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Abstract: We consider in the first part, the N = 1 supersymmetric extension of the

polytropic gas dynamics. We give both the Lagrangian as well as the Hamiltonian de-

scription and construct the infinite set of “Eulerian” conserved charges associated with

this system. In the second part, we present a systematic procedure for obtaining the

dispersionless limit of a class of N = 1 supersymmetric systems starting from the Lax

description of their dispersive counterparts. We demonstrate this method by working out

explicitly the examples of the dispersionless supersymmetric two boson hierarchy and the

dispersionless supersymmetric Boussinesq hierarchy.

1. Introduction

Hydrodynamical systems are dispersionless systems which have been studied from a variety

of points of view [1]-[5]. In 1+1 dimensions, they encompass a large class of physical systems

such as the polytropic gas [6], the elastic medium equations [6] the Born-Infeld equations

[7, 8] all of which are integrable. Some of these dispersionless systems [9] can be related to

string theory, membrane theory and topological field [10] theories.

The equations describing the polytropic gas dynamics in 1+1 dimensions are [6]

∂v

∂t
= (vu)x

∂u

∂t
=

(
u2

2
+

vγ−1

(γ − 1)

)
x

, γ 6= 0, 1 (1.1)

where u and v are two dynamical variables belonging to the class of equations known

as equations of hydrodynamical type. The system of polytropic gas equations include a

large class of physical systems corresponding to different values of the exponent γ. In

particular, for γ = −1, they describe the Chaplygin gas, or the Born - Infeld equation.
This polytropic gas system has many similarities with the soliton equations. It possesses
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multihamiltonian structure, has infinite number of conserved currents in involution and

admits the so called Lax representation. Interestingly, the polytropic gas system can be

thought as the disperssionless limit of the Kadomtsev-Petviashvilli hierarchy.

On the other side, there are many papers [11] - [14] where the problem of the supersym-

metrization of the soliton theory was considered. Therefore, the problem of constructing

the supersymmetric version of the polytropic gas dynamics and the investigation of the

dispersionless limit of the supersymmetric soliton theory seems to be very attractive. They

have been recently considered in [15, 16, 17].

The description of the supersymmetric method used in the process of the supersym-

metrization of the polytropic gas system is the main body of my first part of my talk.

In the second part, we investigate the problems connected with the the supersymmetric

dispersionless limit of the two boson system and Boussinesq hierarchy. These two parts

are based on the common papers written together with A. Das [17] and with A.Das and

S.Krivonos [18].

My talk is organized as follows. In the first section I present the basic ideas used in the

soliton theory which are used in the hydrodynamical models. In the second part the idea

of the supersymmetrization of the classical equations of motion is discussed. In the third

section I present the supersymmetric version of the polytropic gas system considered ein

[17]. In the last section the problems with the supersymmetric version of the dispersionless

limit of known supersymmetric solitons equations are considered.

2. The Polytropic gas system as a multihamiltonian system

The polytropic gas system (1.1) admits two infinite sets of conserved charges [5, 19, 20].

The first set, also called the “Eulerian” conserved charges [20], has the explicit form

H(1)n =

∫
dxh(1)n =

∫
dx

[n
2
]∑

k=0

c(k, n)un−2kvk(γ−1)+1, n = 0, 1, 2, · · · (2.1)

where [n2 ] stands for the integer part of the fraction and

c(k, n) =
1

k!(n − 2k)!
1

(γ − 1)k

(
k∏
l=0

1

l(γ − 1) + 1

)
(2.2)

Explicitly, the first four conserved charges of this infinite set has the forms

H
(1)
0 =

∫
dxh

(1)
0 =

∫
dx v

H
(1)
1 =

∫
dxh

(1)
1 =

∫
dxuv

H
(1)
2 =

∫
dxh

(1)
2 =

∫
dx

(
1

2!
u2v +

vγ

γ(γ − 1)

)

H
(1)
3 =

∫
dxh

(1)
3 =

∫
dx

(
1

3!
u3v +

uvγ

γ(γ − 1)

)
(2.3)

– 2 –



P
r
H
E
P
 
u
n
e
s
p
2
0
0
2
 

Workshop on Integrable Theories, Solitons and Duality Ziemowit Popowicz

The second infinite set of conserved charges, also known as the “Lagrangian” conserved

charges [20], have the following closed forms

H(2)n =

∫
dxh(2)n =

∫
dx

[n
2
]∑

k=0

c(k, n)un−2k+1vk(γ−1) (2.4)

The first three of these conserved charges have the explicit forms

H
(2)
0 =

∫
dxh

(2)
0 =

∫
dxu

H
(2)
1 =

∫
dxh

(2)
1 =

∫
dx

(
1

2!
u2 +

v(γ−1)

(γ − 1)(γ − 2)

)

H
(2)
2 =

∫
dxh

(2)
2 =

∫
dx

(
1

3!
u3 +

uv(γ−1)

(γ − 1)(γ − 2)

)
(2.5)

The system of polytropic gas equations is Hamiltonian with respect to three distinct

Hamiltonian structures (the operators act on a delta function),

D1 =
(
0 ∂

∂ 0

)
,

D2 =
(
∂vγ−2 + vγ−2∂ ∂u+ (γ − 2)u∂
(γ − 2)∂u + u∂ ∂v + v∂

)

