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Abstract: We have obtained an exact solution of a supersymmetric Yang-Mills theory,

constructed with the aid of the algebraic Leznov-Saveliev method. A particular set of

equations - namely the sinh-Gordon model ones - is achieved by looking for bps states.

The classical solutions, knowed as ic-instantons, interpolates initial and final string

configuration.

1. Introduction

The N = 4 supersymmetric Yang-Mills theory (N = 4 SYM) in 4d is well known by its
self-duality properties. In their work, Bonora et. al. [1] study classical solutions of this

theory, putting on evidence an unexplored non-perturbative sector based on a new type

of instanton. These new type of solution is knowed as interaction-carrying instanton or

ic-instanton, and emerge outside the context of duality as bps classical instantons that

connect distinct closed string configurations. In the strong coupling regime, these solutions

correspond to 2d complex manifolds which asymptotically has boundaries represented by

one dimensional manifolds. This furnish an interpretation in terms of string scattering.

By the same way that the instantons represent solutions interpolating distinct vacua in a

theory, the ic-instanton connect initial and final scattering states of strings.

For what follows, we consider the theory described by the action

S = 1
π

∫
d2w Tr

(
DwX

iDw̄X
i − 1

4g2
F 2ww̄ −

g2

2

[
Xi , Xj

]2
+ i (θ−s Dw̄θ

−
s + θ

+
c Dwθ

+
c ) + ig θ

T Γi
[
Xi , θ

])
(1.1)
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that came out from the compactification in a cylinder of a type iia string theory in 10

dimensions (see [1]). The euclidean version of this action is invariant under the the super-

symmetric transformations

δXi =
i

g
(ε−s γ

iθ+c + ε
+
c γ̃
iθ−s )

δθ−s = (−
i

2g2
Fww̄ +

1

2
[Xi,Xj ]γij)ε

−
s −
1

g
DwX

iγiε
+
c

δθ+c = (
i

2g2
Fww̄ +

1

2
[Xi,Xj ]γ̃ij)ε

+
c −
1

g
Dw̄X

iγ̃iε
−
s

δAw = −2ε−s θ−s , δAw̄ = −2ε+c θ+c

The bps ic-instantons appears as classical solutions that preserves half of supersymmetry,

what means that we search for solutions that satisfy the conditions

(
i

2g2
Fww̄ +

1

2

[
Xi , Xj

]
γ̃ij) ε

+
c = 0 DwX

iγiε
+
c = 0

(− i
2g2
Fww̄ +

1

2

[
Xi , Xj

]
γij) ε

−
s = 0 Dw̄X

iγ̃iε
−
s = 0

After some manipulations, taking Xi = 0 for all i except two of them (suppose Xi 6= 0 for
i = 1, 2), and defining X ≡ X1 + iX2, the equations of motion of the theory take the form

Fww̄ + ig
2[X, X̄ ] = 0 (1.2)

DwX = 0, Dw̄X̄ = 0 (1.3)

We can also think of these equations as a reduction to two dimensions of the self duality

conditions in four dimension. For instance, the self duality equations in 4d are

Fyȳ + Fzz̄ = 0 Fyz = 0 = Fȳz̄ (1.4)

Imposing that nothing depends on the extra dimensions, i.e. ∂z = 0 = ∂z̄, and making the

identification Az ≡ X Az̄ ≡ X̄ we get the same system as in 1.2 and 1.3.
From a mathematical point of view, 1.2, 1.3 can be identified with a Hitchin system

on a cylinder (or in a sphere with two punctures). The solutions of 1.2, 1.3 consist of two

parts: a branched covering of the cylinder through the characteristic polynomial relative

to X; and a pure group factor that contains the coupling constant g.

2. Two dimensional case

We consider the two dimensional case of theory 1.1, where we take U(2) (N = 2) as gauge

group. We look for a pair (A,X) – gauge potential and branched covering – that satisfies

1.2, 1.3. In order to do this we take the ansatz

X = Y −1MY ; Aw = ∂wY
†(Y −1)†. (2.1)

– 2 –
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In this ansatz, we parametrize (M̄)M with (anti)-holomorfic functions (ā(w̄)) − a(w),
which furnish a map for the covering; and the group element Y is parametrized by a scalar

field ϕ. More specifically

M =

(
0 a

1 0

)
Y =

(
e
ϕ
2 0

0 e−
ϕ
2

)
(2.2)

This made possible to translate the equations 1.2, 1.3 into

∂w∂w̄ϕ− g2
(
e2ϕ − |a|e−2ϕ) = 0. (2.3)

We can as well work with a field u, related to ϕ by

ϕ = u+
1

2
ln |a| (2.4)

So, for this field, the equation 2.3 reads

∂w∂w̄u+
1

2
∂w∂w̄ ln |a| = g2|a| sinh 2u (2.5)

From now on we refer to this equation as the ic-instanton equation.

