
P
r
H
E
P
 
u
n
e
s
p
2
0
0
2

Workshop on Integrable Theories, Solitons and Duality
PROCEEDINGS
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Abstract: We use the recently proposed all orders beta functions to study localization

problems in two dimensions. A classification of random Dirac hamiltonians is presented.

Beta functions for the Chalker-Coddington network model are presented and it is de-

scribed how the renormalization group flows are toward a true singularity.

The main subject of this talk is localization-delocalization transitions in two dimen-

sions. This is a subject with many challenging and unsolved problems, the most important

being finding a theoretical description of the critical properties of the quantum Hall transi-

tion. The Chalker-Coddington network model is perhaps the simplest model believed to be

in the universality class of the quantum Hall transition[1]. It can be formulated as a theory

of random Dirac fermions, and it is believed that the disorder averaged effective theory

should possess an infra-red fixed point conformal field theory capable of predicting the

critical exponents governing the transition, e.g. the delocalization length exponent[2, 3].

I will describe an attempt at finding the expected fixed point based on a proposed all

orders beta function[5, 6]. The all-orders beta functions for the network models are based

on general formulas found in [4]. These beta-functions generally describe current-current

interactions in two dimensions. Though they remain conjectural, several strong checks

of the formula were performed for the simplest su(2) case in [7]. As I will describe, for

reasons that are not understood at the time, but appear to be specific to the application

of the general theory to disordered systems, the renormalizaton group flows toward a true

singularity, and thus we did not find the expected fixed point.

The plan of the talk is as follows. I will first describe a classification of Random Dirac

Fermions in 2d. In the next section I explain how supersymmetric Effective Actions are

obtained upon disorder averaging. These generally involve current-current interactions and

in the next section I describe the renormalization group (RG) for general interactions of

this kind. Using arguments independent of the detailed beta functions, I then propose a

connection between the possible fixed points and the Virasoro Master equation. In the last

sections these methods are applied to the network models for the quantum Hall transtions.

Unfortuanately, as I will describe, the all orders beta functions that appear to be correct

for su(2) predict flows toward true singularities in the disordered problems.
∗Speaker.
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1. Classification of Random Dirac Hamiltons

Most interesting localization problems in 2d can be formulated as spectral problems for

Dirac-like Hamiltonians. Some well-known examples are the following:

•Quantum Hall Transition. The simplest model in this universality class is the Chalker-
Coddington network model[1].

• Spin Quantum Hall transition. ( Kagalovsky et. al[8].; Sentil, Marston and Fisher[9];
Gruzberg, Ludwig, and Read[10].) This is a very interesting model since for the computa-

tion of some quantities the model can be mapped onto percolation[10]. It can thus serve

as a important test case when developing more general continuum methods.

•Quasi-particle localization in systems with degenerate Fermi surfaces and dirty su-
perconductors. (Fradkin[11]; Nersesyan, Tsvelick and Wegner[12]; Senthil and Fisher[13])

•Hopping models on bipartite lattices. ( Gade-Wegner[16]; Hatsugai, Wen and Kohmoto[17].)

Altland and Zirnbauer gave a classification of random matrices (Hamiltonians) based

on the discrete symmetries of time-reversal, particle-hole symmetry and chirality. A basic

question is the following: is the classification of universality classes of random Dirac Hamil-

tonians equivalent to the Altland-Zirnbauer classification of random matrices? We actually

found 13 classes instead of Altland and Zirnbauer’s 10. Let me describe our classification,

which was published in [18].

Discrete symmetries and the Classification. A hamiltonian with Dirac structure can

always be written as

H =

(
V+ + V− −i∂z +Az
−i∂z +Az V+ − V−

)

where Az, Az, V± are random matrices. The classification is based on the following discrete
symmetries:

•Chirality: H = −PHP−1, P 2 = 1

•Particle-hole: H = −CHTC−1, CT = ±C

•Time-reversal: H = KH∗K−1, KT = ±K

The result of analyzing the various possibilities is shown in the following table.
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Random matrix Time rev. Part.-hole Chirality Sym.