D3 =




∂uvγ−2 + uvγ−2∂
∂
[
1
2u
2 + 1

γ−1v
γ−1)

]
+
[
(γ−2)
2 u2 + 1

γ−1v
γ−1
]
∂

∂
[
(γ−2)
2 u2 + 1

γ−1v
γ−1
]

+
[
1
2u
2 + 1

γ−1v
γ−1
]
∂

∂uv + uv∂




(2.6)

so that we can write the polytropic gas equations as

(
ut

vt

)
= D1


 δH

(1)
2
δu
δH
(1)
2
δv


 = 1

γ
D2


 δH

(1)
1
δu
δH
(1)
1
δv


 = D3


 δH

(1)
0
δu
δH
(1)
0
δv


 (2.7)

There exists a simple connection between the hameiltonian operators D and the Poisson
brackets

{Vi(x), Vj(y)}n = Dn,i,jδ(x, y) (2.8)

where δ is the Dirac delta function, Vi are fields and n enumerates different hamiltonian

structures.

The previous connection create also the connection between different algebras. Notice

that for γ = 4 the second hamiltonian operator D2 (2.6) generate the so called centerless
Zamolodchikov W3 algebra.

– 3 –
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The knowledge of the multihamiltonian structures is very useful because in many cases

it allows to construct the recursion operator. In our case we have the the following recursion

operator

R = D−11 D2 (2.9)

This opertaor, as the hereditary operator [1], can be used for constructing new conserved

densities. Namely we have 
 δH

(1)
m+1

δu
δH
(1)
m+1

δv


 = 1

γ
D−11 D2

(
δH
(1)
m
δu
δH
(1)
m
δv

)
. (2.10)

The three Hamiltonian structures in Eq. (2.6) are compatible, which can be eas-

ily seen from the fact that under the shift u → u + λ, where λ is an arbitrary con-

stant, D2 → D2 + λ(γ − 1)D1 and D3 → D3 + λD2 + λ
2(γ−1)
2 D1. The compatibility of a

multi-Hamiltonian structure guarantees the complete integrability of a system of dynam-

ical equations. However, in the case of the polytropic gas equations, one can check from

Eqs. (2.1,2.4) that the conserved densities satisfy

∂2H
(i)
n

∂v∂v
= vγ−3

∂H
(i)
n

∂u∂u
, i = 1, 2 and n = 0, 1, 2, · · · (2.11)

Using this, one can prove, in an elegant manner, that the conserved quantities are in

involution with respect to the three Hamiltonian structures, therefore showing the complete

integrability of the polytropic gas equation. Moreover this equation can be described by

the Lax function [19].

Let us next use the involution of the conserved quantities to derive some relations

which will be useful within the context of the supersymmetric polytropic gas. Note that

the involution of the charges with respect to the first Hamiltonian structure implies that

{H(1)n ,H(1)m }1 =
∫
dx

(
δH
(1)
n

δu
∂
δH
(1)
m

δv
+
δH
(1)
n

δv
∂
δH
(1)
m

δu

)
= 0 (2.12)

An explicit calculation of the Poisson bracket yields

∫
dx

[n
2
]+[m

2
]∑

s=0

um+n−2s−2vs(γ−1)+1ux
s(γ − 1) + 1

min(s,[m
2
])∑

l=max(0,s−[n
2
])

f(s, l, n,m) (2.13)

where

f(s, l, n,m) = c(s− l, n)c(l,m)[−(n − 2(s− l))(n − 2(s− l)− 1)(l(γ − 1) + 1)(l(γ − 1))
+(m− 2l)(m− 2l − 1)((s − l)(γ − 1) + 1)((s − l)(γ − 1))] (2.14)

The vanishing of the Poisson bracket, then, leads to the relation

min(s,[m
2
])∑

l=max(0,s−[n
2
])

f(s, l, n,m) = 0 (2.15)

– 4 –
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Finally, let us note that it is easy to verify that the Miura transformation

v = rp, u =
1

(γ − 1)
(
r(γ−1) + p(γ−1)

)
(2.16)

maps the polytropic gas equations to the equations

d r

dt
=

1

(γ − 1)
(
r(γ−1) + p(γ−1)

)
rx + rp

(γ−2)px

d p

dt
=

1

(γ − 1)
(
r(γ−1) + p(γ−1)

)
px + pr

(γ−2)rx (2.17)

which can be written as Hamiltonian equations with the first structure in Eq. (5) and

H =

∫
dx

1

γ(γ − 1)
(
prγ−1 + rpγ−1

)
Moreover, this Miura transformation transforms the canonical Hamiltonian operator D1
onto the second Hamiltonian operator D2.

3. How we would like to supersymmetrize the classical systems

In the last years, there areincreasing interest in the supersymmetric integrable systems. In

particular, the supersymmetric KdV - type equations were extensively studied. However

up to now we have not an unique prescription for the supersymmetrization of the classical

systems. We can encounter two different methods of supersymmetrization. The first is

the Lie superalgebraic approach and the second which I call as an algebraic method. Both

these methods have own advantages and disadvantages.

