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Abstract: The generalized supersymmetries admitting abelian bosonic tensorial central

charges are classified in accordance with their division algebra structure (over R, C,

H or O). It is shown in particular that in D = 11 dimensions, the M -superalgebra

admits a consistent octonionic formulation, involving 52 real bosonic generators (in place

of the 528 of the standard M -superalgebra). The octonionic M5 (super-5-brane) sector

coincides with the octonionic M1 and M2 sectors, while in the standard formulation these

sectors are all independent. The octonionic conformal and superconformal M -algebras

are explicitly constructed. They are respectively given by the Sp(8|O) (OSp(1, 8|O))

(super)algebra of octonionic-valued (super)matrices, whose bosonic subalgebra consists

of 232 (and respectively 239) generators.

1. Introduction.

The generalized supersymmetries going beyond the standard H LS scheme [1] admit the

presence of bosonic abelian tensorial central charges associated with the dynamics of ex-

tended objects (branes). Classification schemes for generalized supersymmetries are now

available [2]. It is worth mentioning that they are based on previous mathematical classifi-

cations [3, 4] for spinors and Clifford algebras, in terms of the associative division algebras

(R, C, H).

Recently, we investigated [5, 6] the possibility of realizing general supersymmetries in

terms of the non-associative division algebra of the octonions. Our work was the first one to

suggest a possible octonionic version of the M -theory, with the explicit construction of its

corresponding M -superalgebra. In the past, algebras of (super)-matrices with octonionic-

valued entries have been introduced in the context of the ten-dimensional superstring theory

[7, 8].

Due to the non-associative character of the octonions, the octonionic-valued general-

ized supersymmetries have peculiar and very surprising features which will be discussed at
∗Speaker.
†A large part of the results here reported is a fruit of a collaboration with J. Lukierski.
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length in the following. Perhaps the most remarkable and the most unexpected of such fea-

tures consists in the fact that the different bosonic sectors expressed by the tensorial abelian

central charges are no longer independent, as for the standard generalized supersymme-

tries admitting associative realizations, but they are all inter-related. This phenomenon is

a peculiar characteristic of the octonionic construction.

It is worth noticing that the Minkowskian 11-dimensional spacetime supports two in-

equivalent structures, the real structure and the octonionic one. Therefore, besides the

standard M -algebra leading to the OSp(1|32) superalgebra [9] (and its OSp(1|64) super-

conformal algebra), a different M -algebra can be introduced in terms of the octonionic

structure and consistently defined as a closed algebra. This is the octonionic M -algebra (it

will also sometimes be referred to as M -superalgebra) which will be discussed in this talk.

Of course, it is too early to say whether this octonionic M -algebra can be of any relevance

for physics. On the other hand, the mere fact that it exists, side by side with the standard

M -algebra (not to mention its puzzling features) justifies a thorough investigation of this

and its related mathematical structures.

The plan of this talk is as follows. In the next section the classification of Clifford

algebras and spinors (i.e. the necessary ingredients to introduce supersymmetry) is re-

called. Later, in section 3, the connection of division algebras with the classification of

Clifford algebras will be elucidated. In particular the octonionic-valued realizations (which

are usually disregarded in the literature) of the Clifford algebras and their correspond-

ing spinors will be introduced. This paves the way for the construction, in Section 4, of

the generalized supersymmetries based on the division algebras and, in Section 5, of the

octonionic M -algebra. A detailed discussion of its properties will also be given. In par-

ticular a table, based on the octonionic structure constants, expressing the equivalence of

the different brane sectors in the octonionic description, will be furnished. In Section 6

the octonionic superconformal M -algebra will be introduced. Finally, in the Conclusions,

the relation of the octonionic M -algebra with other algebraic structures such as Jordan

algebras will be elucidated. Some possible geometrical interpretations underlining the oc-

tonionic description will be pointed out and the outline for further future investigations

will be given.

2. Classifying Clifford algebras and spinors.

The generalized space-time supersymmetries are the ones going beyond the standard H LS

scheme [1]. This implies that the bosonic sector of the Poincaré or conformal superalgebra

no longer can be expressed as the tensor product structure Bgeom ⊕ Bint, where Bgeom
describes space-time Poincaré or conformal algebras and the remaining generators spanning

Bint are Lorentz-scalars.

In the particular case of the D = 11 dimensions, where the M -theory should be found,

the following construction is allowed. In the D = 11 Minkowskian spacetime with signature

(10, 1) the spinors are real and have 32 components.

