k )ei~p.~xd~p+ V (~x) 1

(2π)d

∫
b(~p,~k )ei~p.~x d~p = 0 .

Taking the Fourier transform in ~x gives

[K(~p,~k )− E(~k)]b(~p,~k ) + 1

(2π)d

∫
Td

Ṽ (~p− ~p ′)b(~p ′, ~k ) d~p ′ = 0 ,

i.e., the time-dependent Schrödinger equation in momentum space with a kinetic energy

that depends on the system momentum ~q = 2~k.

Next, we show that the spectrum of the Hamiltonian H1 is obtained from the spectrum

of H2, at zero system momentum. Indeed, for ~k = ~0, Eq. (3.3), with µ = m1m2/(m1+m2),

is
−∆̃(~p)
µ

b(~p ) +
λ

(2π)d

∫
Td

b(~p ′)d~p ′ = Eb(~p ) ,

– 13 –
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which is the equation H1ψ = Eψ in momentum space, taking µ = 2M . We point out that

the above is the same equation as that obtained for normal modes of polarized classical

oscillations of a monatomic isotropic crystalline lattice with an isotopic-like defect at the

origin [6, 7].

4. Spectrum of H2 for Unequal Masses

For d = 1, we have the eigenvalue equation

1 + λ
1

2π

∫ π
−π

1

g(p, q) − z
dp = 0 , (4.1)

where
g(p, q) = 1

2m1
[2d− 2(cos(q/2) cos p− sin(q/2) sin p)]

+ 1
2m2
[2d− 2(cos(q/2) cos p+ sin(q/2) sin p)]

≡ a cos p+ b sin p+ c .

But
∫ π
−π

dp
α cos(p+r)−ζ =

−π
(ζ−α)1/2(ζ+α)1/2 , with a = α cos r, and b = α sin r and ζ = z − c, so

that Eq. (4.1) becomes

1 + λ
−1

2[z − w+(q)]1/2 [z − w−(q)]1/2 = 0 , (4.2)

with solutions

w±(q) =
1

µ
±
[
cos2(q/2)

µ2
+
sin2(q/2)

γ2

]1/2
, (4.3)

µ = m1m2 (m1 + m2)
−1 and γ = m1m2 (m2 − m1)

−1. Note that w±(~q) are precisely,
respectively, the upper and lower envelopes for the band, i.e. the energy envelopes for

two particles with total system momentum ~q. For the attractive case, λ < 0, letting

z = w−(q)− ε, ε > 0, we have a bound state with binding energy

ε = − (w+ − w−)
2

+
1

2

[
(w+ − w−)2 + λ2

]1/2
. (4.4)

The results for unequal masses and d = 1 are depicted in Figure 2.

For dimension d and system momentum ~q = ~π, the bound state equation is

1 +
λ

(2π)d

∫
Td

d~p∑d
j=1

(
1
µ +

sin pj

γ

)
− z

= 0 ,

or, with z = d(1/µ − 1/γ) − ε, the binding energy ε > 0 verifies

1 +
λ

(2π)d

∫
Td

d~p∑d
j=1

1
γ (sin p

j + 1) + ε
= 0 ,

which, noting that 1 + sin pj can be replaced by 1 − cos pj , has a solution for λ < 0, |λ|
arbitrarily small, only for d = 1 , 2, but not for d ≥ 3. This agrees with the Birman-
Schwinger bound (see [13]). The band width at ~q = ~π is 2d/γ.

To close, we remark that the staggering transformation allows us to obtain spectral

results for the repulsive delta function potential (λ > 0) from those of the attractive case

(λ < 0).
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2

E

q

Figure 2: The energy-momentum spectrum for the case d = 1 and unequal

masses, with m2 = 0.2m1. E is the energy and q the one-dimensional

momentum variable, for some fixed value of |λ|. The most inner curves
are the band envelopes. All its interior points also belong to the spec-

trum. Its lower and upper envelopes do not coincide at q = ± π. For
λ < 0, only the isolated bound state lower dispersion curves appear;

for λ > 0, only the isolated upper curves appear. The curves closest

to the band describe bound states for λ2 = 26 and the farthest curves

are for λ2 = 80. These curves change concavity for some momentum

value. Also, the band envelopes change from convex to concave. The

gaps between each pair of symmetrical curves and the band are equal,

and the binding energies increase as the system momentum increases.

