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ABSTRACT: Dressing technique is used to construct commuting Lax operators which
provide an integrable (canonical) structure behind Witten—Dijkgraaf-Verlinde—Verlinde
equations. The commuting flows are related to the isomonodromic flows. Examples of
the canonical integrable structure are given in two- and three-dimensional cases. The

three-dimensional example is associated with the rational Landau-Ginzburg potentials.

1. Introduction, WDVYV Equation in Flat Coordinates

In this talk we describe the commuting structure behind Witten—Dijkgraaf-Verlinde—Verlinde

(WDVYV) associativity equations based on the dressing approach. The solutions to the

WDVYV equations [il,, &, 8, 4], expressed in terms of the so-called flat coordinates z!,z?%, ..., zV
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are provided by the prepotential F(x!,z2,...,2") and the Euler operator :
N
0
Z O[CU + Ta % (].].)
a=1

with dore = 0 and dy = 1 + p1 — e [3], with constants i, = 1,..., N defined below
(see (4.21)).

The pair (F, E) satisfies the WDVV equations if the following three conditions are
satisfied.

e Associativity :

i O3F (z s 83 F(z) PF(x) 5 OF(x)
B)

o xa&zﬁam 010z dzP o Gxaﬁm‘*’@x‘sn OxY0xBOxP

N

e Normalization :
83F(m) B
z00zP0Lt 1P
where 7,3 defines a constant non-degenerate metric: g = Zgﬁzl nagda:adxﬁ .
¢ Quasi-Homogeneity condition : The quasi-homogeneity condition states that :

E(F) = dpF + quadratic terms (1.2)

where the number dr denotes the degree (or homogeneity) of the prepotential F'.
As an example consider the three-dimensional space with three flat coordinates z!, 22, 23
and with (E, F) :
F = 1.7:3(%‘2)3 + l(xl)B + .7:1.7:2%3 + 1(333)2 <log:v3 _ §>
6 6 2 2
ol 0 1,0 3 50

+ -t + -

E= Ozl 27 922 ' 27 Ox3

such that E(F) = 3F + quadratic terms. More details on this example will be given in
Section &.

The content of this talk is as follows. In Section 2, we define the Darboux-Egoroff
equations which characterize the metric behind WDVV solutions when expressed in terms
of the curvlinear orthogonal coordinates referred to as canonical coordinates. The canonical
integrable structure behind the WDVV equations is presented in Section 8 emphasizing its
connection to the Darboux-Egoroff metric. We use the setting of the Riemann-Hilbert
problem augmented by an extra twisting condition [5]. The tau function appears naturally
in this formalism. The dressing matrix entering the Riemann-Hilbert problem generates the
dressing procedure which is used to construct the commuting structure behind the WDVV
equations. The dressing procedure is developed in Section 4 and used to provide relation
between the canonical integrable structure and the flat coordinates, structure constants
and associativity equations. Section B establishes a connection between the commuting
flows of the canonical integrable structure behind the WDVV equations and isomodromic
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deformations related to the Schlesinger equation. Another evidence of such connection is
provided by the fact that the tau function of the Riemann-Hilbert problem turns into the
isomonodromic tau function once the conformal condition on the integrable structure is
imposed as explained in Section 4, (see [6, 7).

In case of two-dimensions, solutions to the Darboux-Egoroff equations, the tau func-
tions and the corresponding prepotential satisfying WDV'V equations can be found explic-
itly. This is described in Section 6. More difficult is the case of three dimensions presented
in Section 7 where the Darboux-Egoroff equations are shown to take the form of the clas-
sical Euler equations of free rotations of a rigid body. In three-dimensions the scaling
dimension of the tau function is found to be related to the integral of the Euler equations.

