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Abstract: We describe the geometric quantisation of a nonrelativistic model of vortex

dynamics introduced by Manton. If the vortices are placed on a sphere, the classical phase

space is the compact manifold CPN with a particular Kähler structure, and its symplectic

volume can be related to the dimension of the quantum Hilbert space in a classical limit.

Quantum operators corresponding to spatial isometries can be constructed explicitly and

they allow for an interpretation of the solitons as interacting bosons.

1. Introduction

The diversity of field theories in 1 + 2 dimensions has been increased in recent years by

exploring the possibilities of the Chern–Simons action. Pure Chern–Simons gauge theory,

although still interesting both from the physical and the mathematical points of view,

has no dynamics by itself. However, many interesting models for field dynamics can be

obtained by adding to the Chern–Simons action Maxwell or Yang–Mills terms and/or

interactions with other fields [3]. Some of these models have been shown to admit classical

solitonic solutions (vortices), at least for critical or “self-dual” values of the parameters

in the lagrangian. These objects can be regarded as smeared-out particles which retain

a characteristic size and superpose nonlinearly; unlike some types of solitons, they can

also be assigned a point-like core individually. In specific models, vortices often turn out

to possess rather exotic properties, which may be relevant in applications. For example,

models with abelian vortices have been important in attempts to explain phenomena in

condensed matter theory such as superconductivity and the fractional quantum Hall effect.

In reference [15], Manton constructed a nonrelativistic lagrangian for a U(1) gauge

field minimally coupled to a complex scalar on the plane which describes vortex dynam-

ics. The action for the gauge field includes a Chern–Simons term and the purely spatial

part of the Maxwell action. The equations of motion for the field theory are first-order in
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time, and they admit the well-known Bogomol’ny̆ı vortices [10] of the Ginzburg–Landau

theory as static solutions, for special values of the parameters. Mathematically, Bogo-

mol’ny̆ı vortices are rather well understood, even though on general surfaces they cannot

be constructed analytically. Their space of gauge equivalence classes splits into disjoint

sectors MN labelled by an integer vortex number N ∈ Z, each MN (the moduli space of

N vortices) being a smooth 2|N |-dimensional manifold. In his paper, Manton explored the
dynamics of time-dependent fields by explicitly reducing the field theory lagrangian to an

effective (finite-dimensional) mechanical system on the moduli spaceMN . The lagrangian

equations of motion for the reduced system are again first-order in time, and so the moduli

space is to be regarded as the phase space where a noncanonical hamiltonian dynamics

takes place. The symplectic form defining the dynamics, determined by the kinetic term,

contains nontrivial information about the system; of course, it may still be written in

canonical form locally, but not in a natural way. Time evolution is determined by the

potential energy alone, which is supposed to be small so that the field configurations are

still approximately Bogomol’ny̆ı vortices. In the case of two vortices, the reduced system

describes a rigid uniform rotation of the two vortex cores about their midpoint, with an

angular velocity which only depends on the distance between the two cores.

If we place the vortices on a compact surface Σ, with a riemannian metric and an

orientation, rather than on the plane, the moduli spaces MN also become compact. The

metric on Σ fixes a complex structure, which in turn induces a complex structure on

MN . This complex structure can be shown to be compatible with the symplectic form

relevant for the dynamics, and so eachMN becomes a Kähler manifold. Compact Kähler

phase spaces are optimal stages for geometric quantisation (cf. [22], [27]). The complex

geometry supplies a natural (Kähler) polarisation, for which the corresponding quantum

Hilbert space turns out to be finite-dimensional. This approach to the quantisation of

the vortex system is to be included in a more general framework, pioneered in [5] in the

context of BPS monopoles. The idea is to probe the quantum behaviour of solitons through

(geometric) quantisation of the reduced dynamics on the moduli space of static solutions,

when such a space is available. In the more familiar situation of the abelian Higgs model

[20], where the reduced system is second-order in time, there is a canonical hamiltonian

description of the classical dynamics and the quantisation can be carried out using the

vertical polarisation of T ∗MN , which leads to a truncated Schrödinger representation of

the quantum system. The accuracy of the approximation involved is very difficult to assess,

and the study of an example where the Schrödinger representation is not available, as is

the case here, is of considerable interest. From the point of view of geometric quantisation

itself, it is fortunate that Manton’s system seems to provide us with a nontrivial example

where it may be put to work rather directly.

Our main aim is to discuss the geometric quantisation of Manton’s reduced system of

vortex dynamics, when space is taken to be a sphere of a given radius R. In section 1,

we describe Manton’s model of vortex dynamics and summarise some results about the

reduction to finite-dimensional mechanics obtained using the adiabatic approximation. In

section 3, the setup for the geometric quantisation of the reduced dynamics on the moduli

space of static solutions is presented. The dimension of the Hilbert space of wavefunctions
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is computed in section 4. Then we show how to construct the quantum angular momentum

operators corresponding to the natural action of SO(3) on the moduli space in section 5.

This allows some statements about the ground state of the dynamical regime λ 6= 1 to be
made, which we discuss in section 6. We finish with some general comments about our

results in section 7. Most of the material that we are presenting here has appeared in the

article [18].

