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Abstract:We briefly review the possible Poisson structures on the chiral WZNW phase

space and discuss the associated Poisson-Lie groupoids. Many interesting dynamical r-

matrices appear naturally in this framework. Particular attention is paid to the special

cases in which these r-matrices satisfy the classical dynamical Yang-Baxter equation or

its Poisson-Lie variant.

1. Introduction

Let me start by recalling the standard classical dynamical Yang-Baxter equation (CDYBE),

[r12(λ), r23(λ)] +H
i
1

∂

∂λi
r23(λ) + cycl. perm. = 0, (1.1)

where r(λ) ∈ G ⊗ G and the variable λ = λiHi lies in a Cartan subalgebra of a simple Lie

algebra. This equation is the classical limit of the Gervais-Neveu-Felder equation

R12(λ+ ~H3)R13(λ)R23(λ+ ~H1) = R23(λ)R13(λ+ ~H2)R12(λ). (1.2)

These equations govern the classical and quantum exchange algebras of the chiral Bloch

waves in the conformal Toda and WZNW field theories on the cylinder [1, 2, 3]. They

also appear in the description of the conformal blocks of the WZNW model on the torus

[4] and in the study of Calogero-Moser models [5]. The CDYBE and its quantized version

have interesting generalizations that play an important role in quantum algebra and in the

theory of integrable systems [6].

The generalizations of (1.1) introduced by Etingof and Varchenko [7] result by replac-

ing the Cartan subalgebra by (the dual space of) any subalgebra H of any Lie algebra
G. Of course, one can also consider the spectral parameter dependent variant of these
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equations. The most important special case, related to affine Kac-Moody algebras, is when

the ‘dynamical variable’ λ belongs to the fixed point set of a Coxeter automorphism of a

simple Lie algebra.

In the context of the classical WZNW model, the variable λ in (1.1) is the logarithm of

the monodromy of the chiral WZNW field. Motivated by our longstanding interest in the

WZNW model as well as by the intense current research activity around the CDYBE, with

J. Balog and L. Palla [8] we have recently explored the most general Poisson structure that

arises on the chiral WZNW phase space without imposing the constraint that the monodromy

belongs to a maximal torus. It turned out that these Poisson structures are parametrized by

solutions of a generalization of the CDYBE, which we call the G-CDYBE. We can actually

find all solutions of the G-CDYBE as part of our analysis of the WZNW model, which is

meant to be a continuation of the pioneering papers [9, 10]. Among the resulting dynamical

r-matrices there is a particularly interesting class associated with Poisson-Lie symmetries

acting on the chiral WZNW phase space. When the Poisson-Lie symmetry degenerates

into usual symmetry, then these r-matrices reduce to a canonical solution of the CDYBE

on G in the sense of [7], which upon further Dirac reduction to suitable subalgebras of
G (and by certain limiting procedures) reproduces many of the known r-matrices of the
Etingof-Varchenko type.

Here I present a brief review of the main results that we obtained in [8], touching also

on their further clarifications published in [11, 12] . For lack of time, I cannot deal with

several related questions elaborated in the papers [13, 14, 15, 16, 17]. More detailed reviews

of some aspects of our work can be found in [18, 19].

2. G-CDYBE from the chiral WZNW phase space

The WZNW model [20] as a classical field theory on the cylinder can be defined for any

(real or complex) Lie group G whose Lie algebra G is self-dual in the sense that it is
equipped with an invariant, symmetric, non-degenerate bilinear form 〈 , 〉. The solution
of the classical field equation for the G-valued WZNW field, which is 2π-periodic in the

space variable, is given by the product of left- and right-moving chiral WZNW fields that

are quasi-periodic. By restricting the ‘monodromy matrix’ to lie in some open submanifold

Ǧ ⊆ G, we thus obtain the chiral WZNW phase space

MǦ := {g ∈ C∞(R, G) | g(x + 2π) = g(x)M M ∈ Ǧ}. (2.1)

If one wishes to induce the Poisson structure of the full WZNWmodel from Poisson brackets

(PBs) of chiral fields varying inMǦ, then the only possibility is to equip MǦ with a PB

of the following form:

κ
{
g(x) ⊗, g(y)

}r
WZ
= (g(x)⊗ g(y))

