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1. Introduction

The main feature of noncommutative field theories is the ultraviolet (UV) and infrared

(IR) mixing of divergences [1]. This happens because the noncommutativity, say of x and

y, [x, y] = θ, at the quantum level entails an uncertainty ∆x∆y ∼ θ. Together with

the usual uncertainty relation ∆x∆px ∼ 1 we find that ∆y ∼ θ∆px, which means that

the UV regime in the x-direction produces an IR effect in the y-direction and vice-versa.

At the field theory level this phenomenon manifests itself as a mixture of UV and IR

divergences already at the one loop level [2]. If we choose to renormalize the theory in the

usual way then the remaining IR divergence becomes a source of trouble since it leads, in

general, to non-integrable divergences in higher loop orders jeopardizing renormalizability.

It was then suggested that a possible way out would be the introduction of supersymmetry

[3]. Since supersymmetric theories have only logarithmic divergences it could be possible

that the dangerous UV/IR mixing could be absent. This was shown at one loop level

for the two-point function of the gauge field [4]. However, a proof that this was true in

general was still lacking. Then the noncommutative Wess-Zumino model was shown to

be free of UV/IR mixing to all loop orders [5] providing the first noncommutative field

theory which is fully renormalizable in four dimensions. Its low energy properties were

studied in detail [6]. Other noncommutative supersymmetric non-gauge theories were also

found to be free of UV/IR mixing. For instance, the supersymmetric nonlinear sigma

model in three dimensions turns out to be renormalizable in the 1/N expansion [7, 8].

∗Speaker.
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Spontaneous symmetry breaking also has troubles in the presence of noncommutativity

[9, 10, 11]. The situation in three dimensions is improved [8] but supersymmetry appears

to play no role in this case. Thus, supersymmetry seems to be essential for renormalizability

in noncommutative field theories. However, this turns out to be true only for non-gauge

theories. Supersymmetric gauge theories are still under intense scrutiny.

2. Noncommutative Scalar Field Theory

Noncommutative field theories are obtained from the commutative ones just by replacing

the ordinary field multiplication by the Moyal product defined as

(φ1 ? φ2) (x) ≡
[
e
i 1
2
θµν ∂

∂xµ
∂
∂yν φ1(x)φ2(y)

]
y=x

. (2.1)

Then the noncommutative φ4 model in 3 + 1 dimensions reads as [2]

S =

∫
d4x

(
1

2
∂µφ ? ∂

µφ− m2

2
φ ? φ− g2

4!
φ ? φ ? φ ? φ

)
. (2.2)

We now proceed in the standard way. The quadratic terms gives the propagator. Since

the Moyal product has the property∫
dx (f ? g)(x) =

∫
dx (g ? f)(x) =

∫
dx f(x)g(x), (2.3)

the propagator is the same as in the commutative case. This is a general property of

noncommutative theories: the propagators are not modified by the noncommutativity.

The vertices, however, are in general affected by phase factors. In the present case we get,

in momentum space,

−g
2

2

∫
d4x φ ? φ ? φ ? φ = −g

2

6

∫
dk1dk2dk3dk4 δ(k1 + k2 + k3 + k4)×

[cos(
1

2
k1 ∧ k2) cos(1

2
k3 ∧ k4) + cos(1

2
k1 ∧ k3) cos(1

2
k2 ∧ k4) +

cos(
1

2
k1 ∧ k4) cos(1

2
k2 ∧ k3)] φ(k1)φ(k2)φ(k3)φ(k4). (2.4)

We can now compute the one loop correction for the two-point function. It is easily

found to be
g2

3(2π)4

∫
d4k

(
1 +
1

2
cos(k ∧ p)

)
1

k2 +m2
. (2.5)

The first term is the usual one loop mass correction of the commutative theory (up to

a factor 1/2) which is quadratically divergent. The second term is not divergent due to

the oscillatory nature of cos(k ∧ p). This shows that the nonlocality introduced by the
Moyal product is not so bad and leaves us with the same divergence structure of the

commutative theory. This is also a general property of noncommutative theories [12].