2. First-order dynamics of Bogomol’ny̆ı vortices

Bogomol’ny̆ı vortices on a surface Σ with a metric

ds2 = Ω2(z, z̄)dzdz̄ (2.1)

are gauge-equivalence classes of solutions (A,φ) to the equations

Dz̄φ = 0, (2.2)

2B = (1− |φ|2)Ω2, (2.3)

where we write D = d− iA, Dz̄ = D∂z̄ and B = 2i(∂z̄Az − ∂zAz̄). The gauge field A is a
connection 1-form for a U(1) bundle P over Σ and B is the curvature of this connection,

whereas φ (the Higgs field) is a section of a line bundle associated to P . Topology is

introduced on the fields through boundary conditions or, if Σ is compact (which is the

case we will be interested in), by the nontriviality of P . Topologically, U(1) bundles on a

compact surface are classified by their first Chern class N ∈ Z, which can be interpreted
as the net number N ∈ Z of units of quantised magnetic flux through space,

i

2

∮
Σ
Bdz ∧ dz̄ = 2πN. (2.4)

It can be shown that N ≥ 0 for solutions to (2.2) and (2.3), and then φ vanishes at exactly
N points (counting multiplicities); similar equations describe configurations with N < 0,

called antivortices, but for simplicity we shall consider the case N > 0 only.

Existence and uniqueness of Bogomol’ny̆ı vortices on compact Σ were studied by Brad-

low [2] (cf. also [4]), following work of Taubes and others on the plane [10]. Notice that

integration of both sides of equation (2.3) leads to

Vol(Σ) ≥ 4πN. (2.5)

Bradlow showed that, whenever the strict inequality is satisfied, there is exactly one solution

to the equation

4∂z∂z̄h− (eh − 1)Ω2 = 4π
N∑
r=1

δ(2)(z − zr) (2.6)

for h := log |φ|2, which we can obtain by solving (2.2) for A and substituting in (2.3). Here,
the zr are N arbitrary points of Σ where φ vanishes. Now h contains all the gauge-invariant
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information about field configurations (A,φ), and so the moduli space of solutions to the

Bogomol’ny̆ı equations with charge N is is the symmetrised powerMN = S
NΣ := ΣN/SN ,

a smooth 2N -manifold. These solutions can be interpreted as nonlinear superpositions of

N indistinguishable vortices located at the zeros z1, . . . , zN of the Higgs field (the vortex

cores), which play the rôle of moduli.

One can show that, in each topological sector, defined by (2.4), Bogomol’ny̆ı vortices

are exactly the minima of the Ginzburg–Landau energy V =
∫
Σ V, with density

V = 1
2
B2Ω−2 +

(
|Dzφ|2 + |Dz̄φ|2

)
+
λ

8

(
1− |φ|2

)2
Ω2, (2.7)

at the self-dual point λ = 1 [1]. The functional V is a natural potential energy for a

dynamical field theory. Completing it so as to obtain a Lorentz-invariant action for Σ = R2

leads to the familiar abelian Higgs model, which is second-order (in the time derivatives of

the fields) and can be defined on more general Σ. Another possibility, proposed by Manton

[15], is to add the kinetic term

T = γ
(
i

2
(φ̄Dtφ− φDtφ)−At

)
Ω2 + µ (BAt + 2i(EzAz̄ − Ez̄Az)) , (2.8)

where E is defined from dA = E∧dt+B in 1+2 dimensions as usual. This leads to a first-
order lagrangian density LMan = T − V for a nonrelativistic field theory. Notice that the
second term in (2.8) is just the Chern–Simons action µA∧dA. There are some subtleties in
defining an action globally from LMan, because some of the terms in T depend on the local
gauge and cannot be patched together using partitions of unity. The action should also be

gauge-invariant modulo 2πZ. To deal with these difficulties, one may have to add correction

boundary terms to the bulk action, restrict the group of large gauge transformations and/or

impose quantisation conditions on the parameters in the lagrangian. For example, for

compact Σ and time-periodic boundary conditions, one is led to a well-defined action

consistent with all large gauge transformations provided we impose [18]

4πµ ∈ Z and γVol(Σ) ∈ Z. (2.9)

The equations of motion are gauge-invariant and satisfied by time-independent Bogomol’ny̆ı

vortices provided γ = µ, which we will assume from now on. In particular, (2.3) coincides

with the constraint obtained as the Euler–Lagrange equation for the lagrange multiplier

At. It is useful to define the normalised coefficient κ := 4πµ = 4πγ.