Section § shows how to derive the canonical integrable structures for a class of ratio-
nal Lax functions associated with a particular reduction of the dispersionless KP hierarchy.
This derivation generalizes the well-known construction of the monic polynomials [3, §. An
example of the three-dimensional canonical integrable model derived from the rational po-
tentials is given in subsection 8.1. The three-dimensional example shown in this subsection
provides solutions to the Painlevé VI equation. Given that the flows of the canonical in-
tegrable models can essentially be reformulated as isomonodromic deformations, as shown
in Section &, the connection to the sixth Painlevé equation is not surprising. The tau
function of the three-dimensional example has a scaling dimension of R? = 1/4 and the
corresponding prepotential contains logarithmic terms.

For the scaling dimensions, R?> = n? such that n is an integer, the multi-component
KP hierarchy provides a framework for the construction of canonical integrable hierarchies
[9]. Tt would be of interest to find a universal approach to the formulation of the canonical
integrable models which would include models with fractional scaling dimensions as the
ones encountered in example of subsection 8.1 based on the rational potentials of Section

8.

2. Darboux—Egoroff metric

Massive topological field theories can be classified locally by the Darboux—Egoroff metric

given in terms of the canonical coordinates u1,...,ux [3] :
N N
g= Z nagdxo‘dxﬁ = Zh?(u)(dui)Q (2.1)
af=1 i=1

with Lamé coefficients h?(u) = ¢/du;. The fact that hZ(u) is a gradient ensures that the
so-called “rotation coefficients”

1 Oh;
Ry

are symmetric 3;; = Bj; and therefore the metric becomes the Darboux-Egoroff metric

. i#j, 1<i,j <N, (2.2)

when expressed in terms of the curvlinear orthogonal or canonical coordinates u;. The
Darboux-Egoroff equations for the rotation coefficients are:

0
+—0Bij = BixPrj, distinct 4,7,k (2.3)
8uk
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N
0 . .
E 8—Bij:0’ P
U
k=1

In addition one also assumes the conformal condition :
N
0
Zuk—aukﬂzj = —0i; .
k=1

3. Integrable structure behind WDV'V equations

Consider a loop group element g(z) : S — GL(N,C) which decomposes as

9(2) = g-(2)g+(2)

(2.4)

(2.5)

w.r.t. two subgroups of the Lie loop group G = @(N , C) consisting of all such maps g:

G- = {g €Glglz) =1+ Zg(—“z—i}

1>0

Gi=4g€Glgz)=> ¢?2

i>0

Assume from now on that g(z) satisfies twisting condition g71(z) = g7 (—=z) [B]. Let the

un-dressed wave matrix be :

N
Up(u,z) = exp ZzEjjuj = exp (2U) (3.1)
j=1
N
U= dlag (ul, . .,uN) = ZUZE” .
i=1
Our notation is : (u) = (u1,...,un), 0; = 0/0u; and Ej; is an elementary matrix with
matrix elements (E;;),; = dixdji-
The Riemann-Hilbert problem is here defined as :
Wo(u,2) g(2) = 0 (u, 2) M(u, 2) (32)
with the dressing matrices :
Ou,z) €G-, ©=1+00V1 4902724 (3.3)
M(u,z) € Gy, M = My+ Myz+ Myz® + ... (3.4)
satisfying the twisting conditions [5, [0]
0 H(u,2) =0T (u,—2), M~ Yu,z) = MT(u,—2). (3.5)

The twisting conditions imply, in particular, that
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The Riemann-Hilbert problem (3.2) gives rise to the commuting symmetry flows :

3%]' (u,2) = = (02E;;67")_O(u, 2) (36)
aiujM(u, Z) = (@ZE]'j@il)Jr M(u7 Z) : (37)

Equations (3.6) imply that the following tracelessness condition

I1(©(u,z2) =) B O(u,z) =0 (3.8)

holds for the so-called identity vector-field

N
I=> 0/0u;. (3.9)
j=1

We also define the so-called Euler vector field in terms of canonical coordinates as