In the first approach we replace the classical symmetry of the given system by its

supersymmetrical partner. For example, starting from the supersymmetric generalizations

of the Virasoro algebra and the corresponding hamiltonian structure, it was possible to

construct integrable supersymmetric extensions of the classical Korteweg de Vries (KdV)

equation. Lie superalgebraic approaches to the supersymmetric hierarchies were developed

by Inami, Kanno and others. The classical background from which these approaches orig-

inate is the Drinfeld-Sokolov theory, concerning the relations between simple Lie algebras

and KdV-type hierarchies. However, this method does not allow to obtain all possible

supersymmetric extensions and in many cases it is restricted to the so called fermionic ex-

tensions of the classical systems. For example it appeared recently, that the famous KdV

equation could be supersymmetrized using the so called odd Poisson brackets [28] . More-

over, during the supersymmetrization procedure, some typical supersymmemtrical effects,

not encountered in the classical case, have occurred. Interestingly, the first hamiltonian

structure for the supersymmetric N = 1 KdV equation, introduced by Manin-Radul, is the

so called inverse hamiltonian while its classical counterpart is the usual one.

The second method is based on the observation that the idea of supersymmetrization

consists in extending a system of k bosonic equations by kN fermion and k(N − 1) boson
fields (k = 1, 2, ...,N = 1, 2, ..) in such a way that the final theory becomes supersym-

metrical invariant. In order to add these fields we can use the dimensional analysis and

– 5 –
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consider all possible supersymmetrical combinations of the given dimensional weight. Let

me illustrate this method in the KdV equation case.

The classical KdV equation which we consider has the form

∂u

∂t
= −uxxx + 6uux (3.1)

We can associate the following weights to [u] = 2, [∂] = 1, [t] = −3, from which we conclude
that the dimension of the KdV equation is 5.

In the extended N = 2 supersymmetric case we deal with the supermultiplet Φ whose

Taylor expansion with respect to the two anticommuting variables θ1 and θ2 is

Φ = u0 + θ1ξ1 + θ2ξ2 + θ2θ1u1 (3.2)

where the fields u0, u1 are interpreted as bosonic (fermionic) fields for a superboson (super-

fermion) field and ξ1, ξ2 as fermions (bosons) for a superboson (superfermion) respectively.

In the KdV case we can assume that u1 = u. If we associate the weight [ξi] = 3/2 we

obtain that [Φ] = 1 and hence the most general ansatz on the 4 dimensional combinations

is

∂Φ

∂t
= s1(D1D2Φxx) + s2Φ(D1D2Φx) + s3(D1D2Φ)

2 + s4Φx(D1D2Φ) + (3.3)

s5(D1D2Φ)Φ
2 + s6Φxxx + s7ΦxxΦ+ s8(Φx)

2 + s9ΦxΦ
2 + s10Φ

4

s11(D2Φx)(D2Φ) + s12(D2Φx)(D1Φ) + s13(D2Φ)(D1Φx)

s14(D2Φ)(D1Φ)Φ + s15(D1Φx)(D1Φ)

where si are arbitrary constants and the superderivatives are defined as

D1 = ∂θ1 + θ1∂ D2 = ∂θ2 + θ2∂ (3.4)

with the properties

D2D1 +D1D2 = 0, D21 = D
2
2 = ∂ (3.5)

Below we shall use the following notation: (DiF ) denotes the outcome of the action of the

superderivatives, while D1F denotes the action itself.

The main problem now is how to fix the constants si. We can do it assuming that 1.) In

the bosonic sector, where all fermions and additional boson fields disappear, our equation

reduces to the KdV equation. 2.) Our supersymmetric equation (3.3) is invariant under

the rotation D1 ⇔ D2. 3.) The equation (3.3) could be written down as a hamiltonian

equation. 4.) Our supersymmetric equation has all or some soliton’s properties, namely it

is completely integrable, possesses a recursion operator and a Lax representation.

The first two assumptions fix four constants. On the other hand assuming that our

equation is hamiltonian and its second hamiltonian structure is connected with the super-

symmetric Virasoro algebra

∂Φ

∂t
= (D1D2∂ + 2∂Φ + 2Φ∂ −D1ΦD1 −D2ΦD2)

δ((D1D2Φ)Φ + a(Φ)
3)

∂Φ
(3.6)

– 6 –
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we obtain a one parameter family of equations enumerated by the constants a. Additional

assumptions on the integrability fix constants to a = 1,−2, 4.
However in many cases we do not known the supersymmetrical version of the hamilto-

nian operator. We can fix this operator, also using the dimensional analysis and assuming

the most general even or odd supersymmetrical hamiltonian or inverse hamiltonian struc-

ture. This is the method we use in the next section.

The disadvantage of this algebraic method consists in its complexity. The ansatz we

are dealing here contains a huge number of fields and therefore we are forced to use the

computer algebra in order to fix the constants [14]. Anaothee disadvantage of this method

is its restriction to dimensional fields but we do not know in fact how to apply it to zero

dimensional fields.

4. N = 1 Supersymmetric polytropic gas:

We consider here only the non-extended supersymmetrization of the polytropic gas for

arbitrary γ. We have chosen to work directly at the level of the equations of motion and

use our second method of supersymmetrization.

From the discussion of the last section, in particular Eq. (1.1), we note that we can

assign the following dimensions

[x] = −1, [v] = 2, [u] = γ − 1, [t] = −γ (4.1)

In generalizing Eq. (1.1) to the N = 1 supersymmetric system, we work in superspace

and enlarge the number of dynamical variables to write them in terms of two fermionic

superfields of the forms

U(x, θ) = η(x) + θu(x), V (x, θ) = ξ(x) + θv(x) (4.2)

where η, ξ represent the dynamical fermionic variables, which are the superpartners of the

original bosonic variables, u, v, respectively.

