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Abstract:We report on our recent systematic study of the integrability of the Calogero

models using the traditional Lax representation due to Moser and, in its general form, to

Olshanetsky and Perelomov, based on (semi-) simple Lie algebras or on symmetric pairs,

but concentrating on the construction of a dynamical R-matrix within this context. Intro-

ducing a new family of generators in the Cartan subalgebra of the corresponding simple

Lie algebra and assuming the usual functional identities satisfied by the functions that

appear in the interaction potential, we show that the conditions guaranteeing integrabil-

ity can be reduced to a set of algebraic constraints on these generators. As it turns out,

these algebraic constraints impose strong restrictions on the (semi-) simple Lie algebra or

symmetric pair underlying the construction.
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1. Introduction

In recent years, the concept of a “dynamical” R-matrix – as opposed to that of a

“numerical” R-matrix which has over the last two decades given rise to an entire new

branch of mathematics (see, e.g., the books by Ma [1] and by Chari and Pressley [2]) –

has received increasing attention. Dynamical R-matrices first appeared in certain non-

ultralocal models of 1+1 - dimensional field theory [3], in particular the non-linear sigma

models [4]. Somewhat later, they were also found to arise in mechanics, more specifically

in the Calogero-Moser-Sutherland models [5] or Calogero models, as we shall call them

for short [6]. Their mathematical status, however, is still far from being fully understood.

For example, it has been repeatedly conjectured that they might be no more than simple

“gauge transforms” of standard numerical R-matrices. Thus the Calogero models, which
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are Hamiltonian systems with finitely many degrees of freedom, provide an ideal theoretical

laboratory for conceptual investigations concerning the mathematical nature of dynamical

R-matrices – unlike the non-linear sigma models where such studies are hampered by the

jump singularities that plague the Poisson brackets between the entries of the monodromy

matrix and require regularization.

In classical mechanics, which is the context of our analysis, the standard tool for

handling integrable Hamiltonian systems is the reformulation of their equations of motion

as a Lax equation

L̇ = [L,M ] , (1.1)

where L and M are mappings L,M : P → g from the phase space P of the model

into some Lie algebra g. Once this has been achieved, it is obvious that the ad-invariant

functions on g furnish conserved quantities. In the simplest case they are given by the

trace polynomials in some irreducible representation,

Fk(L) = tr(L
k) , (1.2)

and it is required that the Hamiltonian of the model be one of them: in the simplest case,

it will be the quadratic invariant:

H = 1
2 tr(L

2) . (1.3)

Moreoever, these conserved quantities will be in involution if the entries of L satisfy the

so-called fundamental Poisson bracket relation

{L1, L2} = [R12, L1] − [R21, L2] , (1.4)

where R is a mapping R : P → U(g) ⊗ U(g) from the phase space P of the model into
the second tensor power of the universal enveloping algebra U(g) of g and we employ the

usual tensor notation, where L1 = L⊗ 1, L2 = 1 ⊗ L, R12 is R and R21 is the transpose
of R [7]. The fact that R may exhibit non-trivial dependence on the phase space variables

is indicated by saying that the R-matrix is “dynamical”. When R does not depend on the

phase space variables, one says that the R-matrix is “constant” or “numerical”; an example

of this situation is provided by the Toda models.

2. Calogero models

The Hamiltonian of the Calogero models describing n particles on a line with pairwise

interaction is given by the expression

H(q, p) =
1

2

( n∑
j=1

p2j + g
2

n∑
k,l=1
k 6=l

w(qk − ql)2
)
, (2.1)
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where g is a coupling constant and w is defined by

w(t) =




1

t
for the rational model

1

sin(t)
for the trigonometric model

1

sinh(t)
for the hyperbolic model

(2.2)

For the sake of completeness, we would like to mention that the Calogero models with any

one of these three types of potential are collectively referred to as the degenerate Calogero

models, as opposed to the elliptic Calogero models where the potential is given by the

Weierstrass ℘ -function.