By taking the anticommutator of two real spinors the most general result that we can

expect consists of a 32 × 32 symmetric matrix, which admits 32 + 32·31
2 = 528 compo-
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nents. On the other hand, the standard supertranslation algebra underlining the maximal

supergravity contains only the 11 bosonic Poincaré generators and by no means the r.h.s.

saturates the number of 528. The extra generators that should be expected in the right

hand side are obtained by taking the totally antisymmetrized product of k Gamma matri-

ces (the total number of such objects is given by the Newton binomial

(
D

k

)
). The most

general 32 × 32 matrix can be constructed. The further requirement of being symmetric

implies that the total number of 528 is obtained by summing the k = 1, k = 2 and k = 5

sectors, so that 528 = 11 + 55 + 462. The most general supersymmetry algebra in D = 11

can therefore be presented as

{Qa, Qb} = (CΓµ)abP
µ + (CΓ[µν])abZ

[µν] + (CΓ[µ1...µ5])abZ
[µ1...µ5] (2.1)

(where C is the charge conjugation matrix).

Z [µν] and Z [µ1...µ5] are tensorial central charges, of rank 2 and 5 respectively. These

two extra central terms on the right hand side correspond to extended objects [10, 11], the

p-branes. The algebra (2.1) is called the M -algebra. It provides the generalization of the

ordinary supersymmetry algebra recovered by setting Z [µν] ≡ Z [µ1...µ5] ≡ 0.

For the purpose of the classification of generalized supersymmmetries in any given

signature space-time, we need at first to have at disposal the mathematical classification

of Clifford algebras and spinors (see [3, 4], while a very convenient reference for connection

with physics is [12]). In the rest of this section we introduce the fundamental results

which will be used in the following. Such results can be very conveniently expressed in

terms of the recursive algorithm given below. Two remarks are in order. The first one:

despite the fact that a quantum theory is described by complex numbers, without loss of

generality (complex numbers can be considered as points in the real plane) it is preferable

to work with Clifford algebras expressed by real-valued matrices. The structure of Clifford

algebras is much clearer in such a framework (e.g. its connection with division algebras

properties). A second comment: the algorithm furnished below permits in individuating

a single representative for each irreducible class of representations of Clifford’s Gamma

matrices.

The construction is as follows. Let us prove at first that a recursive construction

of D + 2 spacetime dimensional Clifford algebras is available, when assumed known a D

dimensional representation. Indeed, it is a simple exercise to verify that if γi’s denotes the

d-dimensional Gamma matrices of a D = p + q spacetime with (p, q) signature (namely,

providing a representation for the C(p, q) Clifford algebra) then 2d-dimensional D + 2

Gamma matrices (denoted as Γj) of a D + 2 spacetime are produced according to either

Γj ≡
(

0 γi
γi 0

)
,

(
0 1d
−1d 0

)
,

(
1d 0

0 −1d

)

(p, q) 7→ (p + 1, q + 1). (2.2)
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or

Γj ≡
(

0 γi
−γi 0

)
,

(
0 1d
1d 0

)
,

(
1d 0

0 −1d

)

(p, q) 7→ (q + 2, p). (2.3)

Some remarks are in order. The two-dimensional real-valued Pauli matrices τA, τ1, τ2
which realize the Clifford algebra C(2, 1) are obtained by applying either (2.2) or (2.3) to

the number 1, i.e. the one-dimensional realization of C(1, 0). We have indeed

τA =

(
0 1

−1 0

)
, τ1 =

(
0 1

1 0

)
, τ2 =

(
1 0

0 −1

)
. (2.4)

All Clifford algebras are obtained by recursively applying the algorithms (2.2) and (2.3)

to the Clifford algebra C(1, 0) (≡ 1) and the Clifford algebras of the series C(0, 3 + 4m)

(m non-negative integer), which must be previously known. This is in accordance with the

scheme illustrated in the table below.

Table with the maximal Clifford algebras (up to d = 256).

1 ∗ 2 ∗ 4 ∗ 8 ∗ 16 ∗ 32 ∗ 64 ∗ 128 ∗ 256 ∗

(1, 0) ⇒ (2, 1) ⇒ (3,2) ⇒ (4,3) ⇒ (5,4) ⇒ (6,5) ⇒ (7,6) ⇒ (8,7) ⇒ (9,8) ⇒

(1,4) → (2,5) → (3,6) → (4,7) → (5,8) → (6,9) →
↗

(0,3)

↘

(5,0) → (6,1) → (7,2) → (8,3) → (9,4) → (10,5) →

(1,8) → (2,9) → (3,10) → (4,11) → (5,12) →
↗

(0,7)

↘

(9,0) → (10,1) → (11,2) → (12,3) → (13,4) →

(1,12) → (2,13) →
↗

(0,11)

↘

(13,0) → (14,1) →

(1,16) →
↗

(0,15)

↘

(17,0) →

(2.5)

Concerning the previous table, some remarks are in order. The columns are labeled by the

matrix size d of the maximal Clifford algebras. Their signature is denoted by the (p, q)
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pairs. Furthermore, the underlined Clifford algebras in the table are called the “primitive

maximal Clifford algebras”. The remaining maximal Clifford algebras appearing in the

table are the “maximal descendant Clifford algebras”. They are obtained from the primitive

maximal Clifford algebras by iteratively applying the two recursive algorithms (2.2) and

(2.3). Moreover, any non-maximal Clifford algebra is obtained from a given maximal

Clifford algebra by deleting a certain number of Gamma matrices. It should be noticed

that Clifford algebras in even-dimensional spacetimes are always non-maximal.