The dimensions of [θ] = −12 forces the dimensions of the dynamical superfields to be

[U ] = γ − 3
2
, [V ] =

3

2
(4.3)

It is clear now that, since [Ut] = 2γ − 32 and [Vt] = γ + 32 , in generalizing the poly-

tropic gas equations to the superspace, we can allow for all possible local terms (involving

U, (DU), Ux, · · · and V, (DV ), Vx, · · ·) in the dynamical equations on the superspace, which
conform to the appropriate dimensions. Furthermore, we also require that the equations be

such that, in the bosonic limit, they reduce to the equations for the polytropic gas dynam-

ics. Once we have the dynamical equations it can be determined that the system possesses

an infinite set of bosonic conserved charges which similarly conforms to the appropriate

dimensions and reduces to the classical charges in the bosonic limit.

This restricts the structure of the equations greatly. Interestingly, we do not obtain any

equation and conserved charges if we assume the existence of the both supersymmetrical

– 7 –
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analog of the ,, Eulerian ” and ,,Lagrangian ” charges. We did not obtain any supersym-

metrical equation assuming the existence the supersymmetrical analog of the ”Lagrangian”

charges only.

The assumption of the existence of the supersymmetrical analogs of the ”Eulerian”

charges only leads us to the following equation

Vt = (V (DU))x

Ut = D

[
1

2
(DU)2 +

1

(γ − 1)(DV )
γ−1 − (γ − 2κ)

γ
V Vx(DV )

γ−3
]

(4.4)

where κ is an arbitrary parameter.

The supersymmetrical analogs of the ”Eulerian” conserved charges is

H(1)n =

∫
dz h̃(1)n =

∫
dz

[n
2
]∑

k=0

c(k, n)V (DV )k(γ−1)(DU)n−2k (4.5)

where dz = dx dθ represents the integration over the superspace and c(k, n)’s denote the

constants defined in Eq. (2.2). These charges reduce in the bosonic limit to the “Eulerian”

conserved charges in Eq. (2.1). The first ones have the following explicit forms for the first

few.

H
(1)
0 =

∫
dz h̃

(1)
0 =

∫
dz V

H
(1)
1 =

∫
dz h̃

(1)
1 =

∫
dz V (DU)

H
(1)
2 =

∫
dz h̃

(1)
2 =

∫
dz V

[
1

2
(DU)2 +

(DV )γ−1

γ(γ − 1)

]

H
(1)
3 =

∫
dz h̃

(1)
3 =

∫
dz V

[
1

3!
(DU)3 +

1

γ(γ − 1)(DV )
γ−1(DU)

]
(4.6)

These “Eulerian” charges can be easily checked to be conserved for any value of κ. In

fact, under the evolution of Eq. (4.4), it is straightforward to show that

dH
(1)
n

dt
=

∫
dz


− [

n
2
]∑

k=1

c(k, n)
k(γ − 1)(k(γ − 1) + 1)

n− 2k + 1 V (DVx)(DV )
k(γ−1)(DU)n−2k+1

+

[n
2
]−1∑
k=0

c(k, n)(n − 2k)V (DVx)(DV )(k+1)(γ−1)−1(DU)n−2k−1



=

∫
dz

[n
2
]∑

k=1

[
−k(γ − 1)(k(γ − 1) + 1)

n− 2k + 1 c(k, n) + (n− 2k + 2)c(k − 1, n)
]

×V (DVx)(DV )k(γ−1)(DU)n−2k+1

= 0 (4.7)

where we have used the fact that the quantity in the square bracket vanishes due to the

structure of c(k, n) (see Eq. (2.2)).

– 8 –
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Once we have the conserved quantities, we can think of them as Hamiltonians and look

for a Hamiltonian description of the system. It turns out that the system of equations in

Eq. (4.4) has a Hamiltonian description only for κ = 1. Namely, with the Hamiltonian

structure

D1 =
(
0 D

D 0

)
(4.8)

the N = 1 supersymmetric polytropic gas equations can be written in the Hamltonian form

(
Ut
Vt

)
= D1


 δH

(1)
2
δU
δH
(1)
2
δV


 (4.9)

only if κ = 1. This, therefore, selects out the particular value of the arbitrary parameter κ.

However, integrability is yet to be shown, even though the presence of an infinite number

of conserved quantities is suggestive.

We would choose κ = 1 from now on, so that the N = 1 supersymmetric polytropic

gas equations have the form

Vt = (V (DU))x

Ut = D

[
1

2
(DU)2 +

1

(γ − 1)(DV )
γ−1 − (γ − 2)

γ
V Vx(DV )

γ−3
]

(4.10)

Unlike the bosonic system, where there are three distinct Hamiltonian structures, the

supersymmetric equations in (4.10) do not seem to allow any other Hamiltonian structure

(at least, we have not succeeded in finding them).