From now on, we shall focus on the special case where Σ is a sphere of radius R. We

take z to be the complex coordinate obtained through stereographic projection from the

South pole of a unit sphere, and set

Ω2(z, z̄) =
4R2

(1 + |z|2)2

in (2.1). The positions z1, . . . , zN of N vortices define coordinates almost everywhere on

the moduli spaceMN . They are regular only in the subset of configurations for which all

the zeros of φ are simple and none of them occur at the South pole, which we denote as
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usual by z =∞. To parametrise the whole subset V(0) ⊂MN of static configurations with

no zeros of the Higgs field at z = ∞, we can introduce instead the elementary symmetric
polynomials in the N variables zr:

sk := s
[N ]
k (z1, . . . , zN ) =

∑
1≤j1<···<jk≤N

zj1 · · · zjk , 1 ≤ k ≤ N. (2.10)

Stereographic projection from another point of the sphere would give another complex

coordinate z′ related to z by a Möbius transformation (representing a rotation), and then
a coordinate patch V(0′) on MN with coordinates s

′
k. An atlas for the whole moduli

space can be construced by projecting from N + 1 distinct points. To see what the gobal

structure of MN is, let Vj denote the subset of configurations with exactly j vortices at

z = ∞; it is parametrised by the symmetric polynomials s[N−j]k of the coordinates of the

N−j remaining vortices. Clearly,MN =
∐N
j=0 Vj gives a decomposition ofMN into N+1

disjoint 2(N − j)-cells Vj ∼= CN−j , and it is easy to verify that they are glued together so
as to giveMN = CP

N .

We are interested in the dynamics of the vortices in the field theory, and this is a very

hard problem. One way of making progress, in the λ ' 1 regime, is to obtain an effective
finite-dimensional lagrangian system on the moduli space by substituting Bogomol’ny̆ı

vortices with time-dependent moduli for the fields in the action and integrating out the

spatial dependence; this is the so-called adiabatic approximation, first discussed by Manton

in the context of BPS monopoles [13]. It turns out that the integral for the kinetic energy

can be performed explicitly. The result can be written as

T red = A( d
dt
),

where the real 1-form

A = πiγ
N∑
r=1

[(
2R2

z̄r
1 + |zr|2

+ b̃r

)
dzr −

(
2R2

zr
1 + |zr|2

+
¯̃
br

)
dz̄r

]
(2.11)

depends on N functions b̃r on V(0). To define them, suppose first that z1, . . . , zN are

distinct and consider (following [20], [24]) the expansion of h around each point z = zr

h(z; z1, . . . , zN ) = log |z − zr|2 + ar +
br
2
(z − zr) +

b̄r
2
(z̄ − z̄r) +O(|z − zr|2). (2.12)

Equation (2.6) implies that the br have poles as the vortices coalesce, in such a way that

b̃r(z1, . . . , zN ) := br(z1, . . . , zN )−
N∑
s 6=r

2

zr − zs

are smooth. It is easy to see that these functions are well defined even at coincidence [20].

It also follows from (2.6) that, under an isometry T , the br transform as

T ∗br =
br

T ′(zr)
− T ′′(zr)
(T ′(zr))2

, (2.13)
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and this can be used to relate br (or b̃r) in the patch V(0) to the b
′
r defined in another patch

V(0′) from an expansion like (2.12).

Introducing ω := dA, the equations of motion can be cast as

ι d
dt
ω = −dV red, (2.14)

with

V red = Nπ +
i

16
(λ− 1)

∫
Σ

(
1− eh(z;z1,... ,zN )

)2
Ω2dz ∧ dz̄. (2.15)

So the reduced dynamics is hamiltonian, with a nontrivial symplectic structure defined by

ω, and hamiltonian given by the potential energy V red. (Unfortunately, it does not seem

possible to write down V red as a local function onMN .) It follows form the work of Samols

[20] that there is a real function B on V(0) such that

b̃r =
∂B
∂zr

, (2.16)

and using this we find

ω = − iκ
2

N∑
r,s=1

(
2R2δrs

(1 + |zr|2)2
+
∂b̄s
∂zr

)
dzr ∧ dz̄s. (2.17)

We can recognise ωSam = − 2κω as the (1, 1)-form defining the Kähler metric onMN whose

geodesic motion gives the adiabatic approximation to the abelian Higgs model [20][16].

In [18], we analysed in some detail the symmetries of Manton’s model. Here, we shall

focus on the reduced picture. The fact that V in (2.7) does not depend on time explicitly
means that it is a conserved quantity (the energy of the system). There are also conserved

angular momenta coming from the rotational symmetry, which is described infinitesimally

by the span of the vector fields

ξ(1) = −
i

2

N∑
r=1

(
(1− z2r )

∂

∂zr
− (1− z̄2r )

∂

∂z̄r

)
, (2.18)

ξ(2) =
1

2

N∑
r=1

(
(1 + z2r )

∂

∂zr
+ (1 + z̄2r )

∂

∂z̄r

)
, (2.19)

ξ(3) = i

N∑
r=1

(
zr

∂

∂zr
− z̄r

∂

∂z̄r

)
, (2.20)

which generate rotations around the three cartesian axes of an R3 where the sphere Σ is

embedded. Equation (2.13) can be used to derive constraints on the functions br [18],

N∑
s=1

(2zs + z
2
sbs + b̄s) = 0 , (2.21)

N∑
s=1

zsbs ∈ R, (2.22)
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which imply that the SO(3) action induced on MN is symplectic. Since so(3) is simple,

the action is necessarily hamiltonian, and there exists a moment map [7]

M :MN → so(3)∗

with components defined by hamiltonian functions Mj of (2.18)–(2.20),

ιξ(j)ω = −dMj . (2.23)

Using the relations (2.21)–(2.22), we find [18]

M1 = ±
κ

4

N∑
r=1

(
2R2

zr + z̄r
1± |zr|2

+ br + b̄r

)
, (2.24)

M2 = ∓
iκ

4

N∑
r=1

(
2R2

zr − z̄r
1± |zr|2

− (br − b̄r)
)
, (2.25)

M3 = ±
κ

2

N∑
r=1

(
R2
1∓ |zr|2
1± |zr|2

∓ (zrbr + 1)
)
. (2.26)

These conserved quantities can be compared in the field theory and in the reduced mechan-

ical system, providing some evidence for the consistency of the adiabatic approximation as

applied to this model. They are natural classical observables, and we shall be able to find

quantum operators for them in closed form.