3. General Solution

Since we are working with the two dimensional case, it is possible to use the algebraic

Leznov-Saveliev method in order to construct explicitly the solutions. This method is

based on the existence of an infinite dimensional Lie algebra, the Kac-Moody algebra,

from where it emerges an infinite number of conserved quantities.

In the two dimensional case, the relevant potentials for describe the Hitchin system

1.2, 1.3 as the Lax-Zakharov-Shabat conditions reads

Aw ≡ −∂wγγ−1 + E−1 Aw̄ ≡ γE1γ−1 (3.1)

where γ ≡ eϕH0 and

E1 ≡ gT 0+ + gā (z̄)T 1− E−1 ≡ ga (z)T−1+ + gT 0− (3.2)

T n± are the generators of a Kac-Moody algebra ŝl(2,C). By this way, the zero curvature
conditions

Fµν = 0 (3.3)

imply the equations of motion that, translated in terms of the field contents of the model

assumes the form

∂w∂w̄ϕ = g
2
(
e2ϕ− | a |2 e−2ϕ) (3.4)

These corresponds exactly to 2.3 (or 2.5 ).

– 3 –
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As a consequence of 3.3, we can parametrized the connection by a group element

Aµ ≡ −∂µWW−1 (3.5)

With this, the integration independs on the path; so we can decompose W using different

group elements. In particular, taking two elements g1, g2 we can write

W = g1 = γg2 → γ = g1g
−1
2 (3.6)

It follows from the method that

g−11 | λ 〉 ≡ function of w 〈λ | g2 ≡ function of w̄ . (3.7)

Here, | λ 〉 are highest weight states of a ŝl(2,C) representation. Then, from 3.6 follows
that

〈λ | γ−1 | λ 〉 = 〈λ | g2g−11 | λ 〉 (3.8)

Next, we use a Gauss decomposition associated to the principal grading [2] to write these

two group elements as

g1 ≡ Nγ−M− g2 ≡Mγ+N+ (3.9)

The indices refers to the degree of operators that enters in the exponentiation of element,

that is, X+ only contains operators of positive degree with respect to the grading, X+ =

e G+ . In particular,

γ+ = e
θ+(w̄)H0 , γ− = e θ−(w)H

0
(3.10)

This allow us to write 3.8 as

〈λ | γ−1 | λ 〉 = 〈λ | γ+ (x+)N+ (x+)M−1− (x−) γ−1− (x−) | λ 〉 (3.11)

Except for γ±, the parameters N+ and M− are determined by relations encoded in 3.1,3.5,
3.6.

With these ingredients we are able to write the general solution to the model. For this,

two distinct maximal weight representations of ŝl(2,C) are needed:

e−ϕ =
〈λ1 | N+ (x+)M−1− (x−) | λ1 〉
〈λ0 | N+ (x+)M−1− (x−) | λ0 〉

eθ+−θ− (3.12)

So, the general solution of 3.4 is given by 3.12. As we can see, this means that the solution

depends on the parameters θ±, and on the elements N+, M−. This group elements are
determined by

∂w̄N+N
−1
+ = −g

(
e−2θ+T 0+ + ā (w̄) e

2θ+T 1−
)

(3.13)

∂wM−M−1− = −g
(
a (w) e−2θ−T−1+ + e

2θ−T 0−
)

(3.14)

The θ± functions will be fix by imposing the boundary conditions, as we will see next.

– 4 –
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4. Boundary Conditions

We can easily understand how to select a particular solution outside the general solution

making a change of variable. Let

dζ

dw
=
√
a

dζ̄

dw̄
=
√
ā (4.1)

We note that, in terms of this new variable, the ic-instanton equation 2.5 (3.4) is equiv-

alent to that of the sinh-Gordon model with a source

∂ζ∂ζ̄u− 2g2 sinh 2u = −
π

4
δa (a, ā) (∂ζa)(∂ζ̄ ā) (4.2)

The source has the effect of impose boundary conditions; in other words, the solutions u

satisfies the sinh-Gordon homogeneous equations together with the boundary conditions

u ∼ −1
2
log | a | ϕ ∼ finite a ∼ 0 (4.3)

The solution u diverges logarithmically at the zeros of a, implying that ϕ must be finite at

the same point. Apart this, far from the zeros of a we have

u ∼ finite ϕ ∼ 1
2
log | a | a ∼ ∞ (4.4)

4.1 The ζ variable

Here, it should be appropriate to do a comment about the role of the branched covering

M . We must have this in mind when dealing with the changes of variable performed and,

in particular, with the equation 4.2. More details can be found in [6].