We have not managed to find an elegant proof of the involution of charges as in the

bosonic case. Instead, we can show by brute force that the charges are in involution with

respect to the Hamiltonian structure D1, namely, it can be shown by direct calculations
that

{
H(1)n ,H(1)m

}
=

∫
dz

[n
2
]+[m

2
]∑

s=0

(
V (DUx)(DV )

s(γ−1) + VxV Ux(DV )s(γ−1)−1
)

s(γ − 1) + 1

×(DU)m+n−2s−2
min(s,[m

2
])∑

l=max(0,s−[n
2
])

f(s, l, n,m)

= 0 (4.11)

where f(s, l, n,m) is defined in Eq. (2.15) and we have used the identity in Eq. (2.16) in

the final step. This shows that the infinite set of charges are in involution, thereby proving

the complete integrability of the system.

As we have seen in the bosonic case, the polytropic gas equations possess two infinite

sets of conserved charges, although only one set of infinite conserved charges is enough to

prove integrability. It is worth inquiring about the second infinite set of conserved charges

in the case of the supersymmetric polytropic gas equations. Unfortunately, we have found

– 9 –
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only one other charge, namely,

H
(2)
0 =

∫
dz h̃

(2)
0 =

∫
dz U (4.12)

which is conserved under the evolution of the supersymmetric polytropic gas system. Of

course, it reduces, in the bosonic limit, to the bosonic charges H
(2)
0 in Eq. (2.4).

Let us comment now on why our supersymmetric polytropic gas system has only one

local Hamiltonian structure and possesses only the supersymmetric “Eulerian” series of

local conserved charges (and not a second infinite set of conserved charges). First, note that

the bosonic polytropic gas equation (1.1), for γ = 4, can be thought of as the dispersionless

limit of the Boussinesq equation. On the other hand, the second Hamiltonian structure

of this equation (see Eq. (2.6)), corresponds to the W3 algebra. It is well known that

there is no nontrivial N = 1 supersymmetric extension of the Boussinesq equation as well

as the W3 algebra. From the nonexistence of supersymmetric extension of W3 algebra

alone, we cannot, of course, conclude that there are no possible supersymmetrizations in

the dispersionless limit. However, using computer and symbolic computations, we have

checked that it is impossible to find such local structures as well as the supersymmetric

analog of the Miura transformation, Eq. (2.16), in the dispersionless limit. The non-

existence of the second Hamiltonian structure, for the supersymmetric polytropic gas, also

implies that there does not exist a recursion operator that is factorizable and can be written

in terms of two Hamiltonian structures. This, however, does not affect the integrability of

the system, as we have explicitly demonstrated that the N = 1 supersymmetric polytropic

gas system is completely integrable.

We did not find the supersymmetric analog of the Lax operator for our supersymmetric

polytropic gas system. The reason will be explained in the next section.

5. The Lax description of the dispersionless two bosons and Boussinesq

hierarchy

We describe the basic procedure of taking the dispersionless limit of bosonic systems within

the framework of the Lax description itself. Let us consider a general Lax operator of the

form

L = ∂n +

∞∑
m=1

Am∂
n−m (5.1)

where the coefficients, Am’s, are functions of the dynamical variables of the system which

depends on the coordinates (x, t). Let us assume that the Lax equation

∂L

∂tk
= [(Lk)≥s, L], s = 0, 1, 2 (5.2)

describes the dynamical system of equations. Here ()≥s represents the projection with
respect to the powers of ∂. In going to the dispersionless limit, first of all, we replace

∂ → p. Then, we scale p→ αp and all the basic dynamical variables as Ji → (α)iJi where
Ji represents the basic dynamical variables of the system with the respective dimensions

– 10 –
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i. The Lax function which describes the dispersionless system of equations is obtained as

[21]

L = lim
α→∞

1

αn
Lα (5.3)

where Lα denotes the scaled Lax function. The dispersionless equations are then obtained

from the Lax equation
∂L
∂tk
= −

{
(Lk)≥s,L

}
(5.4)

where

{A,B} = ∂A

∂x

∂B

∂p
− ∂A

∂p

∂B

∂x
(5.5)

represents the Poisson bracket on the classical phase space.

Let us illustrate this procedure with a few examples. The reduction of the KdV

equation to its dispersionless limit is well known and, therefore, we will not repeat it here.

As a first example lest us consider the following Lax operator

L := ∂3 + v∂ + u (5.6)

and its Lax pair representation
∂L
∂t
= [(L 43 )≥0,L]. (5.7)

The last equation generates the following equations

∂u

∂t
= (−3uxxx − 12uxu+ 2v5x + 6vxxxv + 12vxxvx
−6vxux + 4vxv2 − 6vuxx)/9

∂v

∂t
= (−2uxxx + v4x + 2vxxv + 2v2x − 4vxu− 4vux)/3 (5.8)

In the dispersionless limit these equations reduce to the polytropic gas system dynamics

while the Lax operator reduces to

L = p3 + vp+ u (5.9)

Let us look now at the two boson hierarchy [22] described by the Lax operator

L = ∂ − J + ∂−1T (5.10)

with the nonstandard Lax equation given by

∂L

∂tk
= −

[
(Lk)≥1, L

]
(5.11)

Here J and T are dynamical field variables with dimensions one and two respectively.

Therefore, under the scaling discussed earlier, we have for the present case, p → αp, J →
αJ, T → α2T . It follows that in the dispersionless limit the Lax operator goes into

L = p− J + Tp−1 (5.12)

– 11 –
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and the Lax equation
∂L
∂tk
=
{
(Lk)≥1,L

}
(5.13)

describes the dispersionless system of equations.

