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Abstract: We review and extend some results obtained in the context of a deformed

quantum field theory which is interpreted as a phenomenological quantum theory describ-

ing the scattering of spin-0 composite particles. We discuss in a more detailed way the

generalization of Wick’s expansion for this case and present the computation of the scat-

tering 1+2→ 1′+2′ up to second order in the coupling constant. The result we obtained
shows that the structure of a composite particle, described here phenomenologically by

the deformed algebraic structure, modify in a simple but non-trivial way the perturbation

expansion for the process under consideration.
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1. Introduction

One of the essential tools in the construction of a quantum field theory (QFT) is the

harmonic oscillator algebra known as Heisenberg algebra. This is originated from the

interpretation of the generators of this algebra as creating or annihilating particle states.

On the other hand, in order to interpret the generators, A† and A, of a q-deformed
Heisenberg algebra [1] as creating or annihilating particle states, respectively one should
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explain what kind of physical particle has the non additive property present in q-oscillators

systems, since for q-oscillators the energy of n particles is not equal to n times the energy

of one particle.

The first step in this direction was given in [2]. In that paper it was shown that cre-

ation and annihilation operators of correlated fermion pairs, in simple many body systems,

satisfy a deformed Heisenberg algebra that can be approximated by q-oscillators. Since the

combined pairs of fermions can be viewed as a composite system it seems reasonable to ex-

plore the consequences of using q-oscillators as an approximated way to describe composite

particles in the context of the formalism of second quantization.

We present here a QFT [3] that creates at any point of the space-time, particles de-

scribed by a q-deformed Heisenberg algebra interpreting it as a phenomenological theory

describing the interaction of composite particles. We construct the propagator, defined as

the Dyson-Wick contraction of two fields, for the deformed free theory, present a general-

ization of Wick’s expansion and the results of the scattering 1 + 2 → 1′ + 2′ up to second
order in the coupling constant [4].

The generalization of Wick’s expansion is necessary in order to compute perturbatively

this scattering process since the propagator is not a c-number and as a consequence some

nonstandard results come out. In order to illustrate these, a typical term is considered and

calculated in detail.

The result obtained concerning the scattering process shows that the structure of a

composite particle, described here phenomenologically by the algebraic structure, modify in

a simple but non-trivial way the perturbation expansion for the process under consideration.

In section 2, we realize q-oscillators in terms of physical variables and discuss its inter-

pretation in terms of a phenomenological description of composite particles in the context

of the formalism of second quantization. In section 3, we generalize Wick’s expansion

and compute the scattering process under consideration to second order in the coupling

constant. In section 4, we end up with some remarks and discussions on the possibility

of constructing a consistent QFT based on a more general algebraic structure known as

Generalized Heisenberg Algebra (GHA) [5],[6] and also on the application of this deformed

approach to investigate the pion-nucleon interaction in the framework of the linear sigma

model.

2. Lattice realization of q-oscillators

The algebra generated by b, b†, and N , described by the relations

b b† − q2 b† b = 1 , (2.1)

[N, b] = −b ,
[
N, b†

]
= b† ,

is known as q-oscillator algebra [1]. Defining b† = A†/(±N0), b = A/(±N0), where N20 =
1 + α0 (q

2 − 1), q and α0 are real numbers, and

J0 = q
2N α0 + [N ]q2 , (2.2)

– 2 –
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one can see [4] that A, A† and J0 satisfy[
J0, A

†
]
q2
= A†, (2.3)

[J0, A]q−2 = −
1

q2
A, (2.4)[

A†, A
]
= (1− q2)J0 − 1, (2.5)

where [a, b]r ≡ a b−r b a is the r-deformed commutation of two operators a and b. The above
relations correspond to the linear case of the GHA [5],[6] which is an algebraic structure

having as generators the creation and annihilation operators of a quantum system, and

an operator J0 which, as shown in [7], is the Hamiltonian of the quantum system under

consideration.