class inv. symmetry group

class 0 A=GUE no no no U(n)

class 1 AIII=chiral GUE no no yes U(n)

class 2 AIII=chiral GUE no no yes U(n)� U(n)

class 3+ AII=GSE yes no no O(n)

class 3
�

D no yes no O(n)

class 4+ AI=GOE yes no no Sp(2n)

class 4
�

C no yes no Sp(2n)

class 5 DIII=chiral GOE yes yes yes O(n)

class 6 CI =chiral GSE yes yes yes Sp(2n)

class 7 DIII=chiral GOE yes yes yes O(n)� O(n)

class 8 CI=chiral GSE yes yes yes Sp(2n)� Sp(2n)

class 9+ DI yes yes yes U(n)

class 9
�

CII yes yes yes U(n)

1
– 3 –
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As an example of the distinction between the classification of random matrices, Classes

1, 2 are both chiral GUE as far as the Altland-Zirnbauer classification. But here:

Class 1: A ∈ gl(n), V± = 0.
Class 2: A = diag(a+, a−), a± ∈ gl(n).

V± =
(
0 w±
w
†
± 0

)
, w± ∈ gl(n)

The chiral classes 1, 5, 6 are pure gauge, i.e. the only non-zero potential is A ∈
gl(n), so(n), orsp(2n). Classes 0, 3+, 4+ are the Wigner-Dyson classes GUE, GOE, GSE.

Classification of non-Hermitian Dirac Hamiltonians. Here we can also impose

H = ±QH†Q−1, Q2 = 1

In this case we found 87 classes with Dirac structure and 43 classes of random matrices[19].

2. Disorder averaged effective action Seff

Using the supersymmetric method to perform the disorder averaging, we need to consider

the action:

S = i

∫
d2x

2π

(
ψ†Hψ + β†Hβ

)
ψ are fermionic fields and β bosonic ghost fields. Seff is obtained from gaussian functional

integrals over the random potentials A,V± and depends on the couplings g1, g2, .... which

are variances of the disordered potentials.

The resulting effective action can always be expressed in the following form:

Seff = Scft +

∫
d2x

2π

∑
A

gAd
A
abJ
aJ
b

Here, Scft is an osp(2n|2n)1 supercurrent algebra conformal field theory with currents
Ja(z), J

a
(z), where n is the number of fermions. (k = 1 is the level).

The above method can be applied to all classes listed in the previous section. The

important examples we will focus on are the following:

•Chalker-Coddington network model: Class 0 with n = 1. This is a 3-coupling pertur-
bation of osp(2|2)1.
•Spin Quantum Hall transition: Class 4− (class C) with n = 2. This is a 3-coupling

perturbation of osp(4|4)1.

– 4 –
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3. All-orders βeta function for general current-current perturbations

In [4], an all orders beta-function was conjectured for completely general models defined

by the action:

S = SGk +

∫
d2x

2π

∑
A

gAOA

Above, Gk is a level k current algebra for the (super) group G, with currents J
a, and the

perturbing operators are left-right current-current interactions:

OA ≡ dAabJaJb

The βeta function depends on some structure constants C,D, C̃ which are easily com-

puted in the cft. To compute these structure constants it is convenient to also define the

purely chiral operator:

TA ≡ dAabJaJb

The following operator product expansions are valid in the conformal theory:

OA(z, z)OB(0) ∼ 1
zz
CABC OC(0)

TA(z)OB(0) ∼ 1
z2

(
2kDABC + C̃ABC

)
OC(0)

The conformal Ward identities for the currents allow one to isolate the log divergences

that contribute to the beta function in an efficient manner. To two loops one finds:

βgA = −
1

2
gBgCC

BC
A − k

2
gBgCgDD

BC
E C̃EDA + .....