The two boson hierarchy can also be alternatively described in terms of the gauge

equivalent Lax operator [23]

L = ∂ − 1

∂ + J

(
T

2

)
(5.14)

and the standard Lax equation

∂L

∂tk
=

[(
Lk
)
≥0
, L

]
(5.15)

This description of the system of equations is more convenient from the point of view of

our subsequent discussions. We note that the second flow

Jt2 =
(
Jx + T − J2

)
x
, Tt2 = −Txx − 2 (JT )x (5.16)

is the two boson equation which is also related to the nonlinear Schrödinger equation (NLS)

[23]. The third flow, on the other hand, is obtained to be

Jt3 = Jxxx +
(
J3 − 3JT − 3JJx

)
x
, Tt3 = Txxx + 3

(
J2T − 1

2
T 2 + JTx

)
x

(5.17)

and this coincides with the bosonic sector of the N = 2 supersymmetric KdV equation

with a = 4 [11] after the transformations

J → 2J , T → −2(T + Jx) , x→ ix , t→ it . (5.18)

In the present case, it is easy to check that, in the dispersionless limit, the Lax function

becomes

L = p− 1

p+ J

(
T

2

)
. (5.19)

The second and the third flow equations following from the Lax equation

∂L
∂tk
= −

{
(Lk)≥0,L

}
(5.20)

are given by

Jt2 =
(
T − J2

)
x
, Tt2 = −2 (JT )x (5.21)

Jt3 =
(
J3 − 3JT

)
x
, Tt3 = 3

(
J2T − 1

2
T 2
)
x

(5.22)

These are indeed the correct dispersionless limits of the two boson hierarchy.

While the properties of such bosonic models are quite well understood, much remains

to be learnt about their supersymmetric counterparts. For example, the Lax description

of only a handful of supersymmetric dispersionless systems have been constructed, to this

– 12 –
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date, by brute force [24, 25]. We did not find, using brute force, the supersymmetric Lax

operator for the polytropic gas system also. On the other side, there is no systematic pro-

cedure for obtaining them starting from the corresponding supersymmetric dispersive Lax

descriptions. Similarly, supersymmetric dispersionless systems often have more conserved

charges than their dispersive counterparts and we do not yet know how to relate the new

charges to the Lax function itself.

We take a modest step here and show how one can obtain, systematically, a Lax

description for a selected class of supersymmetric dispersionless systems starting from

their dispersive counterparts. This ancestor N = 2 supersymmetric systems are described

in terms of the Lax operators that involve only ”bosonic” operators (∂). We define in the

next section the basic procedure for taking the dispersionless limit in the Lax description

itself, within the context of bosonic models. We work out some known examples to illustrate

the procedure and present the Lax description of some new bosonic models. We work out

explicitly the example of the dispersionless supersymmetric two boson hierarchy starting

from the N = 2 supersymmetric KdV hierarchy. We extend the analysis and discuss the

dispersionless supersymmetric Boussinesq.

6. Supersymmetric KdV and two boson hierarchy

In this section, we will generalize the ideas of the previous section to construct the Lax de-

scription for a class of dispersionless supersymmetric systems. In particular, we will work

out in detail the case of the dispersionless N = 1 supersymmetric two boson hierarchy

starting from the Lax description of the N = 2 supersymmetric KdV hierarchy with a = 4

[26], whose bosonic sector we have studied in the last section. Let us first note that the few

dispersionless supersymmetric systems [24] whose Lax descriptions have been constructed

by brute force show that, although the Lax function is defined in terms of superfields, it

involves only bosonic momenta and the conserved charges are obtained from the bosonic

residues of powers of the Lax function. Furthermore, in the dispersionless limit, we know

that ∂ → p. However, the reduction of the fermionic covariant derivative in the disper-

sionless limit is not well understood. It is also already noted [24] that a scaling of the

fermionic covariant derivative is essential in order to preserve the supersymmetry in the

dispersionless limit. In view of the above mentioned difficulties, our strategy, as a first

step, is to look at supersymmetric systems which are described in terms of Lax operators

that involve only bosonic ∂ operators.

For one of the three known families of integrable supersymmetric hierarchies with

N = 2,Wn superalgebra as the second Hamiltonian structure, the Lax operators contain

only bosonic operators of the forms [26]:

Ls = ∂ −
[
D

1

∂s +
∑s
i=1 Ji∂

s−iD

(
s∑
i=1

Ji∂
s−i
)]

. (6.1)

Here, s = 0, 1, 2, . . . and Ji are bosonic N = 2 superfields of dimensions i. Furthermore,

the square brackets stand for the fact that the N = 2 supersymmetric fermionic covariant

– 13 –
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derivatives D and D, defined to be

D =
∂

∂θ
− θ

2
∂ , D =

∂

∂θ
− θ

2
∂ (6.2)

act only on the superfields inside the brackets.

Let us consider the conventional dispersionless limit in the simplest case of the N = 2

supersymmetric KdV hierarchy with s = 1. The Lax operator, in this case, has the form

L = ∂ −
[
D
1

∂ + J
DJ

]
. (6.3)

The second flow, following from this Lax operator, reads

Jt2 =
(
[D,D]J − J2

)
x
. (6.4)

Under the rescaling ∂t → λ∂t, ∂ → λ∂, (D,D) → λ
1
2 (D,D), this equation will reduce to

(as λ→ 0)
Jt2 = −

(
J2
)
x
. (6.5)

However, this equation, despite being N = 2 supersymmetric, is not very interesting.