Let us consider a one-dimensional lattice in momentum space. The two possible defi-

nitions of discrete derivatives on this lattice are

(∂p f) (p) =
1

a
[f(p+ a)− f(p)] , (2.6)

(∂̄p f) (p) =
1

a
[f(p)− f(p− a)] , (2.7)

where a is the lattice spacing. With these derivatives it is possible to introduce the mo-

mentum shift operators

T = 1 + a ∂p , (2.8)

T̄ = 1− a ∂̄p , (2.9)

that move the momentum value by a

(Tf) (p) = f(p+ a) , (2.10)

(T̄ f) (p) = f(p− a) (2.11)

and satisfy

T T̄ = T̄ T = 1̂ , (2.12)

where 1̂ means the identity on the algebra of functions of p. Finally, we also introduce the

momentum operator P [8]

(Pf) (p) = p f(p) . (2.13)

In order to present the realization of the deformed Heisenberg algebra eqs. (2.3)-(2.5)

in terms of physical operators, we can associate to this one-parameter deformed Heisenberg

algebra the one-dimensional lattice we have just presented. Observe that we can write J0
in this case as

J0 = q
2P/a α0 + [P/a]q2 , (2.14)

with P given by eq. (2.13). The application of the operator P to the vector state |m〉 gives
[7]

P |m〉 = ma |m〉 ,m = 0, 1, · · · , (2.15)

– 3 –
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which can be written as N = P/a with N |m〉 = m|m〉. Moreover,
T̄ |m〉 = |m+ 1〉 ,m = 0, 1, · · · , (2.16)

where T̄ and T = T̄ † are defined in eqs. (2.8-2.9).
Let us now define

A† = S(P ) T̄ , (2.17)

A = T S(P ) , (2.18)

where,

S(P )2 = J0 − α0 , (2.19)

α0 being the lowest J0 eigenvalue. It was proven in [3] that the realization given in eqs.

(2.14) and (2.17)-(2.18) really satisfies eqs. (2.3)-(2.5).

In what follows we discuss an interpretation of the deformed Heisenberg algebra that

will be used in the next section. It is well known that Heisenberg algebra is an essential tool

in the second quantization formalism because their generators create and annihilate point

particles. As in the generalized case the energy difference of any two successive levels is not

equal, one can still consider that the ladder operators of the deformed Heisenberg algebra

create and annihilate particles with the difference that the total energy of n particles is

not equal to n times the energy of each particle. The next question to be answered is what

kind of free physical particle can have this non-additive energy.

In [2] it was shown that the algebra of fermion pairs of zero angular momentum can

be approximated by the q-oscillator algebra, eq. (2.1). Moreover, the pairing Hamiltonian

has the above mentioned non-additivity property. Let us briefly focus on the shell model

of nuclear collective motion. Fermion pairs of angular momentum J = 0 in the theory of

pairing in a single-j shell are created by the pair-creation operator

B† =
1√
Ω

∑
m>0

(−1)j+m f †j,mf †j,−m , (2.20)

with −j ≤ m ≤ j, where f †j,m are fermion creation operators and 2Ω = 2j + 1 is the
degeneracy of the shell. The pair creation operator just defined and the annihilation

operator satisfy a deformed Heisenberg algebra given by[
B,B†

]
= 1− NF

Ω
, (2.21)

with NF =
∑
m>0(f

†
j,mfj,m + f

†
j,−mfj,−m), the fermion number operator while the pairing

Hamiltonian is H = −GΩB†B. In [2] it was shown that the deformed algebra of composite
operators given in eq. (2.21) can be approximated by the q-oscillator algebra given in

eq. (2.1) with q = exp(−1/Ω) and the pairing Hamiltonian being approximated by the
q-oscillator Hamiltonian H = −GΩ[N ]q2 .
From the fact that the combined pairs of fermions created by the operator B† can be

viewed as a composite system that is approximated by the q-oscillator algebra, eq. (2.1)

with q = exp(−1/Ω), it seems reasonable to explore the consequences of using q-oscillators
as an approximated way to describe composite particles in the context of the formalism of

second quantization.

– 4 –
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3. First and second order computation and Wick’s expansion

In this section we discuss a QFT having as excitations objects described by the one-

parameter deformed algebra given in eqs. (2.3)-(2.5). In this QFT the mass spectrum

consists of only one particle with mass m. In this case the energy of n particles is not

equal to n times the energy of one particle and therefore the energy does not obey the

additivity rule. This non-additivity comes from the fact that q-oscillators are seen as an

approximated way to describe composite particles in the context of the formalism of second

quantization.