5. Spectrum of H2 for Equal Masses

In the case of equal masses, γ becomes +∞. This is the case relevant to the correspondence
with the infinite nonlinear lattice quantum models, since the resolvent of this Hamiltonian

is similar to what occurs in the Bethe-Salpeter equation. This is why our analysis is more

complete here. Without loss of generality, setting 2m1 = 2m2 = 1, we have µ = 1/4. Eq.

(3.3) becomes, for system momentum ~q = 2~k,

4

d∑
j=1

cos
qj

2
(1− cos pj)b(~p) + λ

(2π)d

∫
b(~p′)d~p′ =


E −


4d− 4 d∑

j=1

cos
qj

2




 b(~p) , (5.1)

which is the momentum space form of the normal mode equation for classical polarized

oscillations of an anisotropic crystalline lattice with a point defect [6, 7, 17, 18, 20, 21].

The anisotropy depends on the direction of the system momentum; for ~q = ~0, the first term

is the isotropic kinetic energy −2∆̃(~p).
The eigenvalue equation becomes

1 +
λ

(2π)d

∫
Td

d~p

4d− 4 ∑dj=1 cos(qj/2) cos pj − E = 0 ,
which leads to the equation for the binding energy [see Eq. (5.3) below].
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10

E

q

Figure 3: The equal mass energy-momentum spectrum for the case d = 1. E is

the energy and q the one-dimensional momentum variable, for some

fixed value of |λ|. The most inner curves are the band envelopes. All
its interior points also belong to the spectrum. For λ < 0, only the

isolated bound state lower dispersion curves appear; for λ > 0, only

the isolated upper curves appear. The upper envelope for the band is

concave and the lower one convex. They join each other at q = ± π.
The curves closest to the band describe bound states for λ2 = 1.6 and

the farthest curves are for λ2 = 34. These curves change concavity for

momentum close to ±π. The gaps between each pair of symmetrical
curves and the band are equal, and the binding energies increase as

the system momentum increases.

We first take d = 1. Eqs. (4.1) to (4.4) hold in the γ → ∞ limit. Solving the
bound state equation gives ε = − 12 (w+(q)−w−(q)) +12 [(w+(q) −w−(q))2 + λ2

]1/2
, which

determines Eb(q). From this solution, we see that this bound state curve does not intersect

the band for all values of q.

As for the one-particle case, we now consider the effect of a staggering transformation

on the two-particle Hamiltonian. For d = 1, this will give us a bound state curve, for the

repulsive case, above the band at z = w+(q) − ε, ε > 0, with gap ε given by the same
expression as above, for the attractive case. The final result for d = 1 is summarized in

Figure 3.

Let us turn to the cases d ≥ 2. Setting f(~p, ~q) = 4d − 4∑dj=1 cos(qj/2) cos pj, the
condition for a bound state is

1 +
λ

(2π)d

∫
Td

1

f(~p, ~q)− z d~p = 0 . (5.2)

To determine the bound state below the band, in the attractive case, λ < 0, with fixed

~q, it is convenient to define fmin(~q) ≡ min~p∈Td f(~p, ~q) =
∑d
j=1 4(1 − cos qj/2) and set

z(~q) = fmin(~q) − ε(~q), ε > 0, being the binding energy. The bound state condition of Eq.
(5.2) becomes

1 +
λ

(2π)d

∫
Td

1

4
∑d
j=1 cos(q

j/2)(1 − cos pj) + ε d~p = 0 (5.3)
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Note that the integrand in Eq. (5.3) is positive and is a continuous function of ε > 0.