A different possibility consists in rescaling to rescale in a standard way all the fields

together with the fermionic derivatives in the Lax operator (6.3). This leads to the following

Lax function in the dispersionless limit:

L = p−
1
2T

p+ J −
1
2ψ1ψ2

(p+ J )2 , (6.6)

where we introduced the component fields:

J = J | , ψ1 = (D +D)J | , ψ2 = (D −D)J | , T =
[
D,D

]
J | , (6.7)

and the restriction | stands for keeping the (θ = θ̄ = 0) term. One can check, that the

second flow equations

Jt2 =
(
T − J 2

)
x
, Tt2 = −2 (J T − ψ1ψ2)x ,

(ψ1)t2 = −2 (Jψ1)x , (ψ2)t2 = −2 (Jψ2)x , (6.8)

do not possess any supersymmetry at all. They break even the N = 1 supersymmetry.

The same is also true for higher flows.

Therefore, we propose the following alternative approach to take the dispersionless

limit. The main idea is to rescale the fermionic components of the superfields Ji differently

from the conventional method as

Ji| → αi Ji| ,
(
D +D

)
Ji
∣∣→ αi

(
D +D

)
Ji
∣∣ , (6.9)(

D −D
)
Ji
∣∣→ αi+1

(
D −D

)
Ji
∣∣ , [D,D]Ji∣∣→ αi+1

[
D,D

]
Ji
∣∣ .

It is clear that this unconventional, alternative rescaling (6.9) will explicitly break the

N = 2 supersymmetry. However, a subset of N = 1 supersymmetry, generated by (D+D),

– 14 –
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will survive and, in the dispersionless limit, we will have a Lax description for an N = 1

supersymmetric system of equations.

Let us demonstrate in detail how all this works for the Lax operator (6.3). According

to our alternative procedure, the first step will consist of representing 1
∂+J as

1

∂ + J
≡ ∂−1 +A2∂−2 +A3∂−3 +A4∂−4 + . . . , (6.10)

where all the functions An can be recursively calculated and the first few have the explicit

forms

A2 = −J , A3 = J2 + Jx , A4 = −J3 − 3JJx − Jxx , . . . . (6.11)

Thus, our Lax operator can also be written as

L = ∂ −
[
D
(
∂−1DJ +A2∂−2DJ +A3∂−3DJ +A4∂−4DJ + . . .

)]
, (6.12)

and we should move the partial derivatives to the right in (6.12).

The first non trivial term on the right hand side of (6.12) generates an infinite series

of terms when the derivative is moved to the right, namely,

∂−1
[
DDJ

]
≡ 1
2
(T − Jx) ∂−1 −

1

2
(T − Jx)x ∂−2 +

1

2
(T − Jx)xx ∂−3 + . . . . (6.13)

We may now replace ∂ → p in the r.h.s. of (6.13) and rescale

p→ αp , J → αJ , ψ1 → αψ1 , ψ2 → α2ψ2 , T → α2T .

Then, it is easy to see that the only term among those in (6.13) that will contribute to

limα→∞ 1
αLα is

1

2
T p−1.

The second term inside the square bracket in the right hand side of (6.12) needs some more

work:

(DA2)∂
−2(DJ) +A2∂−2(DDJ) ≡ (DA2)(DJ)∂−2 − 2(DA2)(DJ)x∂−3 +
A2(DDJ)∂

−2 − 2A2(DDJ)x∂−3 + . . . , (6.14)

where the dots stand for terms with ∂−4 and higher. In the scaling limit, only the following
terms will survive

1

2
ψ1ψ2p

−2 − 1
2
ψ2 (ψ2)x p

−3 − 1
2
JT p−2 . (6.15)

Continuing in a similar manner, we find the Lax operator in the dispersionless limit to be

L = p−
1
2T

p+ J −
1
2ψ1ψ2

(p+ J )2 +
1
4ψ2(ψ2)x

(p+ J )3 . (6.16)

The second flow, following from the Lax equation, has the form

Jt2 =
(
T − J 2

)
x
, Tt2 = −2 (JT − ψ1ψ2)x ,

(ψ1)t2 = ((ψ2)x − 2Jψ1)x , (ψ2)t2 = −2 (Jψ2)x . (6.17)
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These equations can also be easily rewritten in terms of N = 1 superfields,

j = J + θψ1 , ψ = ψ2 − θT (6.18)

as

jt2 = −
(
Dψ + j2

)
x
, ψt2 = −2 (jψ)x , (6.19)

where

D = ∂

∂θ
− θ∂ , D2 = −∂ .