3.1 First order analysis

In [3], following similar steps to those used to construct a standard spin-0 quantum field

theory [9] we analyzed a deformed QFT to first order in the coupling constant. The initial

observation is that the analog of the Heisenberg algebra obeyed by the quantum excitations

of a standard QFT is in this case

[χ,P ] = −iaQ , (3.1)

[P,Q] = −iaχ , (3.2)

[χ,Q] = −2iS(P ) (S(P + a)− S(P − a)) , (3.3)

where

χ ≡ i (S(P )(1− a∂̄p)− (1 + a∂p)S(P )) = −i(A−A†) , (3.4)

Q ≡ S(P )(1− a∂̄p) + (1 + a∂p)S(P ) = A+A† , (3.5)

P is defined in eq. (2.13) and ∂p and ∂̄p are the left and right discrete derivatives defined

in eqs. (2.6) and (2.7), respectively.

Using eqs. (3.4) and (3.5) for χ and Q it is possible to define

φ(~r, t) =
∑
~k

1√
2Ωω(~k)

(
A†~k e

−i~k.~r +A~k e
i~k.~r
)
, (3.6)

Π(~r, t) =
∑
~k

iω(~k)√
2Ωω(~k)

(
A†~k e

−i~k.~r −A~k ei
~k.~r
)
, (3.7)

where ω(~k) =
√
~k2 +m2, m is a real parameter and Ω is the volume of a rectangular box

and

℘(~r, t) =
∑
~k

√
ω(~k)

2Ω
S~k e

i~k.~r . (3.8)

We stress that an independent copy of the one-dimensional momentum lattice defined in

the previous section was introduced at each point of this ~k-lattice so that P †~k = P~k and T~k,
T̄~k and S~k have the same definitions given previously, eqs. (2.8)-(2.9) and (2.19), through

– 5 –
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the substitution P → P~k. Moreover,
A
†
~k
= S~k T̄~k , (3.9)

A~k = T~k S~k , (3.10)

J0(~k) = q
2P~k/a α0 +

[
P~k/a

]
q2
, (3.11)

satisfy the same algebra given in eqs. (2.3)-(2.5) for each point of this ~k-lattice and the

operators A†~k, A~k and J0(
~k) commute among them for different points of this ~k-lattice.

By a straightforward computation, the Hamiltonian

H =
1

2

∫
d3r
(
Π(~r, t)2 + u|℘(~r, t)|2 + φ(~r, t)(−~∇2 +m2)φ(~r, t)

)
,

(3.12)

where u is an arbitrary number, can be written as

H =
1

2

∑
~k

ω(~k)
(
S~k(N + 1)

2 + (1 + u)S~k(N)
2 − (q2 − 1)α0 − 1

)
. (3.13)

Note that in the limit q → 1 (u→ 0), the above Hamiltonian is proportional to the number
operator.

The eigenvectors of H form a complete set and span the Hilbert space of this system.

They are

|0〉, A†~k|0〉, A
†
~k
A†~k′ |0〉 for ~k 6= ~k

′, (A†~k)
2|0〉, · · · , (3.14)

where the state |0〉 satisfies as usual A~k|0〉 = 0 for all ~k and A~k, A†~k for each ~k satisfy the
q-deformed Heisenberg algebra given by eqs. (2.3)-(2.5).

Let us define E(n)(~k) as the energy eigenvalue of the state (A†~k)
n|0〉. Note that for the

Hamiltonian in eq. (3.13) we have E(2)(~k) 6= 2E(1)(~k) which is a property of non-additivity
similar to that we have commented for the composite system made with fermions pairs.

The time evolution of the fields can be studied by means of Heisenberg’s equation for

A†~k, A~k and S~k. Now, let us define

h(N~k) ≡
1

2
(1 + u+ q2)

(
S2(N~k + 1)− S2(N~k)

)
≡ 1
2
(1 + u+ q2)∆E(N~k) . (3.15)

Thus, using eqs. (3.13) and (2.3)-(2.5) we obtain[
H,A†~k

]
= ω(~k)A†~k h(N~k) . (3.16)

The Heisenberg equation can be solved and the Fourier transformation shown in eq. (3.6)

can thus be written as

φ(~r, t) = α(~r, t) + α(~r, t)† , (3.17)

where

α(~r, t) =
∑
~k

1√
2Ωω(~k)

A~k e
i~k.~r−iq−2ω(~k)h(N~k) t , (3.18)

– 6 –
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A~k given in eq. (3.18) is time-independent and α(~r, t)
† is the Hermitian conjugate of α(~r, t).