Let us discuss concretely a given example, namely the explicit construction of the

D = p + q spacetime dimensional Clifford algebras for D = 11 (the dimensionality of

M-theory). We obtain

(p, q) type d

(11,0) ⊂ (11,2) 64

(10,1) M 32

(9,2) ⊂ (11,2) 64

(8,3) M 64

(7,4) ⊂ (7,6) 64

(6,5) M 32

(5,6) ⊂ (7,6) 64

(4,7) M 64

(3,8) ⊂ (3,10) 64

(2,9) M 32

(1,10) ⊂ (3,10) 64

(0,11) M 32

where the maximal Clifford algebras are labeled byM (the remaining non-maximal algebras

are recovered from the maximal ones given on the second column, after deleting a certain

number of Γ-matrices). The size of the matrix representation is given by the number on

the right (d).

For what concerns the construction of the primitive maximal Clifford algebras of the

series C(0, 3+8n) (also known as quaternionic series, due to its connection with this division

algebra, as we will see later), as well as the octonionic series C(0, 7 + 8n), the answer can

be provided with the help of the three Pauli matrices (2.4). We construct at first the 4× 4

matrices realizing the Clifford algebra C(0, 3) and the 8× 8 matrices realizing the Clifford

algebra C(0, 7). They are given, respectively, by

C(0, 3) ≡
τA ⊗ τ1,
τA ⊗ τ2,
12 ⊗ τA.

(2.6)
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and

C(0, 7) ≡

τA ⊗ τ1 ⊗ 12,
τA ⊗ τ2 ⊗ 12,
12 ⊗ τA ⊗ τ1,
12 ⊗ τA ⊗ τ2,
τ1 ⊗ 12 ⊗ τA,
τ2 ⊗ 12 ⊗ τA,
τA ⊗ τA ⊗ τA.

(2.7)

The three matrices of C(0, 3) will be denoted as τ i, = 1, 2, 3. The seven matrices of C(0, 7)

will be denoted as τ̃i, i = 1, 2, . . . , 7.

In order to construct the remaining Clifford algebras of the series we need at first to

apply the (2.2) algorithm to C(0, 7) and construct the 16 × 16 matrices realizing C(1, 8)

(the matrix with positive signature is denoted as γ9, γ9
2 = 1, while the eight matrices

with negative signatures are denoted as γj, j = 1, 2 . . . , 8, with γj
2 = −1). We are now in

the position to explicitly construct the whole series of primitive maximal Clifford algebras

C(0, 3 + 8n), C(0, 7 + 8n) through the formulas

C(0, 3 + 8n) ≡

τ i ⊗ γ9 ⊗ . . . . . . . . .⊗ γ9,
14 ⊗ γj ⊗ 116 ⊗ . . . . . . . . .⊗ 116,
14 ⊗ γ9 ⊗ γj ⊗ 116 ⊗ . . . . . . . . .⊗ 116,
14 ⊗ γ9 ⊗ γ9 ⊗ γj ⊗ 116 ⊗ . . . . . . . . .⊗ 116,
. . . . . . . . . ,

14 ⊗ γ9 ⊗ . . . . . . ⊗γ9 ⊗ γj,

(2.8)

and similarly

C(0, 7 + 8n) ≡

τ̃i ⊗ γ9 ⊗ . . . . . . . . .⊗ γ9,
18 ⊗ γj ⊗ 116 ⊗ . . . . . . . . .⊗ 116,
18 ⊗ γ9 ⊗ γj ⊗ 116 ⊗ . . . . . . . . .⊗ 116,
18 ⊗ γ9 ⊗ γ9 ⊗ γj ⊗ 116 ⊗ . . . . . . . . .⊗ 116,
. . . . . . . . . ,

18 ⊗ γ9 ⊗ . . . . . . ⊗γ9 ⊗ γj ,

(2.9)

Please notice that the tensor product of the 16-dimensional representation is taken n times.

The total size of the (2.8) matrix representations is then 4 × 16n, while the total size of

(2.9) is 8× 16n.

The formulas given above provide quite a practical and efficient tool to operatively

construct the irreducible Clifford algebras.

It should be noticed that all Clifford matrices are even-dimensional (power of 2). An

important subclass of Clifford Gamma matrices is obtained by the matrices which are

decomposable in 2× 2 blocks and are non-vanishing only in the anti-diagonal blocks. Such

matrices can be named as (generalized) Weyl-type matrices (they can also be regarded of

“supersymmetric type” since they can be promoted to be fermionic matrices associated

– 6 –
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with the representations of the extended supersymmetries, see [13]). An inspection of the

previous tables shows that the set of the (generalized) Weyl matrices is found in special

signature dimensions. All primitive Clifford algebras are not of (generalized) Weyl type.