(
1

2
C sign (y − x) + r(M)

)
, 0 < x, y < 2π. (2.2)

Here the interesting object is the ‘exchange r-matrix’ r(M) = rab(M)Ta ⊗ Tb ∈ G ∧ G;
C = Ta ⊗ T a where {Ta} and {T a} denote dual bases of G, 〈Ta, T b〉 = δba. One way to
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derive this PB is to invert the symplectic form ΩρWZ onMǦ found by Gawedzki [9]:

1

κ
ΩρWZ(g) = −

1

2

∫ 2π
0

dx 〈(g−1dg) ∧, (g−1dg)′〉 − 1
2
〈(g−1dg)(0) ∧, dMM−1〉+ ρ(M) (2.3)

with some 2-form ρ on Ǧ. Another method that leads directly to (2.2) uses the requirements

that J := κg′g−1 must be an affine Kac-Moody current with respect to which g is a chiral
primary field, and that the WZNW solution space must be obtained from the product of

two independent chiral phase spaces by imposing first class constraints. Both methods

are explained in detail in [8, 18]. In either way, one can show that the PBs in (2.2) are

accompanied by

κ{g(x) ⊗, M}rWZ = (g(x)⊗M)Θ(M) and κ{M ⊗, M}rWZ = (M ⊗M)∆(M), (2.4)

with

Θ(M) = r+(M)−M−1
2 r−(M)M2, ∆(M) = Θ(M)−M−1

1 Θ(M)M1 (2.5)

where r± := r± 12C, M1 =M ⊗ 1, M2 = 1⊗M . In fact [8], the Jacobi identity1 of the PB
(2.2) is equivalent to the following equation:

[r12(M), r23(M)] + T
a
1

(
1

2
D+a + r ba (M)D−b

)
r23(M) + cycl. perm. = −1

4
f̂ . (2.6)

Here f̂ := f c
ab T

a⊗T b⊗Tc with [Ta, Tb] = f c
ab Tc, r23 = r

ab(1⊗Ta⊗Tb) and T a1 = T a⊗1⊗1
as usual; for any function ψ on G we use

D±a = Ra ± La with (Raψ)(M) := d

dt
ψ(MetTa)

∣∣∣
t=0

, (Laψ)(M) := d

dt
ψ(etTaM)

∣∣∣
t=0

.

(2.7)

We call equation (2.6) the G-CDYBE since it is a generalization of the CYBE for an

r-matrix depending on a G-valued ‘dynamical variable’. The G-CDYBE becomes the

standard modified-CYBE if r is an M -independent constant.

In the symplectic formalism [9, 10, 18] based on ΩρWZ (2.3) the need to restrict to some

submanifold of G arises since the condition dΩρWZ = 0 translates [9] into

dρ =
1

2
〈[M−1dM,M−1dM ],M−1dM〉, (2.8)

which in general does not admit a global solution on G, as is well known. In the alternative

approach in which (MǦ, { , }rWZ) is required to be a (not necessarily non-degenerate)
Poisson space, the only condition is that r : Ǧ → G ∧ G must be a regular (smooth or
holomorphic) solution of the G-CDYBE (2.6) on some open submanifold Ǧ ⊆ G.
Note that the exchange r-matrix can be constant, which is the case considered mostly

in the early papers (see e.g. [22, 23, 24, 25, 10] and references therein), if (2.6) has such

a solution. The real forms of the simple Lie algebras that admit a constant solution [26]

include the split real form, but exclude the compact one.

1As explained in [14], by setting r(M) = 0 in (2.2) one obtains a quasi-Poisson structure [21] onMG.
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3. The canonical r-matrix and its Dirac reductions

We actually have all solutions of the G-CDYBE locally in a neighbourhood of e ∈ G. More
precisely, we have an explicit one-to-one correspondence between the solutions ρ of (2.8)

and the solutions r of (2.6) around e ∈ G. Such a correspondence was derived originally
by inverting ΩρWZ [8], but later a purely finite dimensional proof of it has also been given

[16].

A particularly interesting exchange r-matrix arises if the PB (2.2) permits the ‘gauge

action’ of the group G onMǦ, given by

MǦ ×G 3 (g(x), h) 7→ g(x)h, (3.1)

to operate as a classical G-symmetry generated by the logarithm of the monodromy matrix.