AN
E=Y u-2. 3.10
> iz (3.10)
One finds from equations (3.6) that
E©)©0'=— (067" _. (3.11)
The tau function can be associated with the Riemann-Hilbert problem (8.2) through rela-
tions : a1 5o
ogT _ .
P, = Res, (tr <Ejj@ 1z£)>, j=1,...,N. (3.12)
Accordingly, we introduce the following parametrization for the symmetric #(-1) matrix :
- a1 o
ng ) _ 0log 7/0u; z j (3.13)
Bij i

with off-diagonal elements of #(—D-matrix defining the so-called rotation coefficients Bij
satisfying the Darboux-Egoroff equations (2.3) and (2.4) as follows from expressions (3.6)
and (3.8).

4. Dressing

The un-dressed structure is given by operators :

0 .
J
and d
L, = _JHE LU (4.2)
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which both annihilate the un-dressed wave function ¥g(u,2) (3.1)
9;%o(u,2) =0, Lp¥y(u,z)=0. (4.3)
These operators satisfy the commutation relations :
05, 0i] =0, [Ly,Ly] = (k—7)Liyr, [Ly,d;]=0. (4.4)
The so called dressing procedure maps the un-dressed wave function ¥y(u, 2) to :
Up(u,z) = ¥(u,2) =0(u,z)¥(u,z)
while the operators J; and Lj are mapped into the dressed operators:
6 = D;j =060 Ly - L, =0L6". (4.5)

By construction these operators annihilate the “dressed” wave (matrix) function ¥(u, 2) :

Ly¥ =0, D;¥=0, j=1,....N. (4.6)
Dressing preserves the commutation relations and so it holds that [D;, D;] = 0 and
[Ek,ET] = (k‘ - T)ﬁk_Hn , [Ek,Dj] =0.
Since
00,071 =0;+6(0,0™") =9; + (02E;,07") _ (4.7)
we obtain
D]' = 8]- - (@ZEjj@71)+ = 8.7 - ZE]'J' - V} . (48)
Also,
Lo=0L® ' = —L UtV z@—E(@) o! (4.9)
0= P Tz dz '
with
Vi = 009, Byl (Vi = (815 — Okj) Bra (4.10)
V=0V, U], Vij=(u— )b (4.11)

Note, that the first three terms on the right hand side of equation (4.9) contain only terms
of positive grade in z while the remaining term contains terms of the negative grade in z
(terms with 2% | k& < —1). We will now impose the so-called conformal condition which
amounts to (Ly)4+ = Lo or

do
E =z—.
(©) =2—

As shown in reference [i] this condition is compatible with flows from equation (3.6)

(4.12)

The following equations follow now from relations (¥.6)

ov

'Dj\I’ =0 - — = (VJ + ZEjj)\I’ (4.13)
8Uj
dv
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From (#.13) one can easily calculate the action of the Euler vector field on the wave-function
v

B(¥)=> ujo— = (V+2U)¥ (4.15)

as follows from relations Z;VZI u;V; = V and Z;VZI ujEj; = U. Comparing this with
equation (4.14) we find that :

A
E(D) = z—
(0) = 2—

and so E and zd/dz coincide when applied on the wave function ¥ in the framework of the

(4.16)

dressing formalism. Plugging relation (4.12) into the formula (3.12) for the 7-function one

obtains [|[1]:
1

9;log T = Res, (tr (07'E(©)Ej;)) = 5 (ViV). (4.17)

Also, I(¥) = 2V, which together with relation ({.12) yield
E(Bij) = —Bij ; I(Bi) =0 (4.18)
E(r)=R?*7; I(r)=0 (4.19)

where in relation ({.13) we introduced constant R? defining the scaling dimension (also
called homogeneity) of the tau function.
Commutation relations yield :

8]'V = [VJ’ V]a [V’ Ejj] = [V]’ U] (4'20)

and so I(V') = 0 since Zjvzl V; =0.