Another important observation is that, for any d and any λ, there is always a solution

ε(~π) = |λ| to Eq. (5.3), for ~q = ~π. This is a trivial matter since the kinetic energy term

vanishes. The eigenvalue equation is simply λδ(~x)ψ(~x) = E′ψ(~x), E′ = 4 − d = z − 4d =
λ = −ε, which has the multiplicity one eigenfunction δ(~x) with eigenvalue E′ = λ and

the infinite multiplicity eigenvalue zero with eigenfunctions δ(~x − ~u), ~u 6= ~0. For ~q = ~π,

the band is a single point (see Figure 3). The fact that the bound state wave-function

is localized in a single point is to be compared with the bound state (given below) wave

function for ~q = ~0, which has exponential decay. This last result is in agreement with the

results of section 2. All these results follow from the Payley-Wiener theorem [14].

We now give an interesting physical interpretation of the above result. Note that the

cos qj/2 factor in the kinetic energy term in Eq. (5.1) is the inverse of a directional mass

which increases for increasing system momentum, and which, in turn, lowers the energy.

Note that this makes the equal mass case different from the unequal mass case. Due to

the unequal mass term, the operator does not have an interpretation of an anisotropic one-

particle lattice Schrödinger. Also, another difference between the equal and unequal mass

cases is that the band collapses to a single point, at ~q = ~π, when the masses are equal.

For example, in d = 1, we can interpret the H2 eigenvalue equation as an equation for

classical polarized oscillations for particles in a two-dimensional lattice with defects along

a diagonal line through the origin (zero relative coordinate). The bound states correspond

to a multiplicity one normal mode having nonzero displacements only along the line of

defects. There is also an infinite number of other normal modes, along parallel diagonal

lines, for which the nonzero particle displacements only occur on the line. These are the

modes that correspond to the coalescent point of the band.

Back to the general case, if d = 2 and ~q 6= ~π, the integral diverges as ε ↘ 0. Since
the integrand is strictly monotone in the binding energy ε > 0, there is a unique bound

state solution for each λ < 0, which does not intersect the band. For d ≥ 3, the integral
in Eq. (5.3) converges absolutely and remains finite as ε ↘ 0. It defines a positive and
even function of ~q and, for fixed ~q is strictly monotone decreasing for increasing ε. Using

the parity property on the components of ~q, we concentrate our analysis to nonnegative

components qj , j = 1, . . . , d. For fixed λ, differentiating Eq. (5.3) with respect to qj,

j = 1, . . . , d, shows that the components of the gradient of the solutions ε(~q) are continuous

and nonnegative, vanishing only at ~q = ~0. In words, the binding energy increases as the

system momentum increases. This is in contrast to the nonrelativistic continuum case,

where the binding energy is independent of the system momentum. Also, in the case of

particles obeying relativistic kinematics, the binding energy of two particles decreases as

the system momentum increases.

Setting ~q = ~0, a negative bound state solution exists provided that λ < λc(~0) < 0,

where λc(~0) is the λ solution to Eq. (5.3) with ~q = ~0 in the limit ε↘ 0, i.e.

1 +
λc(~0)

(2π)d

∫
Td

1

4
∑d
j=1 (1− cos pj)

d~p = 0 . (5.4)

This is similar to the continuum results where the Birman-Schwinger bounds (see [13])
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excludes bound states below a critical coupling. Thus, using the continuity in ε, we extend

the argument and a solution ε(~q) is shown to exist for a neighborhood of ~q = ~0. A new

critical value λc(~q) < 0 emerges at each ~q. In this way, we can iterate the use of continuity

in ε to show the existence of a solution for each ~q up to ~q near ~π. We remark that, from Eq.