To take into account the effect of the second term we regularize the integral using the

Schwinger parametrization

1

k2 +m2
=

∫ ∞
0

dα e−α(k
2+m2)e−

1
Λ2α , (2.6)
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where a cutoff Λ was introduced. We find

Γ(2) =
g2

48π2
[(Λ2 −m2 ln( Λ

2

m2
) + . . .) +

1

2
(Λ2eff −m2 ln(

Λ2eff
m2
) + . . .)], (2.7)

where

Λ2eff =
1

1
Λ2
+ p̃2

, p̃µ = θµνpν . (2.8)

Note that when the cutoff is removed, Λ→∞, the noncommutative contribution remains
finite providing a natural regularization. Also Λ2eff =

1
p̃2
which diverges either when θ → 0

or when p̃→ 0.
The one loop effective action is then

∫
d4p
1

2
(p2+M2+

g2

96π2(p̃2 + 1/Λ2)
− g

2M2

96π2
ln

(
1

M2(p̃2 + 1/Λ2)

)
+ . . .)φ(p)φ(−p), (2.9)

where M is the renormalized mass. Let us take the limits Λ → ∞ and p̃ → 0. If we take
first p̃→ 0 then p̃2 << 1

Λ2
and Λeff = Λ showing that we recover the effective commutative

theory ∫
d4p
1

2

(
p2 +M ′2)φ(p)φ(−p). (2.10)

If, however, we take Λ→∞ then p̃2 >> 1
Λ2
and Λ2eff =

1
p̃2
and we get

∫
d4p
1

2

(
p2 +M2 +

g2

96π2p̃2
− g2M2

96π2
ln

(
1

M2p̃2

)
+ . . .

)
φ(p)φ(−p), (2.11)

which is singular when p̃ → 0. This shows that the limit Λ → ∞ does not commute with
the low momentum limit p̃→ 0 so that there is a mixing of UV and IR limits.
The theory is renormalizable at one loop order if we do not take p̃ → 0. What about

higher loop orders? Suppose we have insertions of one loop mass corrections. Eventually

we will have to integrate over small values of p̃ which diverges when Λ→∞. Then we find
an IR divergence in a massive theory. This combination of UV and IR divergences makes

the theory non-renormalizable.

There are also examples of noncommutative theories which are nonrenormalizable al-

ready at one loop order [13]. For a complex scalar field with interaction φ∗ ? φ∗ ? φ ? φ it is
found that the theory is one loop nonrenormalizable while φ∗ ? φ ? φ∗ ? φ gives a one loop
renormalizable model.

Then the main question now is the existence of a theory which is renormalizable to

all loop orders. Since the UV/IR mixing appears at the level of quadratic divergences a

candidate theory would be a supersymmetric one because it does not have such divergences.

As we shall see this indeed happens.

3. NONCOMMUTATIVE WESS-ZUMINO MODEL

The noncommutative Wess-Zumino model in 3 + 1 dimensions [5] has the action

– 3 –
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L0 = 1
2
∂µA∂µA+

1

2
∂µB∂µB +

1

2
ψi 6∂ψ, (3.1)

Lm = 1
2
F 2 +

1

2
G2 +mFA+mGB − 1

2
mψψ, (3.2)

Lg = g(F ? A ? A− F ? B ? B +G ? A ? B +G ? B ? A−
ψ ? ψ ? A− ψ ? iγ5ψ ? B), (3.3)

where A and B are bosonic fields, F and G are auxiliary fields and ψ is a Majorana

spinor. The action is invariant under the usual supersymmetry transformations. The

supersymmetry transformations are not modified by the Moyal product since they are

linear in the fields. The elimination of the auxiliary fields through their equations of

motion produces quartic interactions. In terms of the complex field φ = A + iB we get

φ∗ ? φ∗ ? φ ? φ which is non-renormalizable in the noncommutative case. This casts doubts
about the renormalizability of the model but as we shall see supersymmetry saves the day.