Let us note here that the Lax operator (6.16) is not new and is gauge equivalent to

the one which has been constructed earlier by brute force in [25]. However, we see that it

can be systematically obtained from the alternative dispersionless limit of the simplest of

the Lax operators in the family (6.1).
7. Supersymmetric Boussinesq hierarchy

As a second example of our method, in this section, we will work out the dispersionless

limit starting from the N = 2 supersymmetric Boussinesq hierarchy with α = 5
2 [27], which

is described by the Lax operator (6.1) with s = 2 [26]. The Lax operator (6.1), in this case,

has the explicit form

L = ∂ −
[
D

1

∂2 + J1∂ + J2
D (J1∂ + J2)

]
. (7.1)

Following our procedure, we will first rewrite

1

∂2 + J1∂ + J2
= ∂−2 +A1∂−3 +A2∂−4 + . . . , (7.2)

where all the An’s can be easily calculated,

A1 = −J1 , A2 = −J2+2(J1)x+J21 , A3 =
(
2J2 − 3(J1)x −

5

2
J21

)
x

+2J1J2−J31 , · · · (7.3)

With this, the first few terms in the square bracket in (7.1) have the form[
D

1

∂2 + J1∂ + J2
D (J1∂ + J2)

]
=
[
D∂−2D (J1∂ + J2)

]
+
[
DA1∂

−3D (J1∂ + J2)
]
+ (7.4)[

DA2∂
−4D (J1∂ + J2)

]
+
[
DA3∂

−5D (J1∂ + J2)
]
+ . . .

Let us next introduce the components

J1 = J1| , ψ1 = (D +D)J1| , ψ2 = (D −D)J1| , T1 =
[
D,D

]
J1| ,

T2 = J2| , ξ1 = (D +D)J2| , ξ2 = (D −D)J2| , W =
[
D,D

]
J2| , (7.5)

which have the scaling behaviors:

(J1, ψ1)→ α (J1, ψ1) , (ψ2,T1,T2, ξ1)→ α2 (ψ2,T1,T2, ξ1) , (ξ2,W)→ α3 (ξ2,W) . (7.6)

We are now ready to find a Lax function in the dispersionless limit.
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We can now have the fermionic derivatives act on the fields in (7.4), move the partial

derivatives to the right and replace ∂ → p. After this, it is easy to see that there will be

three types of terms that may survive in the limit (5.3):

L ≡ p−A− B − C ,

A ≡ 1
2
(T1p+W)

(
p−2 +A1p−3 +A2p−4 + . . .

)
(7.7)

B ≡
(
(DA1)p

−3 + (DA2)p−4 + . . .
) (
(DJ1)p + (DJ2)

)
(7.8)

C ≡
(
−3(DA1)p−4 − 4(DA2)p−5 + . . .

) (
(DJ1)p+ (DJ2)

)
x
. (7.9)

Note that the expressions in the parenthesis for A,B, C contain terms with and without
derivatives (see eq.(7.3)). For terms of the types A and C there is no problem, since in the
dispersionless limit (scaling limit), only terms without derivatives in An (7.3) contribute.

In this case, we have:

A =
1
2 (T1p+W)
p2 + J1p+ T2

, C = −
[
D

2p+ J1

(p2 + J1p+ J2)
2

] (
(DJ1)p + (DJ2)

)
x
. (7.10)

However, for terms of the type B, the scaling require us to keep also the terms linear in
the first derivatives in all the An’s. This leads to

B =
[
D

(
1

p2 + J1p+ J2
+
(2p+ J1)(J1p+ J2)x

(p2 + J1p+ J2)
3

)] (
(DJ1)p + (DJ2)

)
. (7.11)

In the dispersionless limit the Lax function now becomes

L = p−
1
2 (T1p+W)
p2 + J1p+ T2

−
1
4ψ2 (ψ2p+ ξ2)x

(p2 + J1p+ T2)2
−
1
2 (ψ1p+ ξ1) (ψ2p+ ξ2)

(p2 + J1p+ T2)2
+

1
4(2p + J1) (ψ2p+ ξ2) (ψ2p+ ξ2)x

(p2 + J1p+ T2)3
+
1
4 (J1p+ T2)x ψ2ξ2
(p2 + J1p+ T2)3

. (7.12)

It is now easy to check that the Lax equation (5.20) leads to the dispersionless supersym-

metric Boussinesq hierarchy. Explicitly, the second flow of this hierarchy is given by

(J1)t2 =
(
2T1 + 2T2 − J 21

)
x
,

(T1)t2 = 2 (W −J1T1 + ψ1ψ2)x , (T2)t2 = −2(J1)xT2 + J1(T1)x ,
(W)t2 = −2(J1)xW − 2(T1)xT2 + T1(T1)x + ψ2(ψ2)xx + 2 (ξ1(ψ2)x − ξ2(ψ1)x) ,
(ψ1)t2 = 2 (ξ1 + (ψ2)x − J1ψ1)x , (ψ2)t2 = 2 (ξ2 −J1ψ2)x ,
(ξ1)t2 = −2(J1)xξ1 − 2T2(ψ1)x + (T1)xψ1 + J1(ψ2)xx ,
(ξ2)t2 = −2(J1)ξ2 − 2T2(ψ2)x + (T1)xψ2 . (7.13)

This system of equations can also be rewritten in terms of N = 1 superfields

j1 = J1 + θψ1 , η1 = ψ2 − θT1 , j2 = T2 + θξ1 , η2 = ξ2 − θW (7.14)

as

(j1)t2 =
(
−2Dη1 + 2j2 − j21

)
x
(η1)t2 = 2 (η2 − j1η1)x ,

(j2)t2 = −2(j1)xj2 − j1(Dη1)x , (η2)t2 = −2(j1)xη2 − 2j2(η1)x − (Dη1)xη1 . (7.15)

Thus, we explicitly demonstrate that our system possesses an N = 1 supersymmetry.
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