The Feynman propagator DNF (x1, x2) defined, as usual, as the Dyson-Wick contraction

between 1 φ(x1) and φ(x2), can be computed using eqs. (2.3)-(2.5) and (3.17)-(3.18) and

is given in the integral representation as

DNF (x) =
−i
(2π)4

∫
S(N~k + 1)

2ei
~k.~r−ik0 h(N~k) t d4k
k2 +m2

− (N → N − 1) , (3.19)

where the second part of the right hand side of the above equation can be obtained just

doing N → N − 1. Note that when q → 1, h(N~k) → 1 and S~k(N + 1)2 − S~k(N)2 → 1,
the standard result for the propagator is recovered. It is interesting to point out that this

propagator is not a simple c-number since it depends on the number operator N .

We shall now present the result of the first order scattering process 1+ 2 → 1′ +2′ for
p1 6= p2 6= p′1 6= p′2 with the initial state

|1, 2〉 ≡ 1

N20
A†p1 A

†
p2 |0〉 , (3.20)

and the final state

|1′ , 2′〉 ≡ 1

N20
A
†
p
′
1

A
†
p
′
2

|0〉 , (3.21)

where Api and A
†
pi satisfy the algebraic relations in eqs. (2.3)-(2.5).These particles are

supposed to be described by the Hamiltonian given in eq. (3.12) with an interaction given

by λ
∫
: φ(~r, t)4 : d3r. To the lowest order in λ, we have (now S means the standard

S-matrix)

〈1′ , 2′ |S|1, 2〉 = −iλ
∫
d4x〈1′ , 2′ | : φ4(x) : |1, 2〉 . (3.22)

In [3] we computed the first order scattering process and we obtained the following

result

〈1′ , 2′ |S|1, 2〉 = −6(2π)4iN02λ
QΩ2
√
ω~p1ω~p2ω~p′1

ω~p′2

δ4(P1 + P2 − P ′1 − P ′2) ,

(3.23)

where

Pi = (~pi, ω~pi), P
′
i = (

~p′i, ω~p′i)

(3.24)

and Q = (1 + u + q2)/2. Note that when q → 1 we have N0 → 1, u = 0, Q → 1 and eq.
(3.23) becomes the standard undeformed result [9].

1Our notation means that xi ≡ (~ri, ti)

– 7 –
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3.2 Wick’s expansion

Now let us present a generalization of Wick’s expansion which is an essential tool in order

to compute high order scattering processes in the coupling constant. The propagator in

the present case, see eq. (3.19), is not a simple c-number since it depends on the number

operator N . This fact induces modifications in the standard Wick expansion.

The consequences of the propagator being not a c-number can already be seen in the

Wick’s expansion for three fields. After standard calculations we obtain

T (φ(x1)φ(x2)φ(x3)) =: φ(x1)φ(x2)φ(x3) : + : φ(x1)φ(x2)φ(x3) :

+ : φ(x1)φ(x2)φ(x3) : + : φ(x1)φ(x2)φ(x3) : , (3.25)

where : φ(x1)φ(x2)φ(x3) : is the standard normal order of the product of three fields and

: φ(x1)φ(x2)φ(x3) := D
N
F (x1, x2)φ(x3) , (3.26)

: φ(x1)φ(x2)φ(x3) := φ(x1)D
N
F (x2, x3) , (3.27)

: φ(x1)φ(x2)φ(x3) := D
N
F (x1, x3)α(x2) + α

†(x2)DNF (x1, x3) . (3.28)

Note that

φ(x2)D
N
F (x1, x3) 6= DNF (x1, x3)φ(x2) 6= DNF (x1, x3)α(x2) + α†(x2)DNF (x1, x3) ,

(3.29)

since the propagator depends on the number operator.