The matrixM represents a branched covering of the cylinder spanned by the coordinate

w. It is convenient now to pass to a new coordinate z = ew, which maps the cylinder into

the complex z-plane with two punctures at z = 0 and z =∞. The eigenvalues ofM , which
are the roots of the algebraic equation X2 = a can be thought of as the sheets of a double

covering of the cylinder. Each sheet is a copy of the complex z-plane, so, each eigenvalue

spans a sheet. The points where the eigenvalues coincide are the branched points. Let us

consider the equation for an hyper-elliptic Riemann surface Σ

y2 = a(z) = (z − z1)(z − z2)...(z − zn) (4.5)

There are branch points at z = z1, ..., z = zn. y and z are coordinates of two complex

planes, but, of course they can be considered as function over Σ. The coordinate z is not

a good coordinate near a branch point. A good local coordinate near a branch point zi is

ξi =
√
z − zi. I.e., near zi we have z = zi + ξi2.

Since near a branch point, neither y or z are good coordinates, the usual delta function

is given by δ(ξ, ξ̄). But, after some considerations, we see that we have the relations

δa(a, ā) ∼ 2 δ(ξ, ξ̄), δζ(ζ, ζ̄) ∼ 3 δ(ξ, ξ̄) (4.6)

– 5 –
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This provide us with a way of transform locally the delta δa(a, ā) in a function of ζ variable,

using 4.6. We must take into account the Jacobian factor due to the change of coordinates,

what lead us to the relation

δζ(ζ, ζ̄) =
3

2
δa(a, ā)(∂ζa)(∂ζ̄ ā) (4.7)

We return to 4.2 and get

∂ζ∂ζ̄u− 2g2 sinh 2u = −
π

6
δζ
(
ζ, ζ̄

)
(4.8)

This means that near a branch point, via the local coordinate ξ, we can solve the equation

for u as a function of ζ; the a dependence is restored via 4.1. We will in this way obtain

some sort of “partials” solutions, localized around a branched point, that we must be able

to patch together in order to it spreads out globally. Actually, we did not yet completely

understood the way of gluing this regions.

5. Choice of θ

Now we have the necessary elements to fix the θ parameters:

θ+ = −1
4
ln ā θ− =

1

4
ln a (5.1)

We can substitute this expression in 2.4, 3.12 to get

e−u =
〈λ1 | N+M−1− | λ1 〉
〈λ0 | N+M−1− | λ0 〉

(5.2)

This choice of θ also simplifies the integration of elements N+,M−. Indeed, 3.13, 3.14
becomes

∂w̄N+N
−1
+ = −g

√
ā(w̄) b1 ∂wM−M−1− = −g

√
a(w) b−1 . (5.3)

The operators b1 and b−1 are elements of a Heisenberg sub-algebra of the ŝl(2) Kac-Moody
algebra. That is like an algebra of harmonic oscillators, i.e. they are generated by

b2n+1 ≡ T n+ + T n+1− [ b2m+1 , b2n+1 ] = C (2m+ 1)δm+n+1, 0 (5.4)

We can then integrate 5.3

N+ = e
I+ b1 h+ I+ = −g

∫
dw̄
√
ā (w̄) (5.5)

M− = eI− b−1 h− I− = −g
∫
dw
√
a (w) (5.6)

– 6 –
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5.1 ic-instanton insight

We come to a crucial point, that will permit us to point out the exact expression for the

ic-instanton. The Leznov-Saveliev method provide us the general expression for the

solution. The boundary conditions fixes the parameters of a particular class of solutions.