In this case the PB (2.2) does not change under (3.1) and we have

κ{g(x),ma}rWZ = g(x)Ta, κ{ma,mb}rWZ = −f c
ab mc for M = em, (3.2)

where m = logM lies in a neighbourhood of zero, Ǧ ⊂ G, diffeomorphic to Ǧ by the
exponential map. In the notion of ‘classical symmetry’ it is understood that the elements

of the symmetry group have zero PBs with everything. Let r0(m) denote an exchange

r-matrix that permits such a symmetry on MǦ. Upon comparing (2.4), (2.5) with (3.2),

it follows that (2.6) can now be rewritten in the form

[
r012(m), r

0
23(m)

]
+ T a1

∂

∂ma
r023(m) + cycl. perm. = −

1

4
f̂ , (3.3)

and it is also easy to see that r0(m) must be G-equivariant,

r0(hmh−1) = (h⊗ h)r0(m)(h−1 ⊗ h−1) ∀h ∈ G. (3.4)

It is natural to search for an equivariant r-matrix by using the ansatz

r0(m) = 〈Ta, f0(adm)Tb〉T a ⊗ T b, (3.5)

where f0(z) is assumed to be a holomorphic, odd complex function in a neighbourhood of

zero on the complex plane. Then (3.3) yields a functional equation [11] for the holomorphic

function f0, whose unique solution is provided by

f0(z) =
1

2
coth

z

2
− 1
z
. (3.6)

This joint solution of (2.6) and (3.3) has been derived in [8] by means of inverting the

symplectic form (2.3) for the 2-form

ρ0(M) = −1
2

∫ 2π
0

dx〈dm̄ ∧, dexm̄ e−xm̄〉, m̄ :=
1

2π
logM, (3.7)

which satisfies (2.8) and renders Ωρ0WZ invariant under (3.1).

– 4 –
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Note that equation (3.3) with (3.4) is the CDYBE on the Lie algebra G in the sense of
[7] (or ‘modified’ CDYBE on account of the non-zero right-hand side). Somewhat implicitly,

the solution of the CDYBE on a simple Lie algebra given by (3.5), (3.6) is already contained

in [7]. It was also found in [27] in the context of equivariant cohomology. Its uniqueness

property under the ansatz (3.5) is proven in [11], where this r-matrix is called ‘canonical’.

(This uniqueness property should be compared with the description of the ‘moduli space’

of the solutions of (3.3), (3.4) given in [28].)

The canonical r-matrix described above plays a distinguished role among the solutions

of the CDYBE in the Etingof-Varchenko sense. To explain this, let H ⊂ G be a self-
dual subalgebra (on which 〈 , 〉 remains non-degenerate), and consider the associated
decomposition G = H⊕H⊥. Then define r∗ : Ȟ → End(G) by

r∗(λ)(X) = f0(ad λ)(X) ∀X ∈ H, r∗(λ)(Y ) =
1

2
coth(

1

2
adλ)(Y ) ∀Y ∈ H⊥. (3.8)

We here use the Laurent series expansion of 12 coth(
z
2 ) around z = 0, the z

−1 term in
the expansion corresponds to the operator (adλ)−1 on H⊥. The open domain Ȟ ⊂ H is
restricted by the condition2 that r∗(λ) must be well defined by formula (3.8) for λ ∈ Ȟ.
By using the identification End(G) ' G ⊗ G defined by the scalar product on G, it can be
shown that r∗ solves the CDYBE on H ⊂ G:

[r∗12(λ), r
∗
23(λ)] +H

i
1

∂

∂λi
r∗23(λ) + cycl. perm. = −

1

4
f̂ , λ ∈ Ȟ ⊂ H, (3.9)

where H i denotes a basis of H.
The standard solution of the original CDYBE (1.1), which first appeared in [3] (see

also [29, 30]), is recovered from (3.8) by taking r := r∗ ± 1
2C and identifying H with a

Cartan subalgebra of a simple Lie algebra.