3. Ingredients for geometric quantisation

Now we would like to investigate the quantum system associated to the reduced Manton’s

model in the framework of geometric quantisation. We shall follow the conventions in

[27], and refer the reader to [6] for background on complex geometry. To construct the

quantum system, we need to supplement the classical theory (specified by the phase space

MN = CP
N , endowed with the symplectic form (2.17)) with a hermitian line bundle L

over MN . The wavefunctions in the quantum Hilbert space will be particular sections of

L.

To start with, we should verify whether our phase space is quantisable at all. This is

equivalent to the integrality of the class represented by the closed form 1
2πω in de Rham

cohomology,

1

2π
[ω] ∈ H2(MN ;Z) ⊂ H2(MN ;R). (3.1)

In general, this requirement leads to nontrivial constraints on the parameters of the classical

theory — the Weil (pre)quantisation conditions. If they are satisfied, we may regard 1
2π [ω]

as the first Chern class of a smooth complex line bundle over MN , which is what we call

the prequantum line bundle L.

Recall that H2(CPN ;R) is cyclic and we can take as generator the first Chern class

η ∈ H2(CPN ;Z) of the hyperplane bundle of CPN . Then [ω] = 2π`η for suitable ` ∈ R. To

– 7 –
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obtain `, we can use the result for the cohomology class [ωSam] derived by Manton in [14];

it involves obtaining an explicit formula for the restriction of the 2-form ω to the subvariety

Mco
N of coincident N -vortices, which can be seen to be a projective line of degree N inside

MN = CP
N . (This formula has been generalised in [16] for Σ of arbitrary genus using

similar arguments.) The conclusion is that that ` = −κ(R2 −N), or

1

2π
[ω] = `η = −κ(R2 −N)η. (3.2)

Equation (3.1) is then equivalent to ` being an integer, or

κ(R2 −N) ∈ Z. (3.3)

Notice that this condition is weaker than the conditions (2.9) that we would have to be

impose at the classical level if we were to allow gauge transformations to have nontrivial

winding in the time circle when periodic boundary conditions are enforced. On the other

hand, if we choose to restrict the group of gauge transformations to small gauge trans-

formations, (2.9) are no longer required and (3.3) is a nontrivial extra condition on the

parameters for the quantum mechanics to make sense.

In geometric quantisation, the prequantum line bundle L is to be equipped with a

hermitian metric and a unitary connection. The fact that CPN is simply connected implies

that in our case L is uniquely determined as a smooth bundle by the symplectic structure

ω, and so are the hermitian metric and the connection D. The basic idea in the standard
construction of L is to interpret (real) symplectic potentials of ω as local expressions for

the connection, and then use a version of parallel transport with path-labels to define

local sections and construct the bundle. (This works even if the connection is not flat,

cf. section 8.3 of [27].) A given symplectic potential determines a unique local section σ

of L up to a phase of modulus one. The hermitian metric is introduced by requiring that

each σ is a local orthonormal frame,

〈σ, σ〉 = 1. (3.4)

This is unambiguous since two symplectic potentials must differ by the exterior derivative

of a real function u, and then the corresponding local sections are related by the factor

e−iu.
The wavefunctions in geometric quantisation are defined as the L2 polarised sections

of L. By L2 we mean square-integrable with respect to the hermitian product (3.4) on

the fibres and the symplectic measure ω
N

N ! on the baseMN . Roughly speaking, polarised

means that they only depend on half of the real coordinates of the phase space, just as

the wavefunctions in the Schrödinger representation of quantum mechanics only depend

on the position and not on the momentum. More precisely, a polarisation P is defined as a
lagrangian (i.e. maximally isotropic) integrable subbundle of the complexification TCMN

of the tangent bundle of the phase space, and the condition

DX̄ψ = 0, ∀ X ∈ Γ(MN ,P) (3.5)

– 8 –
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defines what is meant for a section ψ to be P-polarised. When the classical dynamics takes
place in a Kähler phase space, as is our case, there is a natural choice of polarisation P
— namely, the one determined by the i-eigenspaces of the compatible complex structure.

It is generated by the holomorphic vector fields in the local complex coordinates. The

introduction of a Kähler polarisation can be interpreted naturally in terms of complex

geometry as follows. A connection on the prequantum line bundle defines a holomorphic

structure for L: By definition, the holomorphic sections are the ones which are annihilated

by the part of D that takes values in Ω(0,1)(MN , L), which is defined from the complex

structure on the base. (The existence of such sections relies on the fact that the Kähler

form has no (0, 2)-component.) But these sections are precisely the ones satisfying the

condition (3.5) for the Kähler polarisation. Thus, polarised sections of L are nothing but

holomorphic sections with respect to the holomorphic structure on L induced by the unitary

connection D.