At this stage, according to 5.2, 5.5, 5.6, we must solve

〈λ | N+M−1− | λ 〉 = 〈λ | g(x) h g−1(x) | λ 〉 (5.7)

where h ≡ h+h−1− is the integration constant, and g(x)is the group element
g(x) = eI− b−1 eI+ b1 . (5.8)

The peculiarity of ic-instanton solution is the particular choice of the integration constant

h. Usually, for the sinh-Gordon theory, the one soliton solution is obtained taking h to be

the exponential of a vertex operator, h = eV (µ), where V (µ) is an element of the Kac-Moody

algebra which is an eigenvectos of the adjoint action of the oscillators b±1, i.e.,

[ b2n+1 , V (µ) ] = −2µ2n+1V (µ) (5.9)

So, to take h = eV (µ) produces a one soliton solution [3], [5], [6]. In the same way, the n-

soliton solution is obtained by taking h as a product of those exponentials, h =
n∏
i=1
eV (µi).

But here, to obtain the ic-instanton solution we must take a continuous infinite product

of those exponentials

h+h
−1
− ≡

∞∏
i=1

eV (µi) (5.10)

This means that we have an N -soliton solution, with N →∞; this is some sort of soliton
condensate [4].

At this point, we determined all elements present in the construction of solution. Now,

we have to do two more things: i) evaluate the expected value 5.7 for that appear in the

expression for the solution for N → ∞; ii) and take the continuous limit for the soliton
condensate.

So, first, let us deal with the expected value 5.7. After this choice of the constant h

we can rewrite 5.7 as a Fredholm determinant (see [6])

〈λ0 | N+M−1− | λ0 〉 = det (1 +W) (5.11)

〈λ1 | N+M−1− | λ1 〉 = det (1−W) (5.12)

where W is the infinite matrix

Wij = e
β(µi)

2

√
4µi µj

µi + µj
e
β(µj )

2 . (5.13)

The β(µ)’s are functions of I± that appears in 5.5,5.6:

β(µi) = −2
(
µi I+ +

I+
µi

)
(5.14)

– 7 –
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Due the considerations in section 4.1, we are able to evaluate I± for regions around a zero
of a(w); that is, near the zeros of a(w) we get

β(µi) = 2g

(
µiζ̄ +

ζ

µi

)
once that I+ = −g ζ̄; I− = −g ζ as a ∼ 0 (5.15)

So, according to 5.2 and 5.11, 5.12, we get

u = ln

(
det (1 +W)
det (1−W)

)
= Tr ln

1 +W
1−W (5.16)

This means that we then have an infinite series of powers of W matrix

u =
∞∑
n=0

Tr W 2n+1

2n+ 1
(5.17)

We pass now to the second step, that is, take the continuous limit. This can be achieved

by transforming the matrix indices of W into continuous ones; this means that, to take the
trace we must perform integrations instead of summations. This passage has some subtle

aspects, and we must take some care (see [6] for further details). In this procedure, we

introduce a scaling factor (Λ) in the integration measure, that have to be fixed correctly

in order to satisfy the boundary conditions. We then pass from 5.17 to

u = 2
∞∑
n=0

(2Λ)2n+1

2n+ 1
I2n+1 (5.18)

In this expression, I2n+1 are the integrals

I2n+1 =
1

22n

∞∫
· · ·
∫

−∞
dφ1 . . . dφ2n

K0

(
4 | g || ζ |√w2n+1 (φ))

cosh
(
φ1
2

)
. . . cosh

(
φ2n
2

)
cosh

(
2n∑
i=1

φi
2

) (5.19)

where the variables φ’s are related to the µ’s, and the functions wN are

wN (φ) = N + 2
N−2∑
l=0

N−l−1∑
m=1

cosh
m+l∑
n=m

φn (5.20)

The solution 5.18 with a free parameter Λ satisfies the equation 4.2 in all regions, except

near the singularities. In this region, we can expand the equation in terms of powers of Λ,

what give us an infinite number of differential non-linear equations

I ′′3 +
1

x
I ′3 − I3 = 8I31

I ′′5 +
1

x
I ′5 − I5 =

40

3
I21 I3 +

32

3
I51

I ′′7 +
1

x
I ′7 − I7 =

224

9
I41 I3 +

56

9
I1 I

2
3 +
56

5
I21 I5 +

256

45
I71

...
...
...
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These relations are verified, as we can see in [7]. So, 5.18 is indeed a solution.

We analyze the behavior of 5.18 near the regions where we have to obey the boundary

conditions. So, by imposing that 4.3, 4.4 be satisfied, we determine the value of Λ:

Λ =
1

4π
. (5.21)

Therefore from 5.18, the desired solution to is given by

u = 2
∞∑
n=0

1

(2π)2n+1
I2n+1
2n+ 1

(5.22)
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