The passage from r0 to r∗ corresponds to Dirac reduction in two senses. First, the phase
space MǦ equipped with the canonical exchange r-matrix can be reduced by restricting

the monodromy to exp(Ȟ), whereby the Dirac brackets of the chiral WZNW field take the
same form as the PB in (2.2), but with r∗ appearing in the role of the exchange r-matrix
[19]. Second, as developed in [15], the Dirac reduction can also be implemented on the

Poisson-Lie groupoids that enter the geometric interpretation of the CDYBE introduced

in [7].

Finally, it is worth noting that formula (3.8) contains Felder’s celebrated spectral

parameter dependent elliptic dynamical r-matrices [4] and some generalizations of them,

too. They are obtained [7, 31, 17] by taking G to be an affine Kac-Moody type Lie algebra
with H being a grade zero subalgebra in an integral gradation, and applying an evaluation
homomorphism.

4. Exchange r-matrix compatible with any PL structure

We have seen that by an appropriate choice of the exchange r-matrix the gauge action

(3.1) can be interpreted as a classical G-symmetry on MǦ. Interestingly, we can achieve

the same with respect to any (coboundary) Poisson-Lie (PL) structure on G.
2A non-empty domain exists, for example, if H is a reductive subalgebra of a simple Lie algebra.

– 5 –
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Let us equip the group G = {h} with a PL structure by means of the Sklyanin bracket
κ{h ⊗, h}Rν = [h⊗ h,Rν ], (4.1)

where Rν ∈ G ∧ G is a constant r-matrix satisfying
[Rν12, R

ν
23] + cycl. perm. = −ν2f̂ (4.2)

for some constant ν. (Note that ν must be purely imaginary, or zero, if G is compact.)

Then look for the conditions on r(M) that guarantee the standard right action (3.1) of G

onMǦ to be a PL action. In fact, we find the requirement

K(hMh−1) = (h⊗ h)K(M)(h−1 ⊗ h−1) for K(M) := r(M)−Rν . (4.3)

This means that the gauge action (3.1) of (G, { , }Rν ) on (MǦ, { , }rWZ) is a PL symmetry
if and only if the exchange r-matrix r(M) is such a solution of (2.6) for which the difference

(r(M)−Rν) is G-equivariant.
By using the substitution r(M) = Rν+K(M) together with (4.2) and the equivariance

condition (4.3), the G-CDYBE (2.6) can be rewritten in the form

[K12(M),K23(M)]− 1
2
T a1D+a K23(M) + cycl. perm. = (

1

4
− ν2)f̂ . (4.4)

This equation for an equivariant K : Ǧ→ G ∧ G may be referred to as the PL-CDYBE on
G since it guarantees PL G-symmetry on the chiral WZNW phase space. It is remarkable

that the reference r-matrix Rν enters into this equation only through the constant ν in

(4.2).

In a neighbourhood of e ∈ G, it is natural to search for K(M) with the aid of the

ansatz

K(M) = 〈Ta, fν(adm)Tb〉T a ⊗ T b, m = logM, (4.5)

where fν(z) is assumed to be a holomorphic, odd complex function in a neighbourhood of

zero on the complex plane. Then (4.4) yields a functional equation [12] for the holomorphic

function fν, whose unique solution is found to be

fν(z) =
1

2
coth

z

2
− ν coth νz. (4.6)

The exchange r-matrices provided by this result were first found in [8] by using a different

(more complicated) method, their uniqueness under the ansatz (4.5) has been established

in [12].

Some further remarks are here in order. First, note that for ν = 0 fν in (4.6) becomes

the function f0 in (3.6). The corresponding exchange r-matrix is thus compatible with

classical G-symmetry (for R0 = 0) as well as with PL symmetry for any antisymmetric

solution R0 6= 0 of the CYBE. Second, if ν = 1
2 then r = R

1
2 , which is the case of the

constant exchange r-matrices. Third, as mentioned before, for a compact Lie algebra G
constant exchange r-matrices do not exist, because of the negative sign on the right-hand

side of (2.6), but the above solutions of (2.6) are available also in this case using a purely

imaginary ν in (4.2).