4. The quantum Hilbert space

In algebraic geometry, isomorphism classes of line bundles of degree zero over an algebraic

variety are classified by an abelian group (under the tensor product) called the Picard

variety. This is just the trivial group when the base is CPN , which implies that in our

problem L is uniquely determined as a holomorphic line bundle by its first Chern class `,

which can be read off from (3.2). A classical result [9] on the sheaf cohomology of CPN

establishes that L ∼= O(`) admits global holomorphic sections if and only if ` > 0 (i.e.
κ < 0), and then they form the vector space

H0(CPN ,O(`)) ∼= C[Y0, . . . , YN ]` (4.1)

where the right-hand side denotes the homogeneous polynomials of degree ` in N + 1

homogeneous coordinates Yj for CP
N . We fix the coordinates Yj by identifying

Yj
Y0
=

(−1)rsr (r = 1, . . . ,N) on {(Y0 : · · · : YN ) ∈ CPN : Y0 6= 0} = V(0), where the sr = s(0)r
are given by (2.10). The isomorphism (4.1) gives a concrete way to realise L and its

holomorphic sections, up to multiplication by a constant in C∗.
Recall that the local symplectic potential A in (2.11) for the connection D determines

a nonvanishing local section σ : V(0) → L. It is not holomorphic though, as A has a nonzero
component in Ω(0,1)(V(0)). But we can obtain a holomorphic local section from it by using

a nonunitary gauge transformation: Since

A = 2πγi
N∑
r=1

(
2R2

z̄r
1 + |zr|2

+ b̃r

)
dzr − 2πγid

(
1

2
B +R2

N∑
r=1

log
(
1 + |zr|2

))
, (4.2)

where B is defined up to an additive real constant by (2.16), we can define on V(0)

σ(0)(z1 . . . , zN ) := σ(z1 . . . , zN )e
−2πγ( 12B+R2

∑N
r=1 log(1+|zr|2)); (4.3)

this is a holomorphic section of L on V(0). It is uniquely determined from σ up to a

positive real constant, and thus from A up to a constant in C∗. It extends to a global
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section of L, vanishing in the complement of V(0); so we identify it with the homogeneous

polynomial Y `0 in (4.1) using an isomorphism of holomorphic line bundles. On V(0), other

global holomorphic sections Ψ of L are given by multiplying σ(0) by polynomials Ψ(0) in

the sr of degree less than or equal to `. It is possible to trivialise L in other patches V(0′) as

suggested in section 2, and construct the transition functions describing the bundle (more

details are given in [19]); then we can find the representatives of the global holomorphic

sections of L and the connection 1-form in any patch.

The quantum Hilbert space HP is the space of global holomorphic sections of L which
are normalisable with respect to the inner product defined by the symplectic measure of

MN and the product on the fibres given by (3.4), as we already explained in section 3.

This inner product can be easily written down as an integral over the open dense V(0),

where L is trivialised by σ(0), by making use of (2.17), (3.4) and (4.3). Namely, for two

holomorphic sections Ψ1 and Ψ2 represented by Ψ
(0)
1 and Ψ

(0)
2 with respect to σ

(0),

〈Ψ1,Ψ2〉=
(
iκ

2

)N ∫
CN

Ψ
(0)
1 (z1, . . . , zN )Ψ

(0)
2 (z1, . . . , zN )e

−4πγ( 12B+R2
∑N
p=1 log(1+|zp|2))

× det
[
2R2δrs
(1 + |zr|2)2

+
∂b̄s
∂zr

]N
r,s=1

dz1 ∧ dz̄1 ∧ . . . ∧ dzN ∧ dz̄N . (4.4)

Since we are dealing with a compact phase space, all the holomorphic sections have finite

norm, so the Hilbert space HP is H0(CPN ,O(L)) itself, with dimension

dimHP =
(
N + `

N

)
. (4.5)

We should mention at this stage that the C∗ ambiguity underlying the identification
of the sections (4.1) and the local trivialisation σ(0) implies that there is a normalisation

ambiguity in the definition of the inner product (4.4). This is no shortcoming, since from the

physical point of view the quantum states are points in P(HP), and a global renormalisation
of the representatives in HP has no physical implications.
We may interpret the expression (4.5) as giving the number of states in a quantum

system of N interacting bosons. By interacting, we mean that the area available for the

dynamics on the sphere is affected by the space which the vortices themselves occupy, in the

following sense. Recall that Bradlow’s bound (2.5) establishes that N vortices can only live

on a sphere which has an area exceeding 4πN . Heuristically, we can say that a single vortex

occupies 4π units of area. So we can regard (4.5) roughly as the formula for the number of

states for a system of N bosons which can be assigned to any of the ` = |κ|
4π (4πR

2 − 4πN)
states corresponding to the room available on the sphere, after the total area of the vortices

has been discounted. (For κ = −1, there is a similiar interpretation for (4.5) as the number
of states of a system of N noninteracting fermions, but it breaks down for κ 6= −1.) All
these quantum states belong to a single degenerate energy level when λ = 1. Recall that

in this situation the hamiltonian vanishes and no motion occurs at the classical level. We

shall refer to the λ 6= 1 case in section 6 below.
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From the formula (3.2), it is immediate to compute the volume of the moduli space

determined by the Kähler form ω:

Volω(MN ) =

(
2π|κ|(R2 −N)

)N
N !

