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Abstract: Defining the noncommutative zero-curvature equation, we show that many

soliton equations can be written in this form. We demonstrate this by showing that

various soliton equations are derived from this equation. The derived soliton equations

differ according to different choices of manifolds in the reduction of the noncommutative

zero-curvature equation.

The Moyal quantization is known to give an alternative to the quantization. Lately

people are interested in noncommutative space-time, which is also formulated in the same

way as the Moyal quantization[1]. The Moyal quantization expresses quantum theory not

by operators but by functions of the phase space. The purpose of this note is to show that

the noncommutative zero-curvature equation, which is defined by using the ? product, can

be an alternative to the zero-curvature equation of the matrix-valued potentials.

The soliton equations can be formulated in various ways, and one of which is the

AKNS formulation[3, 4]. This is regarded as the geometrical zero-curvature equation. This

is given by

∂Aν
∂xµ

− ∂Aµ
∂xν

+ [Aµ, Aν ] = 0, (1)

where Aµ = Aµ(x0, x1; ζ), (µ = 0, 1) are the Lie-algebra valued matrices. These poten-

tials include a parameter ζ, and the specific expansion in terms of the parameter yields a

corresponding soliton equation.

We define the ? product by

f ? g = exp

[
κ

(
∂

∂x

∂

∂p̃
− ∂
∂p

∂

∂x̃

)]
f(x)g(x̃)|x=x̃,

(2)
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where x = (x, p). Here, we denote a parameter by κ instead of i~/2 in the case of the Moyal

quantization. The implication of the parameter will be given below. The Moyal bracket is

defined by

{f, g} = f ? g − g ? f
2κ

, (3)

which becomes the Poisson bracket of f(x, p) and g(x, p) as κ goes to zero. The variables x

and p do not need to be the phase space variables in R2. We regard them as the variables

of a 2-dimensional manifold. When we specify the manifold to be torus, x + 2π ≡ x and
q + 2π ≡ q, the functions on the torus are given by f(x, p) = ei(mx+np) and g(x, p) =
ei(m

′x+n′p) with integers m, n, m′ and n′. In this case, the above bracket is known to yield
the trigonometric algebra, which can be identified as the su(∞) algebra[2]. This motivates
us to rewrite the matrix form equation (1) to the ? product form equation. We replace the

commutation relation in Eq.(1) by the Moyal bracket to obtain

∂Aν
∂xµ

− ∂Aµ
∂xν

+ {Aµ, Aν} = 0, (4)

where Aµ = Aµ(x0, x1;x, p) are not matrices but functions of 4 variables.

We study the soliton equations derived from this ”noncommutative zero-curvature

equation”. In order to obtain the 2-dimensional soliton equations, we reduce the 4 dimen-

sions by one as a first step by the following assumptions:

In the time-dependent case, Aµ = Aµ(t;x, p), Eq.(4) reads,

∂A1
∂t
+ {A0, A1} = 0, (5)

where t = x0. In the space-dependent case, Aµ = Aµ(s;x, p), Eq.(4) reads,

∂A0
∂s
− {A0, A1} = 0, (6)

where s = x1.

Next we reduce one more dimension to get the 2-dimensional soliton equations. In the

case that a manifold is compact, we should adopt the periodic variables on the manifold

like in the case of the torus mentioned above. Contrastingly, if a manifold is euclidean,

the functions on the manifold is expanded in terms of power series of the variables with

infinite ranges.

We first discuss the power series expansion of Aµ(t;x, p) of the type

A0(t;x, p) =
∑
n

pnak(t;x), (7)

A1(t;x, p) =
∑
k

pnbk(t;x), (8)

then the KdV equation is shown to fall into this type.

A simple example of the expansions of this type is given by

A0(t;x, p) = p
3 + p2g2(t;x) + pg1(t;x) + g0(t;x), (9)

A1(t;x, p) = p
2 + u(t;x). (10)
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Substituting these expansions into Eq.(5), we get the KdV equation:

ut =
3

2
u′u+ κ2u′′′. (11)

Here, we have used the relations that g0, g1, and g2 are expressed in terms of u and its

derivatives.

In more general expansions

A1(t;x, p) = p
2 + u(t;x), (12)

A0(t;x, p) =

2N+1∑
k=0

pkgk(t;x), (13)

the KdV hierarchy equations can be obtained by the following way. Substitution of the

above expansions into Eq.(5) yields

ut =

N∑
m=1

κ2mu(2m+1)g2m+1, (14)

∂gk−1
∂x

=
1

2

[ 2N−k
2
]∑

m=0

κ(2m)
(
k + 2m+ 1

2m+ 1

)
u(2m+1)gk+2m+1, (k = 1, 2, · · · , 2N) (15)

∂g2N
∂x

= 0. (16)

These equations determine gi successively. For even suffices i, we obtain

g2k = 0, (k = 1, 2, · · · ,N) (17)

and for odd suffices i,

∂g2k−1
∂x

=
1

2

N−k∑
m=0

κ(2m)
(
2k + 2m+ 1

2m+ 1

)
u(2m+1)g2(k+m)+1. (18)

These determine gi as

g2N+1 := 1→ g2N−1 → g2N−3 → · · · g3 → g1. (19)