– 6 –
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5. Finite dimensional phase spaces related to WZNW

The chiral WZNW Poisson structure (2.2) is fixed once a solution of the G-CDYBE (2.6)

is given. It appears interesting that the WZNW exchange r-matrices also encode the PBs

on certain finite dimensional Poisson manifolds. Indeed, it has been found in [8] that on

the manifold

P := Ǧ×G× Ǧ = {(ML, g,MR)}, (5.1)

the following formula defines a PB, { , }rP , for any solution r : Ǧ→ G∧G of the G-CDYBE:

κ{g1, g2}rP = g1g2r(MR)− r(ML)g1g2

κ{g1,MR
2 }rP = g1MR

2 Θ(M
R)

κ{g1,ML
2 }rP =ML

2 Θ(M
L)g1

κ{MR
1 ,M

R
2 }rP =MR

1 M
R
2 ∆(M

R)

κ{ML
1 ,M

L
2 }rP = −ML

1 M
L
2 ∆(M

L)

κ{MR
1 ,M

L
2 }rP = 0. (5.2)

We use Θ and ∆ defined in (2.5), and to maintain the obvious similarity to (2.4) we even

included the arbitrary constant κ (the classical level parameter) into this definition. We

stress that g ∈ G is here x-independent. In fact, (P, { , }rP ) is an example of a Poisson-Lie
groupoid in the sense of [32]. This PL groupoid ‘extracted’ from (MǦ, { , }rWZ) provides a
geometric interpretation of the G-CDYBE analogous to the interpretation of the Etingof-

Varchenko r-matrices [7]. If r is associated with classical G-symmetry onMǦ as described

in Section 3, then our PL groupoid is essentially identical with the ‘dynamical PL groupoid’

of [7] that encodes the CDYBE (3.3) on G.
In analogy with the CDYBE on G, the PL-CDYBE (4.4) admits a ‘canonical’ interpre-

tation [12] in terms of well known objects of PL geometry, which is nicer than the general

case (5.2). To describe this, let us now denote the elements of P differently as

P := Ǧ×G× Ǧ = {(ΩL, g,ΩR) |ΩL,R ∈ Ǧ, g ∈ G}, (5.3)

where Ǧ ⊂ G is some open submanifold. Then let R := R 1
2 ∈ G ∧G be a constant solution

of (4.2) with ν = 1
2 and let K : Ǧ 7→ G ∧ G be a (smooth or holomorphic) map. Now

consider the following ansatz for a PB, { , }can, on P :

{g1, g2}can = (R+K(ΩL))g1g2 − g1g2(R+K(ΩR))
{g1,ΩR2 }can = g1(R−ΩR2 − ΩR2R+)
{g1,ΩL2 }can = (R−ΩL2 − ΩL2R+)g1
{ΩR1 ,ΩR2 }can = −RΩR1 ΩR2 − ΩR1 ΩR2R+ΩR1R−ΩR2 +ΩR2R+ΩR1
{ΩL1 ,ΩL2 }can = RΩL1ΩL2 +ΩL1ΩL2R−ΩL1R−ΩL2 − ΩL2R+ΩL1
{ΩR1 ,ΩL2 }can = 0. (5.4)

Note that R± := R± 12C and that the dynamical r-matrix K appears only in the first line
of formula (5.4). We assume that K is a G-equivariant map, since anyhow this is required

– 7 –
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locally around e ∈ G by the Jacobi identity {{g1, g2}can,ΩL3 }can + cycl. perm = 0 and its
counterpart with ΩR. The only nontrivial Jacobi identity to check is the one involving

{{g1, g2}can, g3}can. This condition is found to be equivalent to the following version of the
PL-CDYBE:

[K12,K23] + 1
2
T a1D+a K23 + cycl. perm. = I on Ǧ, (5.5)

where I is an arbitrary G-invariant constant element of G ∧ G ∧ G.
If we set K = −K and I = (14 − ν2)f̂ , then (5.5) becomes identical to (4.4). If K is

given by (4.5) with (4.6), then the PB in (5.2) can be converted into (a multiple of) the

PB in (5.4) by a certain change of variables. This will be described in detail in a future

publication.