The one-loop result is well-known, but the two loop result is new. Gerganov, Moriconi

and I proposed the all-orders formula:

βg = −1
2
C(g′, g′)(1 + k2D2/4) +

k3

8
C(g′D, g′D)D − k

2
C̃(g′D, g)

The notation is as follows: •g = a row vector
•D = matrix, DAB =

∑
C D

AC
B gC

•C(a, b) = a row vector, C(a, b)A =
∑
B,C aBbCC

BC
A

•g′ = g/(1 − k2D2/4)

The simplest example is anisotropic su(2), which corresponds to the well known

Kosterlitz-Thouless flows:

∑
A

gAOA = g1
(
J+J

−
+ J−J+

)
+ g2J3J3

– 5 –
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The result is:

βg1 =
g1(g2 − g21/4)

(1− g21/16)(1 + g2/4)
βg2 =

g21(1− g2/4)2
(1− g21/16)2

Resolving the RG flows[7].

Though the βeta function has pole singularities, the flows are not singular. Flows that

approach the poles do so along non-singular trajectories and pass smoothly through the

pole. All RG flows can be extended to arbitrarily large and small length scales using:

•Strong-weak coupling duality. Let g∗ ≡ 16/g then the βeta function satisfies:

β∗(g∗) =
∂g∗

∂g
βg = −β(g → g∗)

The poles occur at the self-dual points g = g∗ = 4. If g = g∗ at some scale r0, then g flows
to g∗ at scale r0/r.
•Topological identification We need to identify g2 = ±∞. One way of seeing this

is that the dual to these flows are completely smooth and continuous.

•RG invariant Remarkably the flows possess the invariant:

Q =
g21 − g22

(g2 − 4)2(g21 − 16)

All the flows are shown in the following figure. There are regions that are known to

correspond to massive and massless sine-Gordon theories and massive sinh-Gordon theory.

A few remarks on the status of the conjectured beta-function are in order. A number

of important checks were performed in [7]. The most sensitive check was of the massless

flows that arise in the imaginary sine-Gordon theory defined by g2 → ig2. The above

beta-function correctly predicts the known non-perturbative relation between the anoma-

lous dimensions in the UV and IR. An all orders beta-function was also proposed by

Al. Zamolodchikov (unpublished) and his result was quoted in [20]. Zamolodchikov’s argu-

ment was global in nature and did not rely on summing up perturbation theory; the main

input was the known properties of the massless flows, thus his beta-function appears to be

the unique one up to a change of coordinates that captures the non-perturbative aspects of

the flows. It can be shown that the beta-function in [20] is equivalent to the above under a

change of coordinates. In summary, though the beta-function remains a conjecture, these

tests provide some confidence in applying them to the network models.

– 6 –
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4. Fixed points and the Virasoro Master Equation (VME)

Before studying the beta functions for the network models, we can ask what kinds of fixed

points can we expect for general current-current perturbations? A way to study this that

does not rely on the βeta function is based on the VME. Classically the theories have a

traceless stress tensor:

Tclassical = TGk − gATA

– 7 –
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where TGk is the affine Sugawara stress tensor. Let us make the hypothesis that the fixed

points correspond to

Tfixed point =
∑
A

hAT
A

where the hA are constants. In order for T to satisfy the Virasoro algebra one finds(
2kDABC + CABC + 2C̃ABC

)
hAhB = hC

Note that these are the same structure constants that appear in the beta function. The

above equation is the VME of Halpern et. al.[21]. •Generic solutions to the VME corre-
spond to current algebra cosets. There exists a physically appealing RG mechanism for

realizing such a coset fixed point: Under the RG flow the couplings may be attracted to

a submanifold of couplings corresponding to a subgroup H of G. This coupling can then

flow to infinity, thereby gapping out H. The fixed point would then be the coset:

fixed point =
Gk
Hk′

5. RG flows for the network models

For the Chalker-Coddington network model the βeta functions are[5]

βg+ =
8g+
(
g2+(2ga − g− + 2) + 2g−(2− g−) + 8ga

)
(4− g2+)(2− g−)2

βg− =
8g2+(2 + g−)2

(4− g2+)2

βga =
4
(
(g2+ − g2−)(16− g2+g2−) + 4gag2+(2 + g−)(2− g−)2

)
(4− g2+)2(2− g−)2

where g± are variances of V± and ga is the variance of the u(1) gauge field A. Though
these are complicated beta functions, we analyzed the flows in detail, and found that they

possess the following properties[6]:

•Unlike the su(2) case, there are some truely singular flows in the physical regime.
•There are also some regular flows that can be extended to all scales using duality and

topological identifications.

duality : g∗± =
4

g±
, g∗a = −

4ga
g2−

self − dual points : (g+, g−, ga) = (±2,±2, 0)

•The singular flows are attracted to g± = 2, ga 6= 0 Since ga 6= 0 is not self dual, the
flows cannot be extended beyond the singularity using duality.