All these potentials are singular at the origin, so the relative ordering between the

particle positions is a constant of motion. Therefore, we may assume without loss of

generality that the configuration space of the model is an open subset of Rn defined by

some fixed ordering such as, for example,

q1 < . . . < qn . (2.3)

A Lax pair for this model was found by Moser in the degenerate case and by Krichever in

the elliptic case [5], whereas the corresponding dynamical R-matrix was first constructed

by Avan & Talon in the degenerate case and by Sklyanin in the elliptic case [6]; explicitly,

they are in the degenerate case given by

L =

n∑
j=1

pjEjj + i g

n∑
k,l=1
k 6=l

w(qk − ql)Ekl , (2.4)

M = i g
n∑

k,l=1
k 6=l

w′′(qk − ql)
2w(qk − ql) (Ekk −

1

n
1) + i g

n∑
k,l=1
k 6=l

w′(qk − ql)Ekl , (2.5)

and

R = −
n∑

k,l=1
k 6=l

w(qk − ql)
(
Ekk − 1

n
1
)
⊗ Ekl +

n∑
k,l=1
k 6=l

w′(qk − ql)
w(qk − ql) Ekl ⊗ Elk , (2.6)

where the symbol Ekl denotes the elementary matrix with 1 in the k
th row and lth column

and 0 everywhere else, explicitly given by (Ekl)ij = δkiδlj .

2.1 Generalization to simple Lie algebras

Consider a simple complex Lie algebra g of rank r with Cartan subalgebra h and root

system ∆. Let g
R
be the normal real form of g and write h

R
for the intersection of

g
R
with h. The algebraic setting encountered above corresponds to the situation where

g = sl(n,C) and g
R
= sl(n,R). In general, the configuration space Q of the model will be

(the interior of) a Weyl chamber within h
R
, and the phase space P is its cotangent bundle

– 3 –
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T ∗Q = Q× h
R
which we may identify with its tangent bundle TQ = Q× h

R
. Choosing

an orthonormal basis {H1, . . . ,Hr} of hR, extended to a Cartan-Weyl basis of g with
appropriately normalized root generators Eα, and introducing the vectors q =

∑r
j=1 qjHj

in Q and p =
∑r
j=1 pjHj in hR, we obtain the Hamiltonian

H(q, p) =
1

2

( r∑
j=1

p2j +
∑
α∈∆

g2α w(α(q))
2
)
, (2.7)

where the coupling constants gα are supposed to be invariant under the Weyl group W (g).

A Lax pair for this more general context was first proposed by Olshanetsky and Pere-

lomov [8]. In Ref. [9], their construction has been simplified through the introduction of

a new set of generators Fα in hR, over and above the standard Hα, which allow to write

down explicit expressions for the Cartan part of the matrix M as well as for the dynamical

R-matrix, namely

L =

r∑
j=1

pjHj +
∑
α∈∆

i gα w(α(q))Eα , (2.8)

M = −
∑
α∈∆

i gα
w′′(α(q))
2w(α(q))

Fα +
∑
α∈∆

i gα w
′(α(q))Eα , (2.9)

and

R =
∑
α∈∆

w(α(q))Fα ⊗ Eα +
∑
α∈∆

w′(α(q))
w(α(q)

Eα ⊗ E−α . (2.10)

As shown in Ref. [9], the required equivalence between the equations of motion derived from

the Hamiltonian (2.7) and the Lax equation (1.1) as well as the validity of the fundamental

Poisson relation (1.4) are then guaranteed if and only if one imposes the following set of

algebraic constraints on the generators Fα:

gα α(Fβ) − gβ β(Fα) − gα+β Nα,β = 0 , (2.11)

where the Nα,β are the structure constants of g, defined by [Eα, Eβ] = Nα,βEα+β .

Decomposing Fα into its even and odd part F
±
α =

1
2 (Fα ± F−α) , these constraints split

into two independent sets, namely

gα α(F
+
β ) − gβ β(F+α ) − gα+β Nα,β = 0 , (2.12)

gα α(F
−
β ) − gβ β(F−α ) = 0 , (2.13)

the second of which is easily solved by putting F−α = λ gαHα where λ is an arbitrary
constant. The same algebraic constraints are obtained in the case of the elliptic Calogero

models.

Explicit calculations show that the only simple complex Lie algebras that admit a

solution of these constraints are those of the A-series. More precisely, we can state the

following

– 4 –
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Theorem 1. For the simple complex Lie algebras g = sl(n,C) of the A-series, the alge-

braic constraint (2.12) has the non-trivial solution

F+ij = − 1
2

(
Eii + Ejj

)
+
1

n
1 (2.14)

for 1 ≤ i 6= j ≤ n (where Fαij and F±αij have been abbreviated to Fij and F±ij , respectively).
In all other cases, the algebraic constraint (2.11) has no solution.

The last statement constitutes a no-go theorem that for a long time has been conjectured

but has for the first time been proven explicitly in Ref. [9].