The similarity transformation V' — V = M, YV My transforms V to the constant
matrix V (0;V = 0) due to the flow equations 9; My = V; My, which follow from relation
(8.7, and the above equation (#.2(]). Assume, now that there exists an invertible matrix
S which diagonalizes V' [3]:

N
S’IVS = Hu= ZHjEj]' (421)
j=1
where p is a constant diagonal matrix p = diag(p1, ..., un).
Next, define a matrix
M (u) = Mo(u)S = (mij(u))1<ij<n - (4.22)
M satisfies
0; —V))(M)=0 — M Yo;M)=M"'V;M (4.23)
and
N
E(M) =Y wV;M =VM = MyVS = M. (4.24)
j=1

Define a constant non-degenerate metric to be :

n= (’r]a/@)lgawgéN = MTM = STS, and denote 77_1 = (naﬁ)lga,BSN . (425)
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Hence 13 = Zf\il Mia Mg

We have :
(% —V; —2E;;)®=0 (4.26)
where
®(u,2) =¥(u,2)g(z)S = M(u,2)S = M(u) + O(z). (4.27)

Under a similarity transformation generated by the M (u) matrix the Lax operators D; =
0; — zEj; — Vj transform to:

Dj = M_LD]'M = 8]' — ZM_lEij = 8]' — ZCj (428)

where in (.28

) we have introduced :

N
Cj = MﬁlEj]’M = Z (Cj)gEaﬁa (Cj)g = Zno‘vmﬂm]ﬂ (4.29)
a=1,8=1 %
such that
N
CiCj = Cidij, Y Ci=1In. (4.30)
i=1

The matrix Z(u, z) defined as

E(u,2) = M '®(u,2) =T+ > 2"EM(u) =T+ 280 + 222%) ... (4.31)

n=1
is annihilated by the transformed 25j operators:
D;(E) = (8; — 2C;)(E) = 0. (4.32)
Due to [251, 5]] = 0 it holds that:
0,C; — 0;C; =0. (4.33)

From (4.33), it follows that we can define a matrix C

N
C= Y C§Eqsp (4.34)
a=1,8=1
such that :
C; =0;C. (4.35)
Accordingly, plugging the expansion (#.31) into equation (#.32) yields :
EM = ;Y = (9;0) 2V, p>1, 20 =7 (4.36)
and therefore we can choose C' to be equal to =(1):
=2 = ¢ (4.37)
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while 9,22 = (9;C)C, etc. Also, by summing over j in ({£.3§) we get

> 0,EM =2 or Y92 =I(E) = 2E. (4.38)

z—E=2U=+[p, E]. (4.39)

In components it gives

nE™ _ [ ,E(">] = Yz, (4.40)

Comparing with (4.78) we see that E = nI — ad,, when applied on Z™. Equation (4.38)
determines =™ recursively up to a constant. Note, that we can add to 2 a constant
A,, such that nA, — [u, A,] = 0 without changing the right hand side of (4.40). Hence,
=" which is a solution of equation ({.40) as well equation ({.36) is determined up to a
constant A,, of grade n with respect to the the grading defined by the semisimple element
w according to equation nA, — [p, A,] = 0.

The above ambiguity amounts to the fact that = is determined upto a constant power
series A(z) such that

A(z) =T+ A1z + A2+, A(z)nA(—z)T =n.

with A, satisfying nA, —[u, A,] =0.
The matrix C is crucial for the whole theory and we will now study its properties.
According to (#.29) its matrix elements C§ must satisfy :

9;C5 =Y n*"mjymjs — 0;Csa = mjamis (4.41)
Y

where Cg, = Z,]szl Cj3Nay- Therefore from equation ({.41):

N N
Cop = Cpq oOr Z Clngy = Z ana,y. (4.42)
y=1 y=1

Next, define flat coordinates as the first column of the C' matrix :

z* =CYf. (4.43)

The Jacobian of the change of variables from u; to 2 is according to (4.29) given by :

010 &
e Z n*Cmiims . (4.44)
i 5=1

Also,
Oui _ Mia (4.45)

axa mi1
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as follows from the identity: d;; = > of mian™? m;g.