– 8 –
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•Some flows attracted to gl(1|1) ∈ osp(2|2) submanifold. This is a realization of the
osp(2|2)1/gl(1|1)1 solution of VME. This phase is essentially the disordered XY model[22].

These flows are depicted in the following 3 figures.
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It turns out that the beta functions for the network model of the spin Quantum Hall

transition have very similar properties. We will defer a discussion of the possible meaning

of the singular flows to the conclusions.

6. VME for Network Models

As we saw in the last section, the beta functions do not lead to the identification of any

– 10 –
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fixed points in the physical regimes of the network models. Let us turn then to the solutions

of the VME. For the spin quantum Hall effect (SQHE) there exists the solution:

SQHE :
osp(4|4)1
su(2)0

As explained in [6] this leads to a density of states exponent:

ρ(E) ∼ E1/7

Encouragingly, this agrees with the map to percolation[10]. The above coset can be shown

to correspond precisely to the current algebra osp(2|2)−2 at level −2[23]. However recent
arguments were given that the true fixed point cannot be a current algebra[24].

For the usual QHE, the analog of the above coset is:

QHE :
osp(2|2)1
u(1)0

This leads to a density of states exponent:

=⇒ ρ(E) = constant

which is known to be correct for the QHE.

7. Multifractal exponents from Cosets

Another promising feature of the above cosets is that they lead to multi-fractality in a very

natural way. Consider N copies of the theory. It turns out the beta functions are the same,

i.e. independent of N because of supersymmetry. The N -copy solutions of the VME are

the following cosets:

QHE :
osp(2N |2N)1

u(1)0

SQHE :
osp(4N |4N)1

su(2)0

To study wavefunction multi-fractality, one considers the moments:

P (q) =

∫
d2x〈ρ〉q

(
∫
d2x〈ρ〉)q

The latter can be computed in the N copy theory for any N ≥ q and should be independent
of N . This is a non-trivial property and is certainly not automatic. It turns out that

the cosets have this property! From the above moments, one conventionally defines the

exponent α0 as follows:

Ptyp = exp
(
log ρ
) ∼ L−α0

– 11 –
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As explained in [23], for the SQHE, the above coset leads to α0 = 2+1/4. Recent numerical

work gave the value α0 ≈ 2 + 1/8[25]. Unfortunately, this seems to rule out the coset as
the proper fixed point.

One may also consider conductance multifractality by studying higher moments of the

two-point functions:

G(q) = 〈ρ(r)ρ(0)〉q

Gtyp = exp
(
logG

) ∼ r−Xt
It can be shown that in any theory with a constant density of states[26, 23] the exponents

Xt and α0 are related as follows:

Xt = 2(α0 − 2)
The above relation agrees well with numerical simulations in the QHE which give Xt ≈ 1/2,
α0 ≈ 9/4[26]. An rather weak argument was given in [6] for the value α0 = 9/4 for the QHE
based on the possibility of considering the twist fields that modify boundary conditions.

However since the coset for the SQHE appears not to be in the right universality class, it

is unlikely that this argument is correct.

8. Discussion

In summary, the all orders beta functions proposed in [4] work very nicely for su(2) but

predict a flow towards a true singularity after a finite RG time for the network models of

Quantum Hall transitions, and thus failed to identify the expected fixed point. Since it was

expected that this theory should possess the correct fixed point, this failure needs to be

understood, and one can hope that the proper resolution of the difficulties we encountered

will point further investigations in the right direction. It is likely that the singularity of the

flows can be traced to the level zero current algebras that are present in the supersymmetric

approach to disorder averaging. Another possibility is that the singularities are related to

the freezing transitions that are known to occur in even the pure random gauge field

cases[27]. Given the importance of understanding the Quantum Hall transitions, further

investigation into the nature of the singular flows is called for.
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