However, all the derived Clifford algebras, through the two lifting algorithms, are of Weyl-

type, once deleted the

(
1d 0

0 −1d

)
matrix to produce a non-maximal Clifford algebra.

To give a concrete example, the two-dimensional Euclidean space (2, 0) is not of Weyl

type, while the two-dimensional Minkowski spacetime (1, 1) is of Weyl type. Indeed, the

first one is obtained from the (2, 1) Clifford algebra by deleting a space-type Gamma matrix,

while the second one is obtained from the same (2, 1) Clifford algebra by deleting one of

the two temporal-type Gamma matrices. Without loss of generality this Gamma matrix

can always be chosen to be given by

(
1d 0

0 −1d

)
.

The importance of the Weyl realization of Clifford algebras is of course related with the

possibility of introducing a Weyl projection for Dirac spinors. The commutator between

Gamma matrices, Σµν = [Γµ,Γν ], can be regarded as the generator of the Lorentz group

corresponding to the given signature space-time. The product of two Gamma matrices,

both admitting non-vanishing blocks only in the antidiagonal, correponds to a 2× 2 block

matrix whose only non-vanishing components are in the diagonal blocks. Since both the

Gamma matrices, as well as the Lorentz generators Σµν , act on spinors, the fact that

the Lorentz generators are block-diagonals means that we can consistently set, under these

conditions, equal to 0 half of the components of the column vector spinors (either the upper

half or the lower half), to produce the so-called Weyl spinor, admitting half of the degrees

of freedom expected by the original Dirac spinor. This reduction of the components can be

operated acting on a Dirac spinor with a projector P± (P±P∓ = 0 and P±2 = P±), given

by

P± =
1

2
(1± Γ) (2.10)

where Γ =

(
0 1d
−1d 0

)
.

In even-dimensional space-times the matrix Γ is always given by the product of all the

other Γ matrices (it corresponds to Γ5 when we specialize to the standard 4-dimensional

Minkowski space-time).

In order to construct lagrangian terms which are scalar under Lorentz transformations

and are given by bilinear products of spinors, we need to introduce the notion of barred

spinors Ψ, given by ΨT ·A, where T denotes transposition (remember that in our conventions

spinors are without loss of generality assumed to be real) and A is a matrix, given by the

product of all temporal Gamma matrices, i.e. the generalization of the Minkowskian 4-

dimensional Γ0 matrix.

3. Division algebras and Clifford algebras.

So far we have shown how to construct the irreducible representations of Clifford algebras,

– 7 –
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and not yet elucidated their relations with division algebras. Such a relation can be ex-

pressed as follows. The three matrices appearing in C(0, 3) can also be expressed in terms

of the imaginary quaternions τi satisfying τi · τj = −δij + εijkτk. As a consequence, the

whole set of maximal primitive Clifford algebras C(0, 3 + 8n), as well as their maximal

descendants, can be represented as quaternionic-valued matrices, acting on spinors, which

have to be interpreted now as quaternionic-valued column vectors.

Similarly, there exists an alternative realization for the Clifford algebra C(0, 7), ob-

tained by identifying the seven generators with the seven imaginary octonions satisfying

the algebraic relation

τi · τj = −δij + Cijkτk, (3.1)

for i, j, k = 1, · · · , 7 and Cijk the totally antisymmetric octonionic structure constants given

by

C123 = C147 = C165 = C246 = C257 = C354 = C367 = 1 (3.2)

and vanishing otherwise. This octonionic realization of the seven-dimensional Euclidean

Clifford algebra will be denoted as CO(0, 7). Due to the non-associative character of the

(3.1) octonionic product (the weaker condition of alternativity is satisfied, see [14]), the

octonionic realization cannot be represented as an ordinary matrix product and is therefore

a distinct and inequivalent realization of this Euclidean Clifford algebra with respect to the

one previously considered (2.7). Please notice that, by iteratively applying the two lifting

algorithms to CO(0, 7) we obtain matrix realizations (with octonionic-valued entries) for

the maximal Clifford algebras of the series C(n, 7 + n) and C(8 + n, n − 1), for positive

integral values of n (n = 1, 2, . . .). The dimensionality of the corresponding octonionic-

valued matrices is 2n × 2n. For completeness we should point out that the construction

(2.9) leading to the primitive maximal Clifford algebras C(0, 7+8n), can be carried on with

the help of an octonionic-valued realization of the γ9 matrix. As a consequence, realizations

of C(0, 7 + 8n) and their descendants can be produced acting on column spinors, whose

entries are tensor products of octonions. In any case, in the following, we will focus on the

single octonionic realizations CO(n, 7 + n) and CO(9 + n, n) (here n = 0, 1, 2, . . .) which

are of relevance in the context of the M -theory.