As usual, the propagators are not modified by noncommutativity. They are given by

∆AA(p) = ∆(p) ≡ i

p2 −m2 + iε , (3.4)

∆FF (p) = p2∆(p), (3.5)

∆AF (p) = ∆FA(p) = −m∆(p), (3.6)

S(p) =
i

6p−m. (3.7)

Taking into account the symmetries, the vertices are

FA2 vextex: ig cos(p1 ∧ p2), (3.8)

FB2 vextex: −ig cos(p1 ∧ p2), (3.9)

GAB vertex: 2ig cos(p1 ∧ p2), (3.10)

ψψA vertex: −ig cos(p1 ∧ p2), (3.11)

ψψB vertex: −igγ5 cos(p1 ∧ p2). (3.12)

The degree of superficial divergence for a generic 1PI graph γ is then

d(γ) = 4− IAF − IBF −NA −NB − 2NF − 2NG − 3
2
Nψ, (3.13)

where NO denotes the number of external lines associated to the field O and IAF and
IBF are the numbers of internal lines associated to the mixed propagators AF and BF ,

respectively. In all cases we will regularize the divergent Feynman integrals by assuming

that a supersymmetric regularization scheme does exist.

The one loop analysis can be done in a straightforward way. As in the commutative

case all tadpoles contributions add up to zero. We have verified this explicitly. The self-

energy of A can be computed and the divergent part is contained in the integral

16g2
∫

d4k

(2π)4
(1 +

1

2
cos(k ∧ p)) (p · k)

2

(k2 −m2)3 . (3.14)
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The first term is logarithmically divergent. It differs by a factor 2 from the commutative

case. As usual, this divergence is eliminated by a wave function renormalization. The

second term is UV convergent and for small p it behaves as p2 ln(p2/m2) and actually

vanishes for p = 0. Then there is no IR pole. The same analysis can be carried out for the

others fields. For F we find that the divergent part is

4g2
∫

d4k

(2π)4
(1 +

1

2
cos(k ∧ p)) 1

(k2 −m2)2 . (3.15)

The first term is logarithmically divergent and can also be eliminated by a wave function

renormalization. The second term diverges as ln(p2/m2) as p goes to zero. However

its multiple insertions is harmless. For the fermion field the divergent part is similar to

the former results and needs also a wave function renormalization. The term containing

cos(k ∧ p) behaves as 6 p ln(p2/m2) and vanishes as p goes to zero. Therefore, there is no
UV/IR mixing in the self-energy as expected.

To show that the model is renormalizable we must also look into the interactions

vertices. The A3 vertex has no divergent parts as in the commutative case. The same

happens for the other three point functions. For the four point vertices no divergence is

found as in the commutative case. Hence, the noncommutative Wess-Zumino model is

renormalizable at one loop with a wave-function renormalization and no UV/IR mixing.

To go to higher loop orders we proceed as in the commutative case. We derived the

supersymmetry Ward identities for the n-point vertex function. Then we showed that there

is a renormalization prescription which is consistent with the Ward identities. They are

the same as in the commutative case. And finally we fixed the primitively divergent vertex

functions. Then we found that there is only a common wave function renormalization as

in the commutative case. In general we expect

ϕR = Z
−1/2ϕ, mR = Zm+ δm, gR = Z

3/2Z ′g. (3.16)

At one loop we found δm = 0 and Z ′ = 1. We showed that this also holds to all orders
and no mass renormalization is needed.

Being the only consistent noncommutative quantum field theory in 3 + 1 dimensions

known so far it is natural to study it in more detail. As a first step in this direction

we considered the non-relativistic limit of the noncommutative Wess-Zumino model [6].

We found the low energy effective potential mediating the fermion-fermion and boson-

boson elastic scattering in the non-relativistic regime. Since noncommutativity breaks

Lorentz invariance we formulated the theory in the center of mass frame of reference where

the dynamics simplifies considerably. For the fermions we found that the potential is

significantly changed by the noncommutativity while no modification was found for the

bosonic sector. The modifications found give rise to an anisotropic differential cross section.