In terms of z*-coordinates the Lax operators D; become:

~ N gu; ~ 0
Do= ) 8$i2>j =5~ 2Ca. (4.46)
j=1
The commutation relations :
0 0
yield associativity
N
[Co, Cgl =0 — Z <cg50§7 - cgac%) =0 (4.48)
y=1
and integrability
0 0
8?0’6 — Wca = (4.49)
relations. The matrix C,, :
N
Ca= Y clsEys (4.50)
y=1p8=1
is equal to
N u; 0
Ca=)_ 52 Ci=52C (4.51)
j=1

The structure constant c,g, = Zévz 1 770450‘5/67 becomes therefore equal to

Copy = 88(;@ (4.52)
which according to (4.44) and (£.41) is equal to :
0Csy _ N~ Mia o M5y
Capy = o = > Gy = > R (4.53)

j=1 """ j=1

Hence the structure constants c,g, are symmetric in all three indices. Also, cig, = 13,.
It follows from (4.53) that

0Cgy  0Cp,
—l = 4.54
ozx® oz ( )
and therefore 92 oy
B = ————— By = 4.55
B 9rapP oF Capy 0r*0zPOxY ( )
where F' is called the prepotential.
Let us go back to the linear problem :
0 1 0 —

,10,
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Introduce

N
¢/g = Z 77101(5)% =1 =+ Z¢(ﬁl) + ZQQZ)E;Z) + Z3¢)E;3) + ... (4.57)

a=1

then as we will show below, the prepotential is given by a closed expression :

N
Lo 15 6,0
F=—36 +§Za: o5 . (4.58)
6=1
To show this, multiply equation (4.58) by Z _1 Ma Which yields :
Ao 2 (nM71¢)aﬁ =0 (4.59)

where we introduced:

bp = Z Ma(M @) Z Na Z n*Tmsy Psg = me@w (4.60)

~,0=1
and where use was made of the identity :
Z 7717 ﬁ = ClaB = Nap (461)
leading to
Z My (Ca)y (M1 ®) = (nM ™' ®) 5. (4.62)

7v,0=1

Applying 9/0z7 on (4.59) and using repeatedly (£.59) one gets :

A —z (nzC M~ 1<I>) P65 — 22 (nC nflanlcb) =
oxx B~ Qgeg 7 of
¢ ) Poy N~ o 095
g M—® — g — = 4.
ozoxy - £ oy (21 ) a8 T Progy s Cor s = 0 (4.63)

where we used Y8 Nas(C)2n*P = cgv.

From (#.31) we find that ¢4 as defined in (4.6() can be expanded in z as follows :

o) N
dg = Z(b/(gn)zn _ ¢(50) Jrqu/(gl) Jr22(]5/(62) Jr2‘,3(/5(53) 4= va (ezc);

—7716-1‘2’2771an+2’ 2771752) —i—z?’Zm E )g+ (4.64)

a=1

where we used relation (4_3_7').
From that we can read:

N N
0 =mps, 65 = maC§ =Y ngaz® (4.65)
a=1 a=1

— 11 —
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where in the last equation we have used (#.42) and (4.43). Also

N N
b =2 mED 8y =3 mEO. (4.66)
y=1 =1
Next, we have from ({.59) :
(4.67)

0
(u, 2) _2712 as ¢Buz‘

Combining the above two equations we find

N (2)(u) 8¢(2)(u) 962
ad B $a” (u)
= = . 4.
2" 5 Caslw)=—52 55 (4.68)
Comparing with ({.55) we see that :
OF
0% = e (4.69)
Also, from (4.31) it follows that
N o 3) U
(E@)5u) =Y 9™ %5 () pa (4.70)

! holds due to the twisting condition. Expanding in z

The condition Z(2)n 12(—2)T =
gives on level of z relation C,3 = C,3 which is already known. On next, 2% level we get