One should be aware of the properties of the non-associative realizations of Clifford al-

gebras. In the octonionic case the commutators Σµν = [Γµ,Γν ] are no longer the generators

of the Lorentz group. They correspond instead to the generators of the coset SO(p, q)/G2,

being G2 the 14-dimensional exceptional Lie algebra of automorphisms of the octonions. As

an example, in the Euclidean 7-dimensional case, these commutators give rise to 7 = 21−14

generators, isomorphic to the imaginary octonions. Indeed

[τi, τj] = 2Cijkτk. (3.3)

The alternativity property satisfied by the octonions implies that the seven-dimensional

commutator algebra among imaginary octonions is not a Lie algebra, the Jacobi identity
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being replaced by a weaker condition that endorses (3.3) with the structure of a Malcev

algebra (see [14]).

Such an algebra admits a nice geometrical interpretation [15, 16]. Indeed the normed

1 unitary octonions X = x0+xiτi (with x0 and xi, for i = 1, . . . , 7, real and the summation

over repeated indices understood), i.e. restricted by the condition

X† ·X = 1, (3.4)

describe the seven-sphere S7. The latter is a parallelizable manifold with a quasi (due to

the lack of associativity) group structure. Here X† denotes the principal conjugation for

the octonions, namely X† = x0 − xiτi.
On the seven sphere, infinitesimal homogeneous transformations which play the role

of the Lorentz algebra can be introduced through

δX = a ·X, (3.5)

with a an infinitesimal constant octonion. The requirement of preserving the unitary norm

(3.4) implies the vanishing of the a0 component, so that a ≡ aiτi. Therefore, the above

commutator algebra (3.3), generated by the seven τi, can be interpreted as the algebra of

“quasi” Lorentz transformations acting on the seven sphere S7. At least in this specific

example we discovered a nice geometrical setting underlining the use of the octonionic

realization of the CO(0, 7) Clifford algebra. While the associative (2.7) representation of the

seven dimensional Clifford algebra is required for describing the Euclidean 7-dimensional

flat space, the non-associative realization describes the geometry of S7.

4. Division algebras and generalized supersymmetries.

It is clear that extra-conditions on the generalized supersymmetries such as (2.1) can be

imposed if we assume the fundamental spinors being division-algebra valued (over C, H

or O) and not just real. A division algebra analog of the supertranslation algebra can be

introduced through the position

{Qa, Qb} = {Q†a, Q†b} = 0,

{Qa, Q†b} = Zab. (4.1)

where † denotes the principal conjugation in the given division algebra and, as a result,

the bosonic abelian algebra on the r.h.s. is constrained to be hermitian

Zab = Zba
†. (4.2)

Division-algebra structures for spinors can be consistently imposed only in specific signature

space-times. As already recalled, in D = 11, either a real or an octonionic structure can be

defined for the Minkowskian C(10, 1) case, while a quaternionic structure can be imposed

for the Euclidean C(0, 11) Clifford algebra (from formula (2.8), constructed in terms of

the quaternions). The 32 real components spinors can be re-expressed in (10, 1) as 4-

component octonionic-valued spinors and, for (0, 11), as 8-component quaternionic-valued

– 9 –
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spinors. In the Minkowskian (10, 1) case, the hermiticity condition imposed on the 4 × 4

octonionic-valued hermitian matrix Zab leaves it with 52 independent components, while

in the Euclidean (0, 11) case the same hermiticity condition, applied this time on the

8 × 8 quaternionic-valued Zab matrix, leaves only 120 surviving bosonic components. Not

surprisingly, in both cases this number is less than the total number of 528 independent

components obtained from the real structure. This is already a first indication of the

constraint produced by the division algebra structures (especially the octonionic one).

It is worth concluding this section with a comment concerning the reconstruction of

the division algebra-valued matrix realizations of algebraic structures in terms of their

component fields. This is better illustrated with a specific example. Let us discuss the

simplest case, the 1-dimensional octonionic N = 8 supersymmetry (the considerations

below trivially applies to the quaternionic N = 4 supersymmetry as well).

Let us specialize (4.1) to the two one-dimensional octonionic-valued fermionic operators

Q, Q, satisfying the N = 8 superalgebra

{Q,Q} = {Q,Q} = 0, {Q,Q} = H. (4.3)

where H = H is real-valued and represents the hamiltonian.

Q, Q = Q† contain a total number of 8 components and we should expect they define

an algebra with a total number of 8 + 8×7
2 = 36 anticommutation relations. On the other

hand, the r.h.s. of (4.3) provides us at most of 3 × 8 = 24 relations, so that it looks like

something is missing. Furthermore, when expanding in terms of components (i = 1, . . . , 7)

Q = Q0 +
∑
i

Qiti,

Q = Q0 −
∑
i

Qiti (4.4)

and taking into account the (3.1) algebraic relations for imaginary octonions, we end up

with the following set of relations for the component fields Q0, Qi (the convention over

repeated indices is understood)

{Q0, Q0} − {Qi, Qi} = 0,

{Q0, Qi} = 0,

Cijk[Qj , Qk] = 0,

{Q0, Q0}+ {Qi, Qi} = H, (4.5)

These relations are odd since, in particular, the third one involves a commutator, instead

of an anticommutator as we should expect. However, there is nothing wrong with (4.5) and

this algebra can be re-expressed in terms of its component fields when correctly interpreted.