=
(2π`)N

N !
.

It is of course proportional to the volume determined by Samols’ metric, as first computed

by Manton (cf. [14],[16]). This volume has been used to deduce the thermodynamics of an

ideal gas of abelian Higgs vortices at λ = 1 in the framework of Gibbs’ classical statistical

mechanics. In Manton’s model at λ = 1, there is only a ground state as we noted above,

and its degeneracy, in Gibbs’ approximation, is given by

dGibbs =
1

(2π~)N
Vol(MN ) =

`N

N !
. (4.6)

Notice that Planck’s constant is 2π~ = 2π in our units. Gibbs’ partition function is simply

ZGibbs = dGibbse
−βNπ. At λ 6= 1, the degeneracy is lifted but (4.6) is still to be interpreted

as the total number of states of the system. It is of interest to study the quotient

Q :=
dimHP
dGibbs

which gives information about how appropriate Gibbs’ estimate for the number of states

of the quantum system is. From (4.5) and (4.6), we find

Q =
(N + `)!

`N`!
.

Using Stirling’s formula for the gamma function, we obtain

Q =

(
1 +

N + 1

`

)N (
1 +

N

`+ 1

)− 1
2

[(
1 +

N

`+ 1

)`+1
e−N

]
eJ(N+`+1)−J(`+1), (4.7)

where J is the asymptotic series

J(z) =
∞∑
n=1

Bn
(2n − 1)2n

1

z2n−1
.

In the context of Chern–Simons theories, the classical approximation is described as the

limit |κ| → ∞; this is equivalent to keeping the coupling κ as constant and letting ~→ 0.
So we keep N fixed and let ` → ∞ in the expression (4.7), and this gives indeed Q → 1.
We might also try to obtain a classical regime in a thermodynamical limit, where both N

and the area of the sphere become very large, but keeping a finite (possibly small) density,

which we might want to define as

ν :=
|κ|N
`
=

N
R2(
1− N

R2

) .
But it follows from (4.7) that in this limit Q is infinite, however small ν is taken to be. We

mention in passing that there is a physical realisation for Manton’s lagrangian (see section 7)

in which |κ|R2 → ∞ is to be regarded as a large-number limit, and then lim`→∞Q = 1
can alternatively be interpreted as the consistency of Gibbs’ recipe in a thermodynamical

regime.

– 11 –
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5. Quantum angular momenta

From the prequantisation data, it is possible to construct prequantum operators Q(f) for
any classical observable f ∈ C∞(MN ) as

Q(f) := −iDξf + f. (5.1)

Here, ξf is the hamiltonian vector field of f with respect to ω,

ιξfω = −df,

(2.14) and (2.23) being special cases of this. In general, the linear operator Q(f) does not
map polarised sections of L to polarised sections. It is easy to show that it does if and only

if ξf preserves the polarisation:

[ξf ,Γ(MN ,P)] ⊂ Γ(MN ,P). (5.2)

Then we may interpret Q(f) as the quantum operator1 corresponding to the observable
f . In the Kähler case, (5.2) can be seen to be equivalent to ξf being the real part of a

holomorphic vector field. This condition is true for the hamiltonian vector fields (2.18)–

(2.20) of the angular momenta in (2.24)–(2.26).

We can determine explicitly the action of the quantum operators on the wavefunctions

Ψ in the quantum Hilbert space HP = H0(MN ,O(L)). In the holomorphic frame on V(0)
provided by σ(0), one can write Ψ = Ψ(0)σ(0) with

Ψ(0)(z1, . . . , zN ) =
∑̀

j1+···+jN=0
αj1...jN

N∏
k=1

s
[N ]
k (z1, . . . , zN )

jk , (5.3)

where αj1...jN ∈ C. The 1-form representing D with respect to this frame can be read off
from (4.2) to be

A(0) = 2πγi
N∑
r=1

(
2R2

z̄r
1 + |zr|2

+ b̃r

)
dzr.

Substitution in (5.1) now gives the local representatives of the quantum operators in the

local frame σ(0). For example, for M3 we obtain

Q(M3) = −i
(
ιξ(3)d− iA

(0)(ξ(3))
)
+M3

= −iιξ(3)d+
κ

2
N(R2 − 1)− κ

N∑
r=1

N∑
s 6=r

zr
zr − zs

= −iιξ(3)d−
N`

2
,

1For a general f ∈ C∞(MN), the prequantum operator defined by (5.1) has to be corrected (e.g. using

the BKS construction, cf. [22]) to obtain the (true) quantum operator Q(f).
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or equivalently

Q(M3) =
N∑
r=1

(
zr

∂

∂zr
− z̄r

∂

∂z̄r

)
− N`

2
. (5.4)

Acting on Ψ as in (5.3), (5.4) yields

Q(M3)Ψ(0) =
∑̀

j1+···+jN=0

(
j1 + 2j2 + · · · +NjN −

N`

2

)
αj1...jN

N∏
k=1

s
[N ]
k (z1, . . . , zN )

jk .