Substituting these gi into Eq.(14), we obtain a soliton equation for each N . The several

examples are in order:

ut = u
(1) = K1, (20)

ut =
3

2
uu(1) + κ2u(3) = K3, (21)

ut =
15

8
u2u(1) + 5κ2u(1)u(2) +

5

2
κ2uu(3) + κ4u(5) = K5, (22)

ut =
35

16
u3u(1) +

35

8
κ2(u(1))3 +

35

2
κ2uu(1)u(2) +

21

2
κ4u(1)u(4)

+
35

8
κ2u2u(3) +

35

2
κ4u(2)u(3) +

7

2
κ4uu(5) + κ6u(7) = K7. (23)
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These constitute the KdV hierarchy equations, which can be summarized as a equation,

ut = K2n+1 = OnK1. (24)

Here, the integro-differential operator O is given by

O = κ2D2 + u+ u(1)I. (25)

The following type of expansions for Aµ(s;x, p) obtained by changing time variable by

space variable from the previous case;

A1(s;x, p) = p
2 + u(s;x), (26)

A0(s;x, p) = p
3 + p2g2(s;x) + pg1(s;x) + g0(s;x), (27)

lead to the Boussinesque equation, by substituting these expansions into Eq.(6),

uss + (uu
′)′ + κ2u′′′′ = 0. (28)

We next study the compact manifold case. We show how the Toda Lattice hierarchy

equations are derived in the present formulation by adopting a compact manifold. We note

that the power series expansion in terms of the variables are suitable for Rn, and each

range of the variables is from -∞ to ∞. Contrastigly, the finite rage of variables should
be legitimate for the compact manifolds. The power series expansion should be subject to

modification if a compact manifold is adopted instead of the euclidean space. In the same

way that we obtain the trigonometric algebra from the Moyal algebra, the expansion in

terms of eip is available for such compact manifolds. We expand the potentials as

A0(t;x, p) =
∑
m

eimpam(t;x), (29)

A1(t;x, p) =
∑
m

eimpbm(t;x). (30)

One of the examples is given by

A0 = a0(t;x) + a−1(t;x)e−ip + a1(t;x)eip, (31)

A1 = b0(t;x) + b−1(t;x)e−ip + b1(t;x)eip. (32)

A useful formula for these type expansions is given by

{eimpf(x), einpg(p)} = i

2k
e{i(m+n)p}

{
f(x+ nk)g(x−mk)− g(x+mk)f(x− nk)

}
,

(33)

which is obtained by setting k = −ik in Eq.(2). Substituting the above expansions (31)
and (32) into Eq.(5), we obtain

0 = a−1(x− k)b−1(x+ k)− b−1(x− k)a−1(x+ k), (34)

db−1(x)
dt

= − 1
2k
[a−1(x)(b0(x+ k)− b0(x− k))− b−1(x)(a0(x+ k)− a0(x− k))], (35)
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db0(x)

dt
= − 1

2k
[a−1(x+ k)b1(x+ k)− b1(x− k)a−1(x− k))

−(a1(x+ k)b−1(x+ k)− b−1(x− k)a1(x− k))], (36)

db1(x)

dt
= − 1

2k
[a1(x)(b0(x+ k)− b0(x− k))− b1(x)(a0(x+ k)− a0(x− k))], (37)

0 = a1(x− k)b1(x+ k)− b1(x− k)a1(x+ k). (38)

Assuming

b±1 = γ±1a±1, (39)

we obtain

lna(x)±1 = ∓ i
2k
[a0(x+ k)− a0(x− k))− 1

γ±1
(b0(x+ k)− b0(x− k))], (40)

db0(x)

dt
= − i

2k
(γ1 − γ−1){a−1(x+ k)a1(x+ k)− a1(x− k)a−1(x− k)}. (41)

We then introduce ρ(t;x) by

ρ(t;x) = −lna−1(t;x)a1(t;x), (42)

to obtain the Toda Lattice equation:

d2ρ(t;x)

dt2
=
(γ1 − γ−1)2
γ1γ−1

1

(2k)2
(e−ρ(x−2k) − 2e−ρ(x) + e−ρ(x+2k)).

(43)

It is now possible to give the physical implication to κ = −ik in the definition of the
? product (2). In the Moyal quantization, the parameter appearing there is the Planch

constant ~ that is a unit of spacing between energy levels. In the present case, the parameter

k is the spacing between the adjacent particles on the lattice[5].

In the k → 0 limit, we obtain the continuous Toda equation[6]
∂2ρ

∂t2
=
∂2e−ρ

∂x2
. (44)

We thus showed that the noncommutative zero-curvature equation has a rich structure.

A various soliton equations were derived by the reduction of dimensions. In the reduction,

we demonstrated that a choice of a manifold is deeply connected to a choice of the soliton

equation.

References

[1] J. E. Moyal, Proc. Cambridge Phil. Soc. 45 (1949) 90.

[2] D. Fairlie and C. Zachos, Phys. Lett.B244 (1989) 101.

[3] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, Phys. Rev. Lett.31 (1973) 125; Stud. In

Appl. Math. 53 (1974) 160.

[4] J. M. Alberty, T. Koikawa, R. Sasaki, Physica5D(1982)43.

[5] T. Koikawa, Prog. Theor. Phys.105(2001) 1045.

[6] T.Koikawa, Prog.Theor.Phys. 66 (1981) 1970.

– 5 –