Subsequently the model was formulated in superspace and again found to be renormal-

izable to all loop orders [14]. The one and two loops contributions to the effective action

in superspace were also found [15]. The one loop Kahlerian effective potential does not get

modified by noncommutativity and the two loops nonplanar contributions to the Kahlerian

effective potential are leading in the case of small noncommutativity [15].

– 5 –
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4. Noncommutative Gross-Neveu and Nonlinear Sigma Models

Another model where non-renormalizability is spoiled by the noncommutativity is the

O(N) Gross-Neveu model. The commutative model is perturbatively renormalizable in

1 + 1 dimensions and 1/N renormalizable in 1 + 1 and 2 + 1 dimensions. In both cases it

presents dynamical mass generation. It is described by the Lagrangian

L = i

2
ψi 6∂ψi +

g

4N
(ψiψi)(ψjψj), (4.1)

where ψi, i = 1, . . . N , are two-component Majorana spinors. Since it is renormalizable in

the 1/N expansion in 1+1 and 2+1 dimensions we will consider both cases. As usual, we

introduce an auxiliary field σ and the Lagrangian turns into

L = i

2
ψi 6∂ψi −

σ

2
(ψiψi)−

N

4g
σ2. (4.2)

Replacing σ by σ +M where M is the VEV of the original σ we get the gap equation (in

Euclidean space)

M

2g
−
∫

dDk

(2π)D
M

k2E +M
2
= 0. (4.3)

To eliminate the UV divergence we need to renormalize the coupling constant by

1

g
=
1

gR
+ 2

∫
dDk

(2π)D
1

k2E + µ
2
. (4.4)

In 2 + 1 dimensions we find
1

gR
=
µ− |M |
2π

, (4.5)

and therefore only for − 1gR+
µ
2π > 0 it is possible to haveM 6= 0, otherwiseM is necessarily

zero. No such a restriction exists in 1 + 1 dimensions. In any case, we will focus only in

the massive phase. The propagator for σ is proportional to the inverse of the following

expression

− iN
2g
− iN

∫
dDk

(2π)D
k · (k + p) +M2

(k2 −M2)[(k + p)2 −M2]
, (4.6)

which is divergent. Taking into account the gap equation the above expression reduces to

(p2 − 4M2)N

2

∫
dDk

(2π)D
1

(k2 −M2)[(k + p)2 −M2]
, (4.7)

which is finite. Then there is a fine tuning which is responsible for the elimination of

the divergence and which might be absent in the noncommutative case due to the UV/IR

mixing.

The noncommutative model is defined by [7]

SGN =

∫
dDx

[
i

2
ψ 6∂ψ − M

2
ψψ − 1

2
σ ? (ψ ? ψ)− N

4g
σ2 − N

2g
Mσ

]
. (4.8)
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Elimination of the auxiliary field results in a four-fermion interaction of the type ψi ?

ψi ? ψj ? ψj. However a more general four-fermion interaction may involve a term like

ψi ? ψj ? ψi ? ψj . This last combination does not have a simple 1/N expansion and we will

not consider it. The Moyal product does not affect the propagators and the trilinear vertex

acquires a correction of cos(p1 ∧ p2) with regard to the commutative case. Hence the gap
equation is not modified, while the propagator for the σ is now proportional to the inverse

of

− iN
2g
−N

∫
dDk

(2π)D
cos2(k ∧ p) k · (k + p) +M2

(k2 −M2)[(k + p)2 −M2]
. (4.9)

Now the divergent part is no longer canceled and this turns the model into a nonrenormal-

izable one.

On the other side, the nonlinear sigma model also presents troubles in its noncommu-

tative version. The noncommutative model is described by

L = −1
2
ϕi(∂

2 +M2)ϕi +
1

2
λ ? ϕi ? ϕi − N

2g
λ, (4.10)

where ϕi, i = 1, . . . ,N , are real scalar fields, λ is the auxiliary field and M is the generated

mass. The leading correction to the ϕ self-energy is

− i
∫

d2k

(2π)2
cos2(k ∧ p)
(k + p)2 −M2

∆λ(k), (4.11)

where ∆λ is the propagator for λ. As for the case of the scalar field this can be decomposed

as a sum of a quadratically divergent part and a UV finite part. Again there is the UV/IR

mixing destroying the 1/N expansion.