In order to establish our notations, we define the field φ(xi) as given in eqs. (3.17)-

(3.18) with ~k → ~ki, and ~k being the momentum to be integrated in the propagator. In
the case of four fields, or more, another typical difference appears. For instance, for four

fields the process of normal ordering the term α(x1)α(x2) α
†(x3)α†(x4) generates the term

α(x1)DN (x2, x3)α
†(x4) that is not yet normal ordered. When normal ordering it one sees

that since the propagator depends on the number operator one obtains

α(x1)DN (x2, x3)α
†(x4) = DN+δ~k1,~k(x2, x3)

[
α†(x4)α(x1) +DN (x1, x4)

]
, (3.30)

with DN+δ~k,~k1
meaning that we substitute N~k by N~k + δ~k,~k1 in the expression for the

propagator, where ~k is the momentum to be integrated. The above expression is obtained

by moving α(x1) to the right hand side of the propagator and leaving the term in normal

order. Note that, in consequence of commutating α(x1) with DN (x2, x3), N~k inside the

final propagator has been increased by δ~k,~k1.

– 8 –



P
r
H
E
P
 
u
n
e
s
p
2
0
0
2

Workshop on Integrable Theories, Solitons and Duality M. A. Rego-Monteiro

With the notations defined above we obtain after standard manipulations

T (φ(x1)φ(x2)φ(x3)φ(x4)) =: φ(x1)φ(x2)φ(x3)φ(x4) : + : φ(x1)φ(x2)φ(x3)φ(x4) :

+ : φ(x1)φ(x2)φ(x3)φ(x4) : + : φ(x1)φ(x2)φ(x3)φ(x4) : + : φ(x1)φ(x2)φ(x3)φ(x4) :

+ : φ(x1)φ(x2)φ(x3)φ(x4) : + : φ(x1)φ(x2)φ(x3)φ(x4) : + : φ(x1)φ(x2)φ(x3)φ(x4) :

+ : φ(x1)φ(x2)φ(x3)φ(x4) : + : φ(x1)φ(x2)φ(x3)φ(x4) : , (3.31)

where

: φ(x1)φ(x2)φ(x3)φ(x4) := DN (x1, x2) : φ(x3)φ(x4) : , (3.32)

: φ(x1)φ(x2)φ(x3)φ(x4) := DN (x1, x3)
[
α(x2)α(x4) + α

†(x4)α(x2)
]

+α†(x2)DN (x1, x3)φ(x4) , (3.33)

: φ(x1)φ(x2)φ(x3)φ(x4) := DN (x1, x4)α(x2)α(x3) + α
†(x2)DN (x1, x4)α(x3)+

α†(x3)DN (x1, x4)α(x2) + α†(x2)α†DN (x1, x4) , (3.34)

: φ(x1)φ(x2)φ(x3)φ(x4) := α(x1)DN (x2, x3)α(x4) + α
†(x1)DN (x2, x3)α(x4)+

α†(x4)α(x1)DN+δ~k,~k4 (x2, x3) + α
†(x1)DN (x2, x3)α†(x4) , (3.35)

: φ(x1)φ(x2)φ(x3)φ(x4) : = α(x1)DN (x2, x4)α(x3) + α
†(x1)DN (x2, x4)α(x3)+

α†(x3)α(x1)DN (x2, x4) + α†(x1)α(x3)DN (x2, x4) , (3.36)

: φ(x1)φ(x2)φ(x3)φ(x4) : = : φ(x1)φ(x2) : DN (x3, x4) , (3.37)

: φ(x1)φ(x2)φ(x3)φ(x4) : = DN (x1, x2)DN (x3, x4) , (3.38)

: φ(x1)φ(x2)φ(x3)φ(x4) : = DN (x1, x3)DN (x2, x4) , (3.39)

: φ(x1)φ(x2)φ(x3)φ(x4) : = DN (x1, x4)DN+δ~k,~k4
(x2, x3) . (3.40)

It is interesting to call attention to the fact that eqs. (3.35) and (3.40) present a

propagator increased by δ~k,~k4 in accordance with the discussion presented to obtain eq.