(5.5)

From this expression, it is easy to read off the eigenvalues of Q(M3) as

−N`
2
,−N`
2
+ 1, . . . ,

N`

2
,

together with their multiplicities. The same spectrum is obtained for Q(M1) and Q(M2),
with quantum operators given by

Q(M1) = −
1

2

N∑
r=1

(
(1− z2r )

∂

∂zr
− (1− z̄2r )

∂

∂z̄r

)
− `

2

N∑
r=1

zr, (5.6)

Q(M2) = −
i

2

N∑
r=1

(
(1 + z2r )

∂

∂zr
+ (1 + z̄2r )

∂

∂z̄r

)
+
i`

2

N∑
r=1

zr, (5.7)

acting on polynomials of the form (5.3).

For N = 1 and a given negative κ ∈ Z, we see that the Hilbert space HP yields the
irreducible (possibly projective) (` + 1)-dimensional representation of SO(3) through the

action of the generators Q(Mj). The situation here is exactly equivalent to the geometric
quantisation of the spin degrees of freedom of a particle of spin `2 , which are described clas-

sically by a two-sphere of half-integer radius `2 and the standard Fubini–Study symplectic

form [22]. More generally, for any N , it follows from (5.5) that the representation of SO(3)

carried by HP is the Nth symmetric power SymN (`+ 1); notice that ` itself depends on
N . The fact that we obtain a symmetric power of an irreducible representation with heigh-

est weight determined by ` again indicates that the vortices in our model can be regarded

as interacting bosons, as we have put forward in section 4. It is worthwhile to emphasise

how our approach differs from the usual treatment of a system of indistinguishable bosons

in quantum mechanics. In the latter context, the N -particle sector of the Fock space is

constructed as the Nth symmetric power of the Hilbert space of a single particle. In our

situation, the N -particle sector is constructed directly from the quantisation of a classical

N -particle phase space.

6. Switching on the potential

In the self-dual limit λ → 1, the classical hamiltonian (2.15) is equal to the constant

Nπ; then, the quantum Hilbert space HP is totally degenerate in energy. In the regime

– 13 –
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where λ is different but still close to 1, the vortices move slowly, and we might expect to

study their quantum dynamics. For example, one might hope to be able to diagonalise the

quantum operator2 Q(V red) and in particular determine the ground state of the system.
(Notice that when λ 6= 1 the classical dynamics and its quantisation are still defined by
the same symplectic Kähler structure as in the self-dual case.) Unfortunately, any study

of the dynamics involves computing matrix elements for the hamiltonian as integrals over

the moduli space (cf. (4.4)), and they cannot be found unless the interaction part B of the
Kähler potential is known to high precision. Nevertheless, physical arguments can be used

to give partial answers to these questions.

Although the wavefunctions Ψ in the problem may seem rather abstract, there are

two ways to have immediate intuition about them. One is to consider their vanishing loci,

which do not depend on the trivialisation of the prequantum line bundle; we can regard

them as hypersurfaces ofMN avoided by the configuration of N vortices in the particular

state. The other handle is provided by the explicit representation of the rotation group

obtained in section 5, which enables one to determine the states that correspond to field

configurations symmetric about a given point of the sphere.

Classically, one vortex has intrinsic angular momentum of magnitude κ2 (R
2 − 1). Its

geometric quantisation is equivalent to that of a spin state (a classic textbook example,

cf. [22]), and one can recover the phase space M1 as the Riemann sphere of coherent

states. The Hilbert space is still degenerate in energy. For multivortices, the picture is of

course more complicated. The interactions built into the symplectic structure imply that

nonlinear superposition effects are present. In particular, the total angular momentum of

N vortices is not just the sum of the individual angular momenta. But again the coherent

states corresponding to the largest multiplet may be interpreted as forming the Riemann

sphere CP1 ∼=Mco
N ⊂ MN of coincident N -vortices. The nontriviality of the hamiltonian

lifts the energy degeneracy of the self-dual case and in general energy gaps will be formed.

We may now ask how this splitting occurs, and in particular which states span the lowest

energy level.

The sign of λ − 1 determines whether the potential among the vortices decreases
(λ < 1) or increases (λ > 1) when a number of separated vortices approach a clustering

configuration; we base this presumption on the numerical study of the potential for 2-

vortices on the plane [21], which shows that it is a monotonic function of the separation.

In the λ < 1 case, the states of lowest energy should correspond classically to coincident

vortices, and as stated above they span the largest SO(3) multiplet in HP . For the λ > 1
case, the problem is more interesting. We expect to find the ground state among the

smallest multiplets; roughly speaking, these are states with small angular momentum,

which typically correspond to classical configurations of well-spaced vortices.