5. Noncommutative Supersymmetric Nonlinear Sigma Model

The Lagrangian for the commutative supersymmetric sigma model is given by

L = 1
2
∂µϕi∂µϕi +

i

2
ψi 6∂ψi +

1

2
FiFi + σϕiFi +

1

2
λϕiϕi − 1

2
σψiψi − ξψiϕi −

N

2g
λ, (5.1)

where Fi, i = 1, . . . ,N , are auxiliary fields. Furthermore, σ, λ and ξ are the Lagrange

multipliers which implement the supersymmetric constraints. After the change of variables

λ→ λ+2Mσ, F → F −Mϕ whereM =< σ >, and the shifts σ → σ+M and λ→ λ+λ0,

where λ0 =< λ >, we arrive at a more symmetric form for the Lagrangian

L = −1
2
ϕi(∂

2 +M2)ϕi +
1

2
ψi(i 6∂ −M)ψi +

1

2
F 2i +M

2ϕ2i +
1

2
λ0ϕ

2
i

+
1

2
λϕ2i + σϕiFi −

1

2
σψiψi − ξψiϕi −

N

2g
λ− N

g
Mσ. (5.2)

Now supersymmetry requires λ0 = −2M2 and the gap equation is

∫
dDk

(2π)D
i

k2 −M2
=
1

g
, (5.3)

– 7 –
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so a coupling constant renormalization is required. We now must examine whether the

propagator for σ depends on the this renormalization. We find that the two point function

for σ is proportional to the inverse of

(p2 − 4M2)N

2

∫
dDk

(2π)D
1

(k2 −M2)[(k + p)2 −M2]
, (5.4)

which is identical to the Gross-Neveu case. Notice that the gap equation was not used.

The finiteness of the above expression is a consequence of supersymmetry.

The noncommutative version of the supersymmetric nonlinear sigma model is given by

[7]

L = −1
2
ϕi(∂

2 +M2)ϕi +
1

2
ψi(i 6∂ −M)ψi +

1

2
F 2i +

λ

2
? ϕi ? ϕi

−1
2
Fi ? (σ ? ϕi + ϕi ? σ)− 1

2
σ ? ψi ? ψi −

1

2
(ξ̄ ? ψi ? ϕi + ξ̄ ? ϕi ? ψi)

−N
2g
λ− NMσ

g
. (5.5)

Notice that supersymmetry dictates the form of the trilinear vertices. Also, the supersym-

metry transformations are not modified by noncommutativity since they are linear and no

Moyal products are required.

The propagators are the same as in the commutative case. The vertices have cosine

factors due to the Moyal product

λϕ2 vertex:
i

2
cos(p1 ∧ p2), (5.6)

σϕF vertex: −i cos(p1 ∧ p2), (5.7)

ψψσ vertex: − i
2
cos(p1 ∧ p2), (5.8)

ξψϕ vertex: −i cos(p1 ∧ p2). (5.9)

We again consider the propagators for the Lagrange multiplier fields. Now the σ propagator

is modified by the cosine factors and is proportional to the inverse of

(p2 − 4M2)N

2

∫
dDk

(2π)D
cos2(k ∧ p)

(k2 −M2)[(k + p)2 −M2]
. (5.10)

It is well behaved both in UV and IR regions. The propagators for λ and ξ are proportional

to the inverse of

N

2

∫
dDk

(2π)D
cos2(k ∧ p) 1

[(k + p)2 −M2][k2 −M2]
, (5.11)

and

N
(6p+ 2M)
2

∫
dDk

(2π)D
cos2(k ∧ p) 1

[(k + p)2 −M2][k2 −M2]
, (5.12)

respectively. They are also well behaved in UV and IR regions.