The correct interpretation for (4.5) consists in setting

Q0 = q,

Qi =
iλ√

7
for any i = 1, . . . , 7. (4.6)
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In particular this implies that the ordinary component Qi fields are not extracted from the

Qi coefficients of ti, rather they have to be identified with the product λti

Qi ≡ λti. (4.7)

With the above position the set of “odd” relations (4.5) is now reduced to the set of ordinary

relations

{q, λ} = 0,

{q, q} = −{λ, λ} =
1

2
H. (4.8)

It should be noticed that the fermionic operator λ is antihermitian (λ = −λ†) in order to

provide the consistent hermiticity condition on Qi. It is worth mentioning that all these

relations are explicitly realized in the octonionic matricial N = 8 supersymmetry algebra

which can be recovered from the octonionic 2 × 2 realization of CO(9, 0). We recall that

this octonionic N = 8-supersymmetry [13] is constructed with the set of the hermitian

2× 2 octonionic-valued matrices of Weyl type non-vanishing only in the antidiagonal (i.e.

the additional Γ9 matrix in CO(9, 0) is discarded), given by(
0 ti
−ti 0

)
≡ ti ·

(
0 1

−1 0

)
,

(
0 1

1 0

)
. (4.9)

We can identify

q ≡
(

0 1

1 0

)
,

λ ≡
(

0 1

−1 0

)
, (4.10)

which satisfy the correct properties.

The reconstruction of the division-algebra structures in terms of its component fields is

more elaborated in the more complicated examples discussed in the following. Nevertheless,

even in these cases, it can be performed following the procedure here outlined.

5. The octonionic M-algebra.

The octonionic M -algebra [5] is defined by specializing (4.1) to the (10, 1) case. The needed

octonionic-valued Clifford matrices are immediately obtained with the help of the lifting

algorithm introduced in section 2 (e.g through the procedure (0, 7)→ (9, 0)→ (10, 1), while

the C matrix introduced below coincides in this case with the unique space-like Gamma

matrix). It must be said that two equivalent ways exist of introducing the M -algebra,

either in terms of the 4-component D = 11 spinors, or in terms of the Weyl spinors in

(10, 2) dimensions (the latter construction leads to the F -algebra interpretation). Here we

just limit ourselves to consider the first case.
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The only non-vanishing (anti)-commutator of the octonionic M -algebra is given by

{Qa, Q†b} = Zab, (5.1)

where, in this case, the 52 independent components of the hermitian Zab matrix can be

represented either as the 11 + 41 bosonic generators entering

Zab = Pµ(CΓµ)ab + Z
µν
O (CΓµν)ab, (5.2)

or as the 52 bosonic generators entering

Zab = Z
[µ1...µ5]
O (CΓµ1...µ5)ab . (5.3)

The reason for that lies in the fact that, unlike the real case, the sectors individuated by

(5.2) and (5.3) are not independent. This is a consequence of the non-associativity of the

octonions. Indeed, one has to point out that, when multiplying antisymmetric products

of k octonionic-valued matrices, a certain number of them are redundant. For k = 2, due

to the G2 automorphisms, 14 such products have to be erased. In the general case [17]

a table can be produced. We write it down for D odd-dimensional spacetime octonionic

realizations of Clifford algebras. The case suitable for M -theory is recovered for D = 11.

The following table can be easily constructed from the D = 7 results (which are easily

computed), by taking into account that out of the D Gamma matrices, 7 of them are

octonionic-valued, while the remaining D − 7 are purely real.

The following table, up to D = 13, is easily obtained:

0 1 2 3 4 5 6 7 8 9 10 11 12 13

D = 7 1 7 7 1 1 7 7 1

D = 9 1 9 22 22 10 10 22 22 9 1

D = 11 1 11 41 75 76 52 52 76 75 41 11 1

D = 13 1 13 64 168 267 279 232 232 279 267 168 64 13 1

(5.4)

where the columns are labelled by k, the number of antisymmetrized Gamma matrices.

To reproduce the above formulas one has to be careful in defining the antisymmetric

product for k > 2 octonionic Γ-matrices. Due to the non-associativity of the octonions

the order of multiplications must be correctly specified. The correct prescription is the

following one. The antisymmetrized product of k octonionic matrices Ai (i = 1, 2, . . . , k)

is given by

[A1 ·A2 · . . . ·Ak] ≡ 1

k!

∑
perm.