ENTH +92@ = TyC =0 or
N N N
Y 15 EDN+ D 10r(EP)E = D 1a,CICY. (4.71)
Y 1 ’Y:l fy:l

(4.70) and (4.68) that (4.71) is equivalent to

a¢ 967 & a¢&2>
@ 4 ad i 8 _
S E S v (4.72)

For 8 =1 one gets from

Hence as in [12] we find :
oF ) AR, &2) 1 1
o) 509 i _§¢g3) 5 Z $5¢g2)

2 -2 _
Pa T e 9z@ + v oxd o

We will now derive an expression for the Euler vector field E in terms of the flat

(4.73)

coordinates.

Define
N
U=MTUM= Y UiEq
a,B=1

(4.74)

- 12 —



Workshop on Integrable Theories, Solitons and Duality H. Aratyn

and notice, that
N N
U=> uM 'E;M = udiC = E(C). (4.75)
i=1 i=1
From (4.75) and the fact that the first column of matrix C' defines the flat variables as
in (#.43) we find that
E(z*) = B(C?) = U (4.76)

from which follows an expression for the Euler operator in terms of flat variables ¢

0
E = r—. 4.77
gul O ( )
Furthermore, from (4.30)
EEr Zu] EM =3 "u,¢Er ) =y, n>1, 20 =1, (4.78)
Put n =1 in (4.40), it gives :
5<1>—[u,5<1>}:(1—[u,0]:u. (4.79)
Hence :
Ug = (1 — pa + pp)Cg (4.80)
and
Ut = (14 p1 — pa) . (4.81)

Accordingly, the Euler vectorfield E = )", u;0; becomes in terms of the flat coordinates

N N P
E=>"up Z + 1 = o) 5 (4.82)
a=1 a=1

Similarly, for the identity vector filed I we find

I(z*) = Z B Z n® mzlng = Z n* 771,8 = a1 (4.83)
i=1 v

and therefore I = §/0z! in terms of the flat coordinates.

5. Monodromy and Frobenius manifold

Let us first introduce notion of monodromy. The notion of monodromy preserving deforma-
tions for linear differential equations in the complex plane was first studied by Schlesinger
[13]. Consider a linear differential equation with rational coefficients:

W ayw (5.1)

,13,
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where A(z) is an N x N matrix valued function with rational entries. In the case that A(z)
has only simple poles in the finite plane one can write:

Ay =3 A (5.2
z) = Dy .
In a neighborhood of any regular point for the differential eq. (5.1) one can find a fun-
damental set of solutions {y1(2),...,yn(2)}. If one analytically continues such a solution
y;j(2) around a singular point a, it does not in general return to the solution y; but to a

linear combination ), M} ;Y- The matrices M" are called monodromy matrices.

A question investigated by Schlesinger was as follows. How must the coefficient ma-
trices A, depend on the poles {aj,...,a,} so that the monodromy matrices M* do not
depend on the location of the poles. The conditon for this takes a form of a non-linear

system of equations

0A da, — da
Yda, = — A, A —2L—*F. 5.3
3 G == A AT (53)

These equations are known as Schlesinger equations. In reference [14] it was shown that
for solutions A, (a) to the Schlesinger equations (5.3) the right hand side of this equation
is exact:

3 %ﬁa))daﬂ - % ST (4,4,) % . (5.4)
vER
We will now show that that the canonical flows of the Frobenius manifolds reproduce the
structure of the Schlesinger equations.
Define
S; = M Ey(V — al)M (5.5)

where « is an arbitrary constant.
Recalling relations (#.20) and (4.23) one finds
8;S; = M~ 'Ej;, VI|(V — al)M = §,5; (5.6)

due to the fact that [Ej;, Vi] = [Ey, Vj].
Thus, locally there exists a function S such that S; = 9;5. A calculation based on
relations (4.20) and (#.23) yields