(3.30).
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3.3 Second order computation

We are going now to present a computation done in [4]. The scattering process 1+2→ 1′+2′
to second order in λ is

〈1′ , 2′ |S|1, 2〉2 = (−i)
2

2
λ2
∫ ∫

d4x d4y〈1′ , 2′ |T (: φ4(x) :: φ4(y) :)|1, 2〉 , (3.41)

where T denotes the time-ordered product. In order to convert the time-ordered product

into a normal product we use Wick’s expansion taking into account that the propagator is

not a c-number. Coming from the Wick’s expansion of T (: φ4(x) :: φ4(y) :) there are three

representative terms that contribute to the scattering process of eq. (3.41) up to second

order in λ, they are

α†(x)α†(x)α(y)α(y)DNF (x, y)D
N
F (x, y) , (3.42)

α†(y)α†(y)α(x)α(x)DNF (x, y)D
N
F (x, y) , (3.43)

α†(x)α†(y)α(x)α(y)DNF (x, y)D
N
F (x, y) . (3.44)

All the other terms contributing to the second order scattering process are different from

the above terms only by the position of the propagators in eqs. (3.42)-(3.44) or by a shift

of the type N~ki → N~ki + δ~ki, ~pj in the propagators appearing in eqs. (3.42)-(3.44).
Let us first compute the second order contribution to the scattering under consideration

coming from the term given in eq. (3.42). As seen in eq. (3.19) the propagator has two

terms and we start considering only the first term of the propagator since, as it will be

clear in what follows, the second term of the propagator gives a trivial contribution. Thus,

putting the representative term given in eq. (3.42) into eq. (3.41), taking the exponentials

and S(N) outside the matrix element and using

〈0|A~p′1A~p′1A
†
~k1
A
†
~k2
A~k3A~k4A

†
~p1
A
†
~p2
|0〉 = N40

(
N40 δ~k3~p1δ~k4~p2δ~k1~p′1

δ~k2~p′2
+

N20∆E(δ~k2 ~p′2
)δ~k3~p1δ~k4~p2δ~k2~p′1

δ~k1~p′2
+N20∆E(δ~k4~p2)δ~k3~p2δ~k4~p1δ~k1~p′1

δ~k2~p′2
+

∆E(δ~k4~p2)∆E(δ~k2 ~p′2
)δ~k3~p2δ~k4~p1δ~k2~p′1

δ~k1~p′2

)
, (3.45)

we can sum over the ~k’s coming from the Fourier expansion of α(x) given in eq. (3.18)

obtaining, after a redefinition of the time as t→ t/h(0), the following result

〈1′ , 2′ |S|1, 2〉a2 =
λ2

2Ω2Q2(2π)8
√
ω~p1ω~p2ω~p′1

ω~p′2

∫
d4xd4yd4k1d

4k2

(k21 +m
2)(k22 +m

2)

S(1 + δ~k1,~p1 + δ~k1,~p2)
2S(1 + δ~k2,~p1 + δ~k2,~p2)

2exp
[
i(κ1 + κ2 − P ′1 − P ′2).x
+i(P1 + P2 − κ1 − κ2).y] ,

(3.46)

where

κi =
(
~ki, hi,0 k

0
i

)
, i = 1, 2 , (3.47)

ki =
(
~ki, k

0
i

)
, (3.48)

hi,0 = h
(
δ~ki,~p1 + δ~ki,~p2

)
/h(0) . (3.49)
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Using the property
∫∞
−∞ dx f(x+ δx,x0) =

∫∞
−∞ dx f(x) we can integrate eq. (3.46) over

x, y and using standard properties of delta functions we can also integrate over k1 or k2
obtaining

〈1′ , 2′ |S|1, 2〉a2 =
N40λ

2

2Ω2Q2
√
ω~p1ω~p2ω~p′1

ω~p′2

δ4
(
P1 + P2 − P ′1 − P ′2

)
I , (3.50)

where I is the standard one loop divergent integral that appears in the usual λ-φ4 model

with value

I =

∫
d4k

1

(k2 +m2) [(−k + s)2 +m2] , (3.51)

where s = P1 + P2. As usual the finite part of this integral can be computed using, for

example, the method of dimensional regularization [10] giving the standard result.