(−1)εi1...ik (Ai1 · Ai2 . . . · Aik), (5.5)

where (A1 ·A2 . . . ·Ak) denotes the symmetric product

(A1 ·A2 · . . . ·An) ≡ 1

2
(.((A1A2)A3 . . .)Ak) +

1

2
(A1(A2(. . . Ak)).). (5.6)

– 12 –
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This prescription is consistent and produces the correct result. As an example, in D = 11

the three-fold antisymmetric product of octonionic Γ-matrices C[Γi · Γj · Γk] furnishes the

75 antihermitian matrices, appearing in the table above, describing together with C an

arbitrary 4× 4 octonionic antihermitian matrix. The definition (5.5), applied to the five-

fold products of the D = 11 octonionic Γ-matrices, provides their octonionic hermiticity.

The explicit computation above shows that precisely 52 independent real tensorial charges

describes the five-tensor sector of the octonionic M-algebra, which means that it spans

the arbitrary 4 × 4 octonionic-hermitian matrices. We thus see that one can equivalently

write the octonionic M-algebra as (5.2) or as (5.3). In the latter case, out of the 462

real antisymmetric 5-tensorial charges of the standard M-algebra, only 52 are linearly

independent, due to the discovered relation

[Γµ1...µ5 ] = A[µ1...µ5]
νΓν +A[µ1...µ5]

[ν1ν2]Γ[ν1Γν2], (5.7)

with constant c-number coefficients A[µ1...µ5]
ν , A[µ1...µ5]

[ν1ν2].

The octonionic equivalence of different sectors (which, at least for some spacetimes, can

be interpreted as branes sectors) can be simbolically expressed, in different odd space-time

dimensions, according to the table

D = 7 M0 ≡M3

D = 9 M1 +M2 ≡M4

D = 11 M1 +M2 ≡M5

D = 13 M2 +M3 ≡M6

D = 15 M3 +M4 ≡M0 +M7

(5.8)

In D = 11 dimensions the relation between M1 +M2 and M5 can be made explicit as

follows. The 11 vectorial indices µ are splitted into the 4 real indices, labelled by a, b, c, . . .

and the 7 octonionic indices labelled by i, j, k, . . .. We get, on one side,

4 M1a
7 M1i
6 M1[ab]

4× 7 = 28 M2[ai]
7 M2[ij] ≡M2i

while, on the other side,

7 M5[abcdi] ≡M5i
4× 7 = 28 M5[abcij] ≡M5[ai]

6 M5[abijk] ≡M5[ab]
4 M5[aijkl] ≡M5a
7 M5[ijklm] ≡ M̃5i

which shows the equivalence of the two sectors, as far as the tensorial properties are

concerned. Please notice that the correct total number of 52 independent components is

recovered

52 = 2× 7 + 28 + 6 + 4. (5.9)

– 13 –
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6. The octonionic superconformal M-algebra.

In this section the superconformal octonionic M-algebra is introduced following [6].

The conformal algebra of the octonionic M-theory can be introduced adapting to the

eleven dimensions the procedure discussed in [8] for the 10 dimensional case. It requires

the identification of the conformal algebra of the octonionic D = 11 M -algebra with the

generalized Lorentz algebra in the (11, 2)-dimensional space-time. In such a space-time

the octonionic Clifford’s Gamma-matrices are 8-dimensional. The basis of the hermitian

generators is given by the 64 antisymmetric two-tensors CΓ[µ1µ2]Zµ1µ2 and the 168 an-

tisymmetric three tensors CΓ[µ1µ2µ3]Zµ1µ2µ3 (or, equivalently, by the 232 antisymmetric

six-tensors CΓ[µ1...µ6]Zµ1...µ6). This is already an indication that the total number of gen-

erators in the conformal algebra is 232. We will show that this is the case.

According to [8], the conformal algebra can be introduced as the algebra of transfor-

mations leaving invariant the inner product of Dirac’s spinors. In (11, 2) this is given by

ψ†Cη, where the matrix C, the analogous of the Γ0, given by the product of the two space-

like Clifford’s Gamma matrices, is real-valued and totally antisymmetric. Therefore,the

conformal transformations are realized by the octonionic-valued 8-dimensional matrices

M leaving C invariant, i.e. satisfying

M†C + CM = 0. (6.1)

This allows identifying the (quasi)-group of conformal transformations with the (quasi-

)group of symplectic transformations. Indeed, under a simple change of variables, C can

be recasted to be of the form

Ω =

(
0 14
−14 0

)
. (6.2)

The most general octonionic-valued matrix leaving invariant Ω can be expressed through

M =

(
D B

C −D†
)
, (6.3)

where the 4× 4 octonionic matrices B, C are hermitian

B = B†, C = C†. (6.4)

It is easily seen that the total number of independent components in (6.3) is precisely 232,

as we expected from the previous considerations.

It is worth noticing that the set of matrices M of (6.3) type forms a closed alge-

braic structure under the usual matrix commutation. Indeed [M,M] ⊂M, endowing the

structure of Sp(8|O) to M. For what concerns the supersymmetric extension of the su-

perconformal algebra, we have to accommodate the 64 real components (or 8 octonionic)

spinors of (11, 2) into a supermatrix enlarging Sp(8|O). This can be achieved as follows.