N
0 B [Si, 5]
B Si= Z w g (5.7)
J=1, j#i
o, S = W’ N (5.8)

These are the Schlesinger equations. They can be rewritten in a more compact form as :

N du; — du; N
ds; = S;, 8, L N Gdu; 5.9
j:lZ;;ﬁz[ / vyt zy: o >

— 14 —
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It follows from the Schlesinger equations that
N
Seo=>_8;=MV—-al)M=V-al (5.10)

is constant as already established in (1.21)).
The Schlesinger equations can be obtained as compatibility equations of the following
linear equations :

N
— X 0 X = X. 5.11
2 A — Uq ’ ! A — Uq ( )
The compatibility equations reproduce equations (5.7)-(5.8) by evaluating residues at

{uiti=1,...N
The system of first-order differential equations (5.11) can be rewritten as

D+ 8X=0, (5.12)
where D :
I SN .13
o\ P Ou;
is the exterior derivative and S the flat connection :
N N
z:: u) Dlog(\ — u; ) ; S; di — :ZLJ (5.14)

which satisfies the zero-curvature condition :
DS+S8SAS=0, (5.15)

due to (5.1%). Let, dU = 21| Ej;du;. One finds then that

Dlog(A\—U) = (A= U)"(d\ — dU) Z]j: —uJ (d\ —dU) (5.16)
and the connection S can be rewritten as :
S=M'1\A-U)"Yd\—dU)(V —al)M = M*BM (5.17)
where in the last identity we defined
=A=U)"Yd\=dU)(V —al) = (Dlog(A=U)) (V — o). (5.18)
Let
D=D+S8S=D+M'BM (5.19)

then the zero-curvature condition (5.15) implies that D? = 0.
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It follows that
D=MDM '=D—-dMM '+B=D-A+B (5.20)
with
N
A=dMM ™ = " Vidu, (5.21)

will also define the flat connection, in agreement with [, i5]. In components :

N N
D — vy BaV el Eu -
3 (v BV el g _+<V 21)) g 522
AN A-U T \oa T o A-U ' '

Let Q(u,)\) be such that the condition D(u,\) = 0 holds. In components this
condition takes a form of

0 (V —al)
Eui(V —al
%i0(u, \) = (V + %) Q(u, \) . (5.24)
We will now show that Q(u, \) defined as :
Q(u, A) = Res;, <\I/(u, z)z_l_o‘e_’\z) (5.25)

with the wave function W(u,z) which satisfies equations (#.13)-(4.14), will satisfy eqns.
(5.23)-(5.23).
It follows that :
0N (u, \)
1))

—Az
= —Res, (U\Il(u, 2)z %M 4+ U(u,2)z 868 )
z

(U — \I) = —Res, (U — A)z ¥ (u, z)e

v
= —Res, (U\Il(u, 2)z %M — WzaeAz + az 170 (u, z)e>‘2>
z

= Res,(V — al)(u)z 170 (u, 2)e ™ = (V — ad)(u)Q(u, \) . (5.26)

Equation (4.14) was used in this derivation. Hence Q(u,)) indeed satisfies eq. (5.23).
Furthermore, due to equation (4.13) it also holds that

80w, \) = V;Q(u, \) + EyRes, (z_o‘\Il(u, z)e_’\z> _ V0w, ) — Ei-20(u, \)

(V —al)
ﬁﬁ(u, A) (5.27)

which agrees with (5.24). Hence W from egs.(5.11) is given by W(u, \) = MQ(u, \).
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Note, that due to (4.13)-(4.14) U(u, 2) satisfies (2d/dz — >, u;0;)¥(u,z) = 0. This
leads to equation (Ad/dA+ >, ; 4;0;)Q(u,\) =0
Plugging S; into (5.4) we get

N N
r(S; Sk VEka) 1
0; = = —_— .
i log T = g - E — =3 tr(V;V) (5.28)
k=1, k;ﬁj k=1, k#j

which reproduces the well-known result for the isomonodromic tau function (#.17). The
isomonodromic tau function 7 is related to Dubrovin’s [3] isomonodromic tau function 7;

as follows: 77 = 1//7 [B, 7).