2.2 Generalization to irreducible symmetric pairs

Consider an irreducible symmetric pair (g, θ) of rank r, that is, a simple complex Lie

algebra g together with an involutive automorphism θ, leading to the orthogonal direct

decomposition

g = k⊕m (2.15)

of g into the θ = +1 - eigenspace k which is a subalgebra and the θ = −1 - eigenspace m,
with the standard commutation relations [k, k ]⊂ k, [k,m ]⊂m and [m,m ]⊂ k. We choose
a maximally noncompact θ-invariant Cartan subalgebra h of g, leading to an analogous

orthogonal direct decomposition

h = b⊕ a (2.16)

where a is a maximal abelian subspace of m [10, 11] and divide the corresponding root

system ∆ into two subsystems – the system ∆0 of roots that vanish on a and the system ∆̃

of all other roots. Let g0 be the unique real form of g such that the restriction of θ to g0 is

the Cartan involution of g0, and write k0, m0, h0, b0 and a0 for the intersection of g0 with

k, m, h, b and a, respectively; then h0 = b0⊕ a0 whereas hR = ib0⊕ a0 . The configuration
space Q of the model is now (the interior of) a Weyl chamber in a0 and hence the phase

space P is its cotangent bundle T ∗Q = Q × a∗0 which we may identify with its tangent
bundle TQ = Q× a0. Choosing an orthonormal basis {H1, . . . ,Hr} of a0, complemented
by an orthonormal basis {Hr+1, . . . ,Hr+s} of ib0 and extended to a Cartan-Weyl basis of g
with appropriately normalized root generators Eα satisfying the condition

1 θEα = Eθα,

and introducing the vectors q =
∑r
j=1 qjHj in Q and p =

∑r
j=1 pjHj in a0 as before,

we obtain the Hamiltonian

H(q, p) =
1

2

( r∑
j=1

p2j +
∑
α∈ ∆̃

g2α w(α(q))
2
)
, (2.17)

which is formally the same as before, provided we assume the coupling constants gα to

vanish for α ∈∆0; moreover, we suppose them to be invariant under the automorphism θ
(gθα = gα) as well as under the Weyl group W (g, θ) associated with the symmetric pair

1In the Appendix of Ref. [9], it is (erroneously) claimed that the root generators Eα can always be chosen

to satisfy this condition, while it is in general only possible to achieve this up to signs. See the erratum to

Ref. [9].
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(g, θ), which is defined to be the centralizer of θ in the full Weyl group W (g) of g. Again,

a Lax pair for this case was first proposed by Olshanetsky and Perelomov [8], and again,

their construction has been simplified in Ref. [9] through the introduction of a new set of

generators in ib0, denoted here by Kα rather than Fα, invariant under the automorphism θ

(Kθα = Kα), which allow to write down explicit expressions for the Cartan part of the

matrix M as well as for the dynamical R-matrix, namely

L =
r∑
j=1

pjHj +
∑
α∈ ∆̃

i gα w(α(q))Eα , (2.18)

M = −
∑
α∈ ∆̃

i gα
w′′(α(q))
2w(α(q))

Kα +
∑
α ∈ ∆̃

i gαw
′(α(q))Eα , (2.19)

and

R =
∑
α∈ ∆̃

w(α(q))Kα ⊗ Eα + 1
2

∑
α∈ ∆̃

w′(α(q))
w(α(q)

(
Eθα ⊗ E−α + Eα ⊗ E−α

)
. (2.20)

As before, the required equivalence between the equations of motion derived from the

Hamiltonian (2.17) and the Lax equation (1.1) as well as the validity of the fundamental

Poisson relation (1.4) can be shown [9] to hold if and only if one imposes the following set

of algebraic constraints on the generators Kα:

gα α(Kβ) − gβ β(Kα) − 1
2

(
gα+β Nα,β + gθα+β Nθα,β

)
= 0 , (2.21)

where the Nα,β are as before but are required to be θ-invariant (Nθα,θβ = Nα,β). Again,

decomposing Kα into its even and odd part K
±
α =

1
2 (Kα ±K−α) , these constraints split

into two independent sets, namely

gα α(K
+
β ) − gβ β(K+α ) − 1

2

(
gα+β Nα,β + gθα+β Nθα,β

)
= 0 , (2.22)

gα α(K
−
β ) − gβ β(K−α ) = 0 , (2.23)

the second of which is easily solved by putting K−α = λ gα(Hα)b =
1
2 λ gα(Hα + θHα)

where λ is an arbitrary constant. The same algebraic constraints are obtained in the case

of the elliptic Calogero models.