A way to produce a state with these properties is to enforce vanishing of the wave-

function whenever any two vortices approach each other. The simplest possibility is to

2See the footnote in section 5.
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consider

Ψ
(0)
N,m :=

∏
1≤r<s≤N

(zr − zs)m. (6.1)

We take m to be an even integer, ensuring that this is still a symmetric polynomial in the

zr, and so of the form (5.3). For this, we must have

m ≤ `

N − 1 , (6.2)

because the degree of (6.1) in the sk := s
[N ]
k (z1, . . . , zN ) is m(N − 1). To see this, notice

that each sk is if degree 1 in z1 say, and Ψ
(0)
N,m is of degree m(N − 1) in z1, so each sk-

monomial can be of degree at most m(N −1), and there are monomials of degree m(N−1)
coming from the monomial of highest degree in z1 — this follows from a straightforward

induction argument. For example, for m = 2 and N = 3 we have

Ψ
(0)
3,2 = −4s32 − 27s23 + s21s22 − 4s31s3 + 18s1s2s3,

of degree 4 = 2(3 − 1). Notice that (6.2) implies that Ψ(0)N,m can exist only on a sphere of
sufficiently large radius,

R ≥
√
N +

m(N − 1)
|κ| . (6.3)

Since Ψ
(0)
N,m is homogeneous in the zr, it is an eigenvector of Q(M3). One has

Q(M3)Ψ(0)N,m =
N

2
(m(N − 1)− `)Ψ(0)N,m.

We want to ensure that Ψ
(0)
N,m has the smallest possible momentum, so it is natural to

restrict ourselves to the situation where R is tuned so that (6.3) becomes an equality,

` = m(N − 1). (6.4)

Then Ψ
(0)
N,m has zero momentum about the x3-axis. In fact, a tedious calculation that we

will not reproduce here establishes that under the condition (6.4) also

Q(M1)Ψ(0)N,m = 0 = Q(M2)Ψ
(0)
N,m,

using (5.6) and (5.7). Hence the state represented by Ψ
(0)
N,m is SO(3)-invariant, and so a

good candidate for the ground state when λ > 1, provided (6.4) holds.

7. Discussion

We have investigated an effective quantisation of Manton’s model of first-order vortex dy-

namics on a sphere of radius R. The motion in the classical field theory is first reduced to
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a hamiltonian system on the moduli space of N Bogomol’ny̆ı vortices. At the self-duality

point λ = 1, the effective dynamics is frozen, whereas for λ ' 1 the vortices move slowly,
preserving their energy and angular momentum; the energy is purely potential and depends

on the relative position of the vortices only3. The geometric quantisation of the reduced

model is then rather straightforward to set up. The prequantum line bundle is uniquely

determined by the Kähler structure on the moduli space defined by the kinetic energy

term, and it comes with a unique holomorphic structure defined by the natural Kähler

polarisation. It is presumed that the quantum system obtained in this way describes a

finite truncation of the quantum field theory, in which most of the excitations are kept in

the ground state. However, it is not clear how one should assess the validity of this ap-

proximation. For λ = 1, the quantisation of the reduced system yields a single degenerate

energy level; this degeneracy is lifted when the potential becomes nontrivial. In section 4,

we have computed the dimension of the quantum Hilbert space and it was shown that it

approaches Gibbs’ estimate for the number of quantum states, as determined by the sym-

plectic volume of the moduli space, in the classical limit of large Chern–Simons coefficient.

Another feature which emerges from the analysis of the quantised effective system is that

the solitons in the model should be interpreted as interacting bosons with a characteristic

size of 4π. The bosonic character of the vortices is also apparent from the analysis of the

representations of SO(3) arising in the algebra of the quantum angular momentum oper-

ators. In section 5, we found that for N vortices the Hilbert space is the Nth symmetric

power of an irreducible representation of SO(3). This irreducible representation is the same

as the one obtained from quantising a single vortex on a sphere whose area is the one of

the original sphere minus the total area occupied by N vortices.

An interesting aspect of Manton’s model is that the classical dynamics of three vortices

is integrable in the sense of Liouville, if Σ is maximally symmetric (i.e. the sphere, the

euclidean plane or the hyperbolic plane) [19]. However, explicit results about the dynamical

regime λ 6= 1 are difficult to obtain, given the nonlocality of the hamiltonian (2.15). At
the quantum level, some statements about the ground state can be made. In particular,

we argued in section 6 that for λ > 1 we expect the ground state to be described by (6.1),

which is reminiscent of the Laughlin wavefunction [11] in the microscopic approach to the

fractional quantum Hall effect (FQHE) [23]. In fact, the connection of our work to the

theory of the fractional quantum Hall fluid can be made more explicit. It can be shown

that Manton’s model is (at least classically) equivalent to the effective field theory for the

FQHE proposed by Zhang, Hansson and Kivelson [28], if the interaction for the scalar

field is set to a δ-function and after suitable rescalings [19]. From this point of view, the

parameter γ in (2.8) is to be regarded as the electron density. The vortices in this effective

field theory have been interpreted [12] as the “quasiparticles” proposed by Laughlin to

model excitations above a basic Laughlin ground state of the electron system. To explain

why the FQHE occurs at filling factors not related to a Laughlin wavefunction, Haldane

[8] devised a hierarchical scheme whereby the quasiparticles are assumed to behave as

3It is worth mentioning that the adequacy of the adiabatic approximation to a first-order lagrangian

has not yet been studied in detail; we have some indications that this is a reasonable assumption, but a

rigorous study in the line of [26] and [25] remains to be done.
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bosons and can occupy Laughlin-like states (6.1) that are favoured for certain values of

the physical parameters. We believe that our results give some support to Haldane’s more

heuristic arguments.
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