– 14 –
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The two 4-column octonionic spinors α and β can be accommodated into a supermatrix of

the form 
 0 −β† α†
α 0 0

β 0 0


 . (6.5)

Under anticommutation, the lower bosonic diagonal block reduces to Sp(8|O). On the

other hand, extra seven generators, associated to the 1-dimensional antihermitian matrix

A

A† = −A, (6.6)

i.e. representing the seven imaginary octonions, are obtained in the upper bosonic diagonal

block. Therefore, the generic bosonic element is of the form
A 0 0

0 D B

0 C −D†


 , (6.7)

with A, B and C satisfying (6.6) and (6.4).

The closed superalgebraic structure, with (6.5) as generic fermionic element and (6.7)

as generic bosonic element, will be denoted as OSp(1, 8|O). It is the superconformal algebra

of the M -theory and admits a total number of 239 bosonic generators.

7. Conclusions.

The octonions are at the very heart of many exceptional structures in mathematics. It

is very well known, e.g., that they can be held responsible for the existence of the 5

exceptional Lie algebras. Indeed, G2 is the automorphism group of the octonions, while F4
is the automorphism group of the 3× 3 octonionic-valued hermitian matrices realizing the

exceptional J3(O) Jordan algebra. F4 and the remaining exceptional Lie algebras (E6, E7,

E8) are recovered from the so-called “magic square Tit’s construction” which associates a

Lie algebra to any given pair of division algebras, if one of these algebras coincide with the

octonionic algebra [18].

There is a line of thought [19] suggesting that Nature prefers exceptional structures.

Following this line of thought, in [20], the already recalled exceptional Jordan algebra

J3(O) was used to define a unique Chern-Simons type of theory in the loop quantum

gravity approach. In a different line of research, octonionic structures were investigated in

different works [7, 8] in application to the superstring theory.

In this talk we summarized the results recently obtained in a series of works, especially

[5, 6] concerning the possibility of introducing an octonionic structure for the M -theory

algebra. After briefly recalling the classification of spinors and Clifford algebras in terms

of division algebras (and more specifically their octonionic construction) we were able to

introduce at first the octonionic M -superalgebra and, later, its superconformal extension

presented in formulas (6.5), (6.7).
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The features of the octonionic M -superalgebra are puzzling. It is not at all surprising

that it contains fewer bosonic generators, 52, w.r.t. the 528 of the standard M -algebra (this

is expected, after all the imposition of an extra structure, such as the complex, quaternionic

or octonionic structure, puts a constraint on a theory). What is really unexpected is the

fact that new conditions, not present in the standard M -theory, are now found. These

conditions, which can be symbolically represented in table (5.8), imply that the different

brane-sectors are no longer independent. The octonionic 5-brane contains the same degrees

of freedom and is equivalent to the M1 and the M2 sectors. We can write this equiva-

lence, symbolically, as M5 ≡ M1 + M2. This result is indeed very intriguing. It implies

that quite non-trivial structures are found when investigated the octonionic construction

of the M -theory. It also raises some questions, because it is not yet clear how should we

interpret it and which is its proper meaning. At least two different viewpoints can be

advocated. On one hand, sticking with the original defined octonionic algebra, one should

try to investigate its possible quantum-mechanical consistency, understanding whether and

to which extent it is possible to adapt the procedure of [21] to the present situation. On

the other hand, another possibility can be contemplated. We have discussed at the end of

section 3 that the octonionic realization of the 7-dimensional Euclidean Clifford algebra is

related with the geometry of the seven sphere S7. There is a possibility, which deserves

being investigated, that the octonionic description of the M -theory would correspond to a

particular compactification of the 11-dimensional M -theory down to AdS4×S7. This com-

pactification corresponds to a natural solutions for the 11-dimensional supergravity [22].

If this would be the case, the relations of equivalence found in the octonionic construction

should find a counterpart in the AdS4×S7 special compactification geometry. Needless to

say, this possibility is currently under investigation.

We conclude with a last remark that perhaps deserves to be mentioned. We introduced

both the conformal and the superconformal extensions of the original M -algebra. They are

respectively given by Sp(8|O) andOSp(1, 8|O), see formulas (6.5), (6.7). Sp(8|O) is outside

the scheme of conformal algebras of a given Jordan algebra (such as Sp(4|O), Sp(6|O), the

latter the conformal algebra of J3(O)), usually investigated in the mathematical literature,

see [23, 24]. The reason for that is the fact that the bosonic sector of the M -algebra is

given by 4 × 4 octonionic-valued hermitian matrices, and the maximal Jordan algebra of

octonionic-valued hermitian matrices is given by 3-dimensional matrices. The construction

of the conformal (and superconformal) algebra, however, as we have proven, can be carried

on in this case as well and it finally produces the closed and consistent algebraic structures

that we mentioned before.
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