The problem of solving these constraints or else of proving that there is no solution

has not yet been tackled in full generality. Complete results are however available for the

symmetric pairs of the AIII- series:

Theorem 2. For the symmetric pairs of the AIII- series corresponding to the complex

Grassmannians, that is, the symmetric spaces SU(p + q)/S(U(p) × U(q)) (compact type)
or SU(p, q)/S(U(p) × U(q)) (noncompact type), the algebraic constraint (2.21) admits a
solution if and only if

|q − p| 6 1 ,
which in terms of the explicit matrix representation employed in Ref. [9] is given as follows.

Assuming that p 6 q, let n = p + q and, for 1 ≤ i ≤ n, define θ(i) by θ(i) = i + q for
1 6 i 6 p, θ(i) = i for p + 1 6 i 6 q (applicable only when p < q) and θ(i) = i − q for
q + 1 6 i 6 n . Then abbreviating Kαij and K±αij to to Kij and K

±
ij , respectively, we have

– 6 –



P
r
H
E
P
 
u
n
e
s
p
2
0
0
2

Workshop on Integrable Theories, Solitons and Duality Michael Forger

• if q = p, n = 2p, then

K+ij = −
1

4

(
Eii + Ejj + Eθ(i) θ(i) + Eθ(j) θ(j)

)
+
1

n
1 (2.24)

for 1 ≤ i 6= j ≤ n , independently of the values of the two free coupling constants
g and g2 allowed by Weyl group invariance;

• if q = p+ 1, n = 2p+ 1, then

K+ij = −
1

4

(
Eii + Ejj + Eθ(i) θ(i) + Eθ(j) θ(j)

)
+
1

n
1 (2.25)

for 1 ≤ i 6= j ≤ n such that i, j 6= p+ 1, while

K+i,p+1 = −
g1
4g

(
Eii + Eθ(i) θ(i)

) − g

2g1
Ep+1,p+1 +

1

n

(
g1
2g
+
g

2g1

)
1 (2.26)

for 1 ≤ i ≤ n such that i 6= p + 1, provided the three free coupling constants g, g1
and g2 allowed by Weyl group invariance satisfy the relations g 6= 0, g1 6= 0 and

g21 − 2g2 + gg2 = 0 . (2.27)

This result allows to construct a Lax representation with a dynamical R-matrix for the

Calogero models, with appropriately chosen coupling constants, based on any of the clas-

sical root systems not covered by Theorem 1: Bn, Cn, Dn and BCn. For more details, see

Ref. [9].

3. Dynamical versus numerical R-matrices

Within the general context presented in the previous section, we have recently investigated

whether and to what extent the dynamical R-matrices encountered in the Calogero models

can, by means of appropriate gauge transformations, be reduced to numerical R-matrices,

whose mathematical interpretation in terms of Lie bialgebras is well known [2]. This

analysis has first been carried out for the original Calogero models based on the A-series

of simple Lie algebras, initially by Hou and Yang in the elliptic case [12] and then, using

a somewhat different method, by Fehér and Pusztai in the degenerate case [13]. In what

follows, we shall briefly summarize our main results, which extend those of Fehér and

Pusztai; details can be found in Ref. [14].

3.1 Gauge transformations

Given a Lax pair and an R-matrix as in Sect. 1, we are free to submit them to a gauge

transformation by an arbitrary function g : P → G on the phase space P of the model
with values in some connected Lie group G with Lie algebra g, under which the Lax matrix

and the R-matrix transform according to L→ L′ and R→ R′, with

L′ = gLg−1 , (3.1)

– 7 –
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R ′12 = g1g2
(
R12 + g

−1
1 {g1, L2} + 1

2

[
g−11 g

−1
2 {g1, g2} , L2

])
g−11 g

−1
2 , (3.2)

where the transformation law for R is determined by the requirement that the fundamental

Poisson bracket relation (1.4) should be preserved. In the case of the Calogero models

where the R-matrix depends only on the position but not on the momentum variables, it

is natural to make the same assumption for the function g; then using that the Lax matrix

is an affine function of the momentum variables of the form

L =
r∑
j=1

pjHj +
∑
α∈∆

LαEα , (3.3)

where the functions Lα depend only on the position but not on the momentum variables,

the transformation law for the R-matrix simplifies to

R ′ = (g ⊗ g)
(
R −

r∑
j=1

Aj ⊗Hj
)
(g−1 ⊗ g−1) , (3.4)

where Aj = g
−1∂j g, so that

∂kAl − ∂lAk + [Ak, Al] = 0 . (3.5)