– 8 –
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The degree of superficial divergence for a generic 1PI graph γ is

d(γ) = D − (D − 1)
2

Nψ − (D − 2)
2

Nϕ − D

2
NF −Nσ − 3

2
Nξ − 2Nλ, (5.13)

where NO is the number of external lines associated to the field O. Potentially danger-
ous diagrams are those contributing to the self–energies of the ϕ and ψ fields since, in

principle, they are quadratic and linearly divergent, respectively. For the self-energies of

ϕ and ψ we find that they diverge logarithmically and they can be removed by a wave

function renormalization of the respective field. The same happens for the auxiliary field

F . The renormalization factors for them are the same so supersymmetry is preserved in

the noncommutative theory. This analysis can be extended to the n-point functions. In

2+1 dimensions we find nothing new showing the renormalizability of the model at leading

order of 1/N . However, in 1 + 1 dimensions there some peculiarities. Since the scalar field

is dimensionless in 1+1 dimensions any graph involving an arbitrary number of external ϕ

lines is quadratically divergent. In the four-point function there is a partial cancellation of

divergences but a logarithmic divergence still survives. The counterterm needed to remove

it can not be written in terms of
∫
d2x ϕi ? ϕi ? ϕj ? ϕj and

∫
d2x ϕi ? ϕj ? ϕi ? ϕj . A

possible way to remove this divergence is by generalizing the definition of 1PI diagram.

However the cosine factors do not allow us to use this mechanism which casts doubt about

the renormalizability of the noncommutative supersymmetric O(N) nonlinear sigma model

in 1 + 1 dimensions.

The noncommutative supersymmetric nonlinear sigma model can also be formulated

in superspace [16]. There it is possible to go beyond the sub-leading order in 1/N . It is

then possible to show that model is renormalizable to all orders of 1/N and explicitly verify

that it is asymptotically free [16].

6. Spontaneous Symmetry Breaking in Noncommutative Field Theory

Having seen the important role supersymmetry plays in noncommutative models it is natu-

ral to go further. Spontaneous symmetry breaking and the Goldstone theorem are essential

in the standard model and the effect of noncommutativity in this setting deserves to be

fully understood. In four dimensions it is known that spontaneous symmetry breaking can

occur for the U(N) model but not for the O(N) unless N = 2. The O(2) case was analyzed

in detail [10, 11] and the results for the U(N) case have been extended to two loops [17].

Going to higher loops requires an IR regulator which can no longer be removed[18]. Due

to these troubles we will consider three dimensional models.

Let us consider the three-dimensional action [8]

S =

∫
d3x
[
− 1
2
φa�φa +

µ2

2
φaφa

− g

4

(
l1φa ∗ φa ∗ φb ∗ φb + l2φa ∗ φb ∗ φa ∗ φb

)

− λ

6

(
h1φa ∗ φa ∗ φb ∗ φb ∗ φc ∗ φc + h2φa ∗ φa ∗ φb ∗ φc ∗ φc ∗ φb +

+ h3φa ∗ φa ∗ φb ∗ φc ∗ φb ∗ φc + h4φa ∗ φb ∗ φc ∗ φa ∗ φb ∗ φc +

– 9 –
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+ h5φa ∗ φb ∗ φc ∗ φa ∗ φc ∗ φb
)]
, (6.1)

where l1, l2, h1, h2 . . . h5 are real numbers satisfying the conditions l1 + l2 = 1 and h1 +

h2 + . . . + h5 = 1, so that there are two quartic and five sextuple independent interaction

couplings. The potential has a minimum for φaφa = a
2 with

a2 =
1

2λ

(
−g +

√
g2 + 4µ2λ

)
. (6.2)

As usual we introduce the field πi and σ having vanishing expectation value. The action

then becomes

S =

∫
d3x
{
− 1
2
πi�πi − 1

2
σ(� −m2)σ − (2λa3 + ga)σ ∗ πi ∗ πi − (10

3
λa3 + ga)σ ∗ σ ∗ σ

−
[
(
λ

6
αa2 +

g

4
l1)πi ∗ πi ∗ πj ∗ πj + (λ

6
(3− α)a2 + g

4
l2)πi ∗ πj ∗ πi ∗ πj

+ (
λ

6
a2β +

g

2
l1)σ ∗ σ ∗ πi ∗ πi + (λ

6
a2(18− β) + g

2
l2)σ ∗ πi ∗ σ ∗ πi

+ +(
5

2
λa2 +

g

4
)σ ∗ σ ∗ σ ∗ σ

]
+ . . .