In fact [33, 34], for K = 0 the PB (5.4) becomes the canonical PB of the Heisenberg
double of the PL group G equipped with the Sklyanin PB that belongs to R, if one further
sets ΩR = g−1ΩLg. Thus ΩL and ΩR define directly the momentum maps that generate
the natural PL actions of G on (P, { , }can) that act by left and right-multiplications on g.
It is known [33, 34] how to quantize the Heisenberg double, i.e., the PB (5.4) with

K = 0. It is an interesting open problem to perform the quantization of (P, { , }can) in the
case

K(Ω) = −〈Ta, fν(ad (log Ω))Tb〉T a ⊗ T b (5.6)

with the function fν in (4.6), which are the unique solutions of the PL-CDYBE (5.5) given

in terms of a complex analytic function. One should consider the quantization of the PB

(5.2) also in the general case; the resulting structure should be related to the ‘quantum

algebraic properties’ of the WZNW conformal field theory. This appears to be a natural

idea in the context of the programme to canonically quantize the WZNW model and to

study the associated ‘chiral zero modes’ (see [34], [35] and references therein).

6. Concluding remarks

The results reported so far in this talk can be extended in several directions. For example,

one can consider the dynamical r-matrices that arise in the classical WZNW model with

twisted boundary condition associated with a finite order automorphism, µ, of the group

G. Denote also by µ the induced automorphism of G, of order N say, and suppose that
it preserves the ‘scalar product’ 〈 , 〉 on G. In this case the full WZNW field satisfies
gWZ(σ + 2π, τ) = µ(gWZ(σ, τ)) and the corresponding chiral fields obey

g(x+ 2π) = µ(g(x))M, M ∈ G. (6.1)

Let us assume for simplicity that G is a complex simple Lie group, and use the decompo-

sition

G = ⊕N−1a=0 Ga, µ(X) = exp(2πi
a

N
)X ∀X ∈ Ga. (6.2)

In order to obtain a twisted analogue of the canonical r-matrix, we restrict the monodromy

to the form M = eλ with λ varying in an open domain, Ǧ0, in G0. Then we enquire about

– 8 –
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the PB of the µ-twisted chiral WZNW field under the assumption that it enjoys classical

G0-symmetry. In fact, we find that such a PB again has the form (2.2) with the exchange

r-matrix rµ : Ǧ0 → G ⊗ G ' End(G) given by

rµ(λ) =

{
f0(adλ) on G0

1
2 coth

(
1
2adλ− iπ aN

)
on Ga for a 6= 0, (6.3)

where f0 appears in (3.6). This dynamical r-matrix was originally found
3 [28] as a solution

of the CDYBE on G0 (eq. (3.9) with H := G0). It can be derived by calculating the PBs on
the µ-twisted chiral WZNW phase space with M ∈ Ǧ0 and the symplectic form defined by
using (2.3) with the restriction of ρ0 in (3.7) to Ǧ0. If G0 is non-Abelian, then further Dirac
reduction to a Cartan subalgebra of G0 (and intermediate cases) is also possible, yielding
‘twisted analogues’ of the r-matrices in (3.8). In the cases for which G0 is Abelian, the
Wakimoto type free field realizations of the chiral WZNW field can be worked out following

the lines of [13].

So far I have performed the above analysis under the simplifying assumption that G
is complex and simple, but it should not be difficult to generalize it to any self-dual Lie

algebra equipped with a finite order automorphism compatible with the scalar product.

Dynamical exchange r-matrices appear not only in the (twisted) chiral WZNW model,

but also in its intriguing generalization introduced recently by Klimcik. In particular,

Felder’s r-matrix [4] encodes the PBs of the chiral fields in this model [37]. Therefore it is

natural to expect that this model with twisted boundary condition should accommodate

in its PBs the generalizations of Felder’s r-matrices [31, 17] associated with twisted affine

Kac-Moody algebras, but further work is needed to clarify the situation.

Another problem, which is currently under investigation, concerns the correspondence

between some of the r-matrices mentioned in the talk and spin Calogero-Moser type in-

tegrable systems. At the classical level, it seems straightforward how to generalize the

method of [5, 38] to any solution of the CDYBE on H ⊂ G (3.9) as well as to solutions of
the spectral parameter dependent CDYBE on self-dual Lie algebras. It is not clear however

if this method will lead to new and interesting integrable systems or not. We also would

like to see if the natural generalization of the CDYBE on G given by the PL-CDYBE (5.5)
is related to (perhaps spin Ruijsenaars type) integrable systems. I hope to report on these

questions on another occasion.
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3In [28] the simplicity of G is not assumed, see also [17, 36].
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