We recall again that the propagator (see eq. (3.19)) has two terms and in the above

computation we considered only the first term of the propagator. Now let us discuss

the consequence of using the second term of the propagator in eq. (3.19) for the first

propagator appearing in eq. (3.42) and the first term of the propagator for the second

propagator appearing in eq. (3.42). After a similar computation as the one described

above that resulted in eq. (3.50) we obtain

N20S(0)
2λ2

2Ω2Q2
√
ω~p1ω~p2ω~p′1

ω~p′2

δ4
(
P1 + P2 − P ′1 − P ′2

)
I , (3.52)

which gives a trivial result since S(0)2 = 0. We will have this trivial result every time the

second term of the propagator enters the game. Thus, the second order contribution to

the scattering under consideration coming from the term given in eq. (3.42) is given in eq.

(3.50). We note that the difference from the standard spin-0 comes only from the constant

N80 /Q
2 which goes to one when q → 1.
Now, let us compute the contribution to the scattering in eq. (3.41) which arises from

the term shown in eq. (3.43). This computation goes along the same lines as the previous

computation and the result is

〈1′ , 2′ |S|1, 2〉b2 =
N40λ

2

2Ω2Q2
√
ω~p1ω~p2ω~p′1

ω~p′2

δ4
(
P1 + P2 − P ′1 − P ′2

)
I ′ , (3.53)

where I ′ = I(s→ −s).
Finally, we discus the contribution to the scattering in eq. (3.41) coming from the

term shown in eq. (3.44). The first thing to do is to put the representative term given in

eq. (3.44) into eq. (3.41), in the sequence, perform the following steps:

1. Take the exponentials and S(N) outside the matrix element,

2. use eq. (3.45),

3. sum over the ~k’s coming from the Fourier expansion of α(x),

4. redefine t→ t/h(0),

– 11 –
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5. use the property given just below eq. (3.49),

6. integrate over d4x and d4y,

we obtain

〈1′ , 2′ |S|1, 2〉c2 =
N40λ

2

8Ω2Q2
√
ω~p1ω~p2ω~p′1

ω~p′2

∫
d4xd4yd4k1d

4k2

(k21 +m
2)(k22 +m

2)[
δ4(k1 + k2 + P1 − P ′1)δ4(−k1 − k2 + P2 − P ′2)+
δ4(k1 + k2 + P2 − P ′2)δ4(−k1 − k2 + P1 − P ′1) +
δ4(k1 + k2 + P1 − P ′2)δ4(−k1 − k2 + P2 − P ′1) +
δ4(k1 + k2 + P2 − P ′1)δ4(−k1 − k2 + P1 − P ′2)

]
.

(3.54)

Note that the first two terms in the main bracket correspond to a contribution in the t-

channel while the last two in the u- channel. Considering separately the contributions in

the two channels we have

〈1′ , 2′ |S|1, 2〉c,t2 =
N40λ

2

8Ω2Q2
√
ω~p1ω~p2ω~p′1

ω~p′2

δ4
(
P1 + P2 − P ′1 − P ′2

)
I ′′ , (3.55)

〈1′ , 2′ |S|1, 2〉c,u2 =
N40λ

2

8Ω2Q2
√
ω~p1ω~p2ω~p′1

ω~p′2

δ4
(
P1 + P2 − P ′1 − P ′2

)
I ′′′ , (3.56)

where I ′′ = I(s→ t) and I ′′′ = I(s→ u) with t = P1 − P ′1 and t = P1 − P ′2.
We have computed so far the contribution to the scattering process 1 + 2 → 1′ + 2′

to second order in λ coming from the representative terms given in eqs. (3.42)- (3.44).

The other terms appearing in the generalized Wick’s expansion of T (: φ4(x) :: φ4(y) :)

that contribute to the scattering are of the form given in eqs. (3.42)-(3.44) having the

propagator in different positions of the product. Moreover, in these terms, N has possible

shifts of the type N~qi → N~qi+n1δ~qi, ~k1+n2δ~qi, ~k2+n3δ~qi, ~k3+n4δ~qi, ~k4, where nj = 0, 1, 2, 3, ~qi
is the momentum associated with the propagator and ~kj the momenta of the fields. But,

since we have always a finite number of deltas in this shift and the functions S(x) and

h(x) that will carry these shifts are finite at the shifted points, then it will be possible

to exclude the finite number of the shifted points. The final result will be independent

on the position where the propagator is inside the product shown in eqs. (3.42)-(3.44)

and it is also independent of the shifts. Thus the result of using any other term of the

Wick’s expansion of T (: φ4(x) :: φ4(y) :) in eq. (3.41), if it is different from zero, it will be

necessarily one of the three results we presented in eqs. (3.50), (3.55) and (3.56).