}
, (6.3)

where m2 = 4µ2 − 2ga2 = 4λa4 + 2ga2, the dots denote terms of fifth and sixth order in
the fields, α = 3h1+2(h2+h3)+h5, and β = 18h1+14h2+12h3+6h4+8h5. Notice that

condition (6.2) implies that the pions are massless in the tree approximation, in agreement

with the Goldstone theorem.

We then find the propagators

< σ(p1)σ(p2) >= (2π)
dδ(p1 + p2)

i

p21 −m2
, (6.4)

< πi(p1)πj(p2) >= (2π)
dδ(p1 + p2)

iδij

p21
, (6.5)

and the vertices present the usual phase factors

πi(p1)πj(p2)πk(p3)πl(p4)→ −iρ1[cos(p1 ∧ p2) cos(p3 ∧ p4)δijδkl
+cos(p1 ∧ p3) cos(p2 ∧ p4)δikδjl + cos(p1 ∧ p4) cos(p2 ∧ p3)δilδkj]

− iρ2[cos(p1 ∧ p3 + p2 ∧ p4)δijδkl + cos(p1 ∧ p2 + p3 ∧ p4)]δikδjl
+cos(p1 ∧ p2 + p4 ∧ p3)δilδkj], (6.6)

πj(p1)πj(p2)σ(p3)σ(p4)→ −i[ρ3 cos(p1 ∧ p2) cos(p3 ∧ p4) +
+ ρ4 cos(p1 ∧ p3 + p2 ∧ p4)], (6.7)

σ(p1) ∗ πi(p2) ∗ πi(p3)→ −i(4λa3 + 2ga) cos(p2 ∧ p3), (6.8)

where ρ1 =
4λ
3 a
2α+ 2gl1, ρ2 = (3− α)4λ3 a2 + 2gl2, ρ3 = 2λ

3 a
2β + 2gl1 and ρ4 =

2λ
3 a
2(18−

β) + 2gl2.

The gap equation receives no contribution from noncommutativity while the one loop

corrections to the pion mass have divergences both, in the planar and non-planar sectors.
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Eliminating the UV divergence in the planar sector also eliminates the UV/IR mixing in

the non-planar sector. It is also fortunate that it leads to an analytic behavior in the IR so

that the mass corrections vanish for p = 0. This mechanism does not appears in the four

dimensional case.

The two point function for σ is also analytic in the IR leading to a relation among

the parameters. The divergences in the higher point functions can also be eliminated.

Therefore, we have shown that this O(N) model is renormalizable at one loop for any N

[8], in contradistinction to the four dimensional case where N must be equal to 2.

A supersymmetric version of this model can be formulated in superspace. Again, the

gap equation is not affected by noncommutativity. The mass corrections for the pion two

point function are UV finite and free of UV/IR mixing as expected. It also vanishes for

p = 0. Supersymmetry does not appear to be important in this situation.

7. Conclusions

We have shown that it is possible to build consistent quantum field theories in noncommu-

tative space. Supersymmetry is an essential ingredient for renormalizability. The models

studied here do not involve gauge fields and this considerably simplifies the situation. All

vertices are deformed in the same way by the Moyal product and this was essential to ana-

lyze the amplitudes. With gauge fields the situation is much more complicated because the

vertices are deformed in different ways. However, supersymmetric gauge theories may still

have a better behavior. The analysis of spontaneous symmetry breaking in three dimen-

sions revealed that it is possible to implement the Goldstone theorem in noncommutative

theories. Supersymmetry seems to play no essential role in this case.
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