For R′ to be numerical, all partial derivatives ∂kR′ have to vanish and we obtain

∂kR −
r∑
j=1

∂jAk ⊗Hj −
[
R , Ak ⊗ 1 + 1⊗Ak

]
+

r∑
j=1

Aj ⊗ [Hj , Ak] = 0 . (3.6)

The last two equations are further evaluated by decomposing the gauge potentials Aj into

their Cartan part and root part:

Aj = A
h
j +

∑
α∈∆

Aαj Eα . (3.7)

As it turns out, the standard functional equations satisfied by the function w in eq. (2.2)

allow to reduce eqs (3.5) and (3.6) to a set of purely algebraic identities.

3.2 Results for simple Lie algebras

In the case of simple complex Lie algebras, there are two important algebraic identities that

must be satisfied by the generators Fα appearing in the expression (2.10) for the R-matrix:

one states that (except for a normalization and/or sign factor), its odd part F−α equals the
standard Cartan generator Hα while its even part F

+
α is orthogonal to Hα, whereas the

second can be written as a vector constraint in hR:

α(Fβ)Fα − β(Fα)Fβ = Nα,β Fα+β
for α, β ∈ ∆ such that β 6= ±α . (3.8)

At first sight, eq. (3.8) seems to be more restrictive than the scalar constraint (2.11). Never-

theless, detailed calculations show that it is not: both constraints have the same solutions,

forcing g to belong to the A- series. Summarizing, we can state the following

– 8 –



P
r
H
E
P
 
u
n
e
s
p
2
0
0
2

Workshop on Integrable Theories, Solitons and Duality Michael Forger

Theorem 3. The degenerate Calogero model associated with a simple complex Lie algebra

g admits a gauge transformation g from the standard Lax pair of Olshanetsky and Perelomov

and the dynamical R matrix given by eq. (2.10) to a new Lax pair with a numerical R-

matrix if and only if g belongs to the A- series. In this case, the solutions of eqs (2.11)

and (3.8) coincide, and the gauge transformation potential takes the form (3.7) with

Aαk (q) = w(α(q)) (Hk , Fα) , (3.9)

and

Ahk(q) =
∑
α∈∆

w′(α(q))
w(α(q))

(Hk , F−α)Fα . (3.10)

The same statement holds for the elliptic Calogero models, despite the fact that in this

case, eqs (3.5) and (3.6) lead to additional algebraic constraints which however turn out

not to impose any further restrictions.

3.3 Results for irreducible symmetric pairs

In the case of irreducible symmetric pairs, the situation is somewhat more complicated.

First of all, we must introduce two sets of generators in the Cartan subalgebra: one is the

set of generators Kα belonging to ib0 that appear in the formula (2.20) for the R-matrix

and the other is a set of generators Mα belonging to a0 that appear in the explicit form

of the gauge potential (3.7) to be given below. There are then two important algebraic

identities that must be satisfied by the generators Kα and Mα: one states that (except

for a normalization and/or sign factor), their odd parts K−α and M−α equal the projection
of the standard Cartan generator Hα onto ib0 and onto a0, respectively, while their even

parts K+α and M
+
α are orthogonal to Hα, whereas the second can be written as two vector

constraints, one in ib0 and and one in a0:

α(Kβ)Kα − β(Kα)Kβ = 1
2

(
Nα,βKα+β + Nθα,βKθα+β

)

α(Kβ)Mα − β(Mα)Mβ = 1
2

(
Nα,βMα+β − Nθα,βMθα+β

)

for α, β ∈ ∆ such that β 6= ±α , β 6= ±θα .
(3.11)

Moreover, it turns out that the possibility to solve the pertinent set of algebraic identities

depends on two additional constraints on the structure of the underlying root system.

To describe them, we introduce the following terminology [11]: a root α is called imaginary

if θα = α , real if θα = −α and complex if θα and α are linearly independent. Two roots
α and β are said to be strongly orthogonal if neither α+ β nor α− β is a root. Then the
additional constraints are

• there are no imaginary roots, i.e., ∆0 = ∅ and ∆̃ = ∆,

• for every complex root α in ∆, θα and α are strongly orthogonal, i.e., θα ± α does
not belong to ∆.