In summary, the scattering process 1+2→ 1′+2′ for p1 6= p2 6= p′1 6= p′2 with the initial
state and the final state given in eqs. (3.20), (3.21) respectively, where Api , A

†
pi satisfy the

algebraic relations in eqs. (2.3)-(2.5) and the particles are supposed to be described by the

Hamiltonian given in eq. (3.12) with an interaction given by λ
∫
: φ(~r, t)4 : d3r is given up

to second order in the coupling constant λ as

〈1′ , 2′ |S|1, 2〉 = λN
2
0

Q
A1 +

λ2N40
Q2

(
As2 +A

t
2 +A

u
2

)
, (3.57)
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where A1, A
s
2, A

t
2 and A

u
2 are the same contributions that we find in the standard λ-φ

4

(non-deformed) model corresponding to the tree level, the s, t and u channels for one-

loop level respectively. Then, the contribution we find in the perturbation series due to

the phenomenological way we consider the structure of a particle can be interpreted as

changing the coupling constant that appears in the Hamiltonian as λ′ = N20λ/Q where λ′

appears in the perturbation expansion of the scattering process 1+2→ 1′ +2′ . Note that,
depending on the values of the parameters of the algebra we could improve or even destroy

the convergence of the perturbation series. This result shows that the structure of a particle

can change in a non-trivial way the behavior of the perturbation series corresponding to

the physical process involving these particles.

4. Final remarks

An approximate description of composite particles in the context of the formalism of second

quantization was presented with the use of the q-oscillator algebra. Inspired by a result

obtained in [2], we have constructed a QFT which creates at any space-time point, particles

described by a q-deformed Heisenberg algebra.

The propagator for the deformed free theory, defined as the Dyson-Wick contraction

between φ(x1) and φ(x2), depends on the number operator, thus being not a c-number

anymore and this fact introduces differences in Wick’s expansion. We have also shown

what these differences are as compared with the standard expansion.

We have presented the scattering process 1+2→ 1′+2′ up to second order in the cou-
pling constant and the final result given in eq. (3.57) shows that the structure of a compos-

ite particle, viewed here by the algebraic structure, modify non-trivially the perturbation

expansion of a specific process. As a consequence of our phenomenological way of treating

a scattering of composite particles we find that the perturbation expansion corresponding

to the scattering under consideration, computed with the standard λ-φ4 interacting term,

is given term by term by a factor coming from the algebraic structure multiplying the non-

deformed result. This fact may provide interesting surprises when implementing the ideas

developed here to specific phenomenological models. Its worth noticing that depending on

the values that appear in the scattering coming from the algebra the convergence of the

perturbation series can be improved.

Notice that the q-deformed algebra showed in eqs. (2.3)-(2.5) is a particular case of

GHA [5],[6]

J0A
† = A† f(J0), (4.1)

AJ0 = f(J0)A, (4.2)[
A,A†

]
= f(J0)− J0, (4.3)

if we choose the function f(x) = q2x+ 1. We believe that in all cases of this GHA where

it is possible to realize the creation and annihilation operators as

A† =
√
J0 − α0 T̄ , (4.4)

A = T
√
J0 − α0, (4.5)

– 13 –
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it will be possible to construct a consistent QFT based on this new algebra following the

steps we have done here for q-oscillators. The QFT based on the q-deformed algebra being

thus the simplest example of this class of possible QFT.

One of the models describing the interaction of pions and nucleons at low energies
[11],[12], the so-called linear sigma model, presents a problem concerning the convergence

of the perturbation series. In the phenomenological approach of QFT we have presented

to describe the scattering of composite particles, we have found that the convergence of

perturbation series can be improved. We believe that this result could be used to investigate

the above mentioned problem of convergence in the linear sigma model.
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