(5.4), we also know that the components of the gradient of λc(~q) are continuous, positive,

finite and strictly increasing functions, for all ~q 6= ~π), the final conclusion is that a bound

state curve, which never intercepts the band, is present at least provided that λ < λc,

where λc is the critical value determined by λc = min~q∈Td λc(~q).
In contrast to the continuum case, we now show, for d ≥ 3, λ < 0 and |λ| arbitrarily

small, that there is a region of ~q space contained in (−π, π]d, and containing ~q = ~π, such that
a bound state exists, We know there is a bound state solution for ~q = ~π and [∂ε/∂qj ](~π) = 2,

so that, for ~q ' ~π, we have ε(~q) ' −λ + 2∑dj=1 (qj − π). That means there is a bound
state for ~q near ~π. The vanishing of the binding energy ε(~q) determines, approximately,

the hyperplane 2
∑d
j=1

(
qj ± π) = λ. Thus, a bound state exists for the region of ~q space

bounded by the boundary of the hypercube (−π, π]d, but bounded away from it, and the
hyperplane. Besides, we know the binding energy vanishes for ε(~q) = 0. Thus, there is

a bound state for a region in ~q-space bounded by the cube (−π, π]d and the hyperplane
2
∑d
j=1

(
qj + π

)
= λ. A more detailed picture of the zero binding energy surface can be

obtained numerically. As an example of a bound state emerging away from zero system

momentum, we consider d = 3 and q2 = q3 = 0. Then the bound state equation becomes

1 +
λ

(2π)3

∫
T3

d~p

h(~p, q1) + ε
= 0 ,

for h(~p, q1) = 4 cos(q1/2)
(
1− cos p1) + 4 (1− cos p2) + 4 (1− cos p3). We consider small

negative λ. For q1 = 0, the integral is finite for ε ≥ 0 such as there is no bound state.
On the other hand, for q1 = π, the integral reduces to a two-dimensional integral which

diverges as ε ↘ 0, and there is a unique bound state solution. By continuity in q1, the
bound state persists down to some minimal value of q1 > 0. We remark that there is a

Birman-Schwinger type bound below this critical q1 value. The approximate bound state

curve is shown in Figure 4.

6. Conclusions

Emphasizing how the use of staggering transformations can be important in understanding

the low-lying spectrum of quantum lattice systems, we have obtained interesting spectral

features for the (one and) two-particle Schrödinger operator on Zd, with a delta potential,

which are expected to occur in some infinite lattice nonlinear quantum systems. Among

other results which are hard to guess on the basis of pure intuition, we show that a bound

state can appear, if d ≥ 3, if the system momentum is sufficiently high, for both the
attractive and the repulsive cases, in all dimensions. Also, even if the strength of the

potential is arbitrarily small, the higher is the system momentum in these cases, the more

stable the pair becomes. Whether this could favor a phenomenon like condensation in some

real system is a good question to be analyzed.
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0

2

4

E

q

Figure 4: The approximate energy-momentum spectrum for the attractive case

d = 3, small coupling and equal masses. The system momentum is

~q = (q1 ≡ q, 0, 0) and E is the energy for some fixed value of |λ|. The
upper curve is the band lower envelope, and we see that a bound state

only occurs for q > 0.

Also, we have developed a framework within which the effect on the spectrum can be

determined for more general potentials. Here we considered perturbation of Laplacians, but

more general kinetic energy operators, as occur in the infinite lattice systems mentioned in

the introduction, can also be analyzed with our methods.

It would be interesting to get a complete picture of the zero binding energy surfaces,

even in the ladder approximation, for the stochastic model, the nonlinear mass spring

system and the spin system described in Refs. [1].

Moreover, it would be relevant to extend the present analysis and consider the role

played by staggering transformations in multi-phase regions and exactly soluble models, as

well as to investigate degeneracies in multi-component cases (see [1]) and the existence of

soliton-anti-soliton solutions for space lattice classical nonlinear wave equations and their

quantum analogues.

Finally to make contact with the main topic of this conference, we think it would be

interesting to investigate the existence of bound states above and below the two-particle

band in exactly soluble lattice models.
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