– 9 –
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Setting

Fα = Kα +Mα , (3.12)

we then find that eq. (3.11), although apparently weaker than eq. (3.8), has the same

solutions, forcing g to belong to the A- series. Moreover, the first of the two additional

constraints above (together with the requirement that it should be possible to choose

the root generators Eα so as to satisfy θEα = Eθα, which is a necessary condition for

integrability) exclude the symmetric pairs of the AI- series, of the AII- series and of the

AIII- series when |p− q| > 1. Finally, the second of the two additional constraints above
excludes the symmetric pairs of the AIII- series when |p − q| = 1. Summarizing, we can
state the following

Theorem 4. The degenerate Calogero model associated with an irreducible symmetric

pair (g, θ) admits a gauge transformation g from the standard Lax pair of Olshanetsky

and Perelomov and the dynamical R-matrix given by eq. (2.20) to a new Lax pair with a

numerical R-matrix if and only if (g, θ) corresponds to the complex Grassmannian

SU(2n)/S(U(n)×U(n) (compact type) or SU(n, n)/S(U(n)×U(n)) (noncompact type).
In this case, the gauge transformation potential takes the form (3.7) with

Aαk (q) = w(α(q)) (Hk ,Mα) , (3.13)

and

Ahk(q) =
∑
α∈∆

w′(α(q))
w(α(q))

(Hk ,M−α)Kα . (3.14)

The same statement holds for the elliptic Calogero models, despite the fact that in this

case, eqs (3.5) and (3.6) lead to additional algebraic constraints which however turn out

not to impose any further restrictions.

4. Conclusions and outlook

The main conclusions to be drawn from the results described above are the following.

• In Ref. [9], the question of integrability of the Calogero models associated with irre-
ducible symmetric pairs has been definitely settled for the AIII- series, corresponding

to the complex Grassmannians SU(p, q)/S(U(p) × U(q)) : as shown there, integra-
bility holds if and only if |p − q| 6 1. This is sufficient to cover all classical root
systems that cannot be handled in a direct Lie algebraic approach, including the

non-reduced BCn- system as well as the reduced Bn-, Cn- and Dn- systems, provided

the coupling constants are appropriately chosen. A classification of integrability for

the remaining irreducible symmetric pairs (see Table V in [10, p. 518]) is still missing.

However, we strongly suspect that the AIII- series in fact provide the only case which

allows for a non-trivial solution.

• In Ref. [14], it is shown that requiring the dynamical R-matrix for an integrable
Calogero model associated with some irreducible symmetric pair to be the gauge

– 10 –
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transform of a numerical R-matrix imposes additional restrictions on the underlying

root system. These additional restrictions are strong enough to rule out all Calogero

models except those based on the complex Grassmannians SU(p, q)/S(U(p)×U(q))
of the AIII- series and, more importantly, also rule out the case |p− q| = 1, leaving
only the case p = q: this includes the models of type Cn and Dn but excludes those

of type Bn and BCn.

• The results of Ref. [14] definitely confirm the position that we adopted at the very
begining of our investigation, namely that the concept of a dynamical R-matrix

cannot be entirely reduced to the more traditional one of a numerical R-matrix that

has only been concealed by “twisting” it with some gauge transformation. Moreover,

it should be noted that even when this is the case, this gauge transformation may

itself assume a dynamical role of its own – just like the transformation to action-

angle variables in an integrable Hamiltonian system (in the sense of Liouville), which

absorbs much of its dynamics.

In view of the picture that emerges from this analysis, various problems of mathematical

nature gain renewed importance. Among these are questions such as the following.

• What are the algebro-differential constraints to be satisfied by a dynamical R-matrix?
These constraints are usually referred to as the “dynamical Yang-Baxter equation”,

which extends and generalizes the usual Yang-Baxter equation for numerical R-

matrices. However, it seems to us that the precise form of this equation and its

appropriate mathematical interpretation are not entirely clear. In the context of the

Calogero models studied here, a natural candidate is the following:

{L2, R13} − {L3, R12} + [R12, R23] + [R12, R13] + [R32, R13] = 0 .
It has the advantage of being invariant under gauge transformations [15], but it does

not seem to coincide with the equation proposed by other authors [16]. At the present

stage of investigation, we do not know what are the relations between the various

kinds of dynamical Yang-Baxter equations.

• What is the origin of the constraints that restrict integrability of Calogero models?
We hope to find an answer to the problem of characterizing the mathematical struc-

ture behind the dynamical R-matrices of the Calogero models by studying their

relation with the geodesic flow on certain symmetric spaces and also with the re-

cently introduced spin Calogero models, a relation that is a typical application of the

Marsden-Weinstein phase space reduction method [17, 18].
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