6. Darboux-Egoroff Metric, the Two-dimensional Case

For N = 2 there are only two canonical coordinates from which one can construct function

To = ui — ug such that I(m) = 0, E(19) = 7. Then the tau function 7 = T§2 satisfies

I(r) = 0, E(t) = R?r. In order to satisfy equation (4.13) we take Bo1 = B12 = iR /7o and
we find in terms of the Pauli matrices :

VJZ[B,EJ‘]']Zaj(RIOgTQO'Q) V:[B,U]:RO'Q. (6.1)

Solution to equation (9; — V;)My = 0 can be calculated explicitly in N = 2 and is given
by My = exp (o2 Rlog 1p). Let

1 (-1-1 I S 01
S:ﬁ<—i Z) Sl:ﬁ(—l—i)’”:STS:(l())' (6.2)

Then = M~V M = Ros for M = MyS. Also,

_ 1 ( u +us 1= 2R
U=MTUM == 0 6.3
9 ( 2R (6.3)
and
1( 1 7,°%F 1 1 —r 2R
0C=M1E M= 0 05C = M 1EypM = = 0 . (6.4
1 11 5 (TOQR 1 ) , 02 22 5 _TOQR 1 (6.4)
For the matrix =™ we have :
=(n) =(n)
(n+2R)Z, NZg9
and therefore from E(EV) = E(C) = (I — ad,)C = U and (6.3) we derive
1 7_01—2R 1 1 R —2R
up +us L= 2 T
C= 5 11+2R2 1-2R = (IE2 2(1_2R)( ( +1 ) ) ) ) (6.6)
TR U1t up z z
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valid for R # £3. Note, that E = x1% +(1+ 2R)x2% and

1-2R
Y — zl 2(2(1 + 2R)z?) 172R ‘ (6.7)
(1+2R)x? zl
Using expression (6.2) we find :
2) (2 3) _ =3
o =5 i=12 ¢ =2 (65)

We will use equation (6.5), which for n = 2 reads

=(2) B =(2)
(21 —ad,) 2 = P ? 2@712 =uc (6.10)
(2+2R)Ey 255,
and plugging U/ from (:ﬁ-_é) into the above relation yields
2 9 2
-2 _ 1 2 TH RPNy (2(1 4 2R)x?) 2R+t "
H11_8<(u1+u2) +1+2R)_2(x) TR 2R (611
2 9 2
=2 _ 1 2 70 1. 1.0, (2(1+2R)zx")2R1
=22 T 3 T_9r) =3 12
22 8((u1+u2) +1—2R> 2(x )+ S 28) (6.12)
=@ _ 1 142, 1 D) = g2 .
=21 T 421 2R) ((“1 tu)g Nt ) = (6.13)

where we used identification between z!,2? and the first column of the C' matrix in (.).
Furthermore, for (p.§) with n = 3 we find

—(3 1 —(2 —(2 (2 —(2
:§1) =331 2R) <702R+1=(11) + (u1 +U2):§1) =3B 12R) (2(1 + 2R)$2=(11) + 23?1:%1))
(6.14)
or
(3) 1 12 2 e 2, (201 +2R)$2)%
SR a— 1+2 2 Nl
21 = 5(3 1 2R) (L+2R)(@)%2" + 2(2")%2" + 8(1+ 2R) (6.15)
Plugging it into (6.9) gives
1 155, (2(1+2R)a?)ski
F=- 6.16
@) 63 2R (1~ 2R) (6.16)

valid for R # —3/2, R # +1/2. The remaining special cases of R = —3/2,4+1/2 must be
considered separately.

R=-3/2
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The problem arises for R = —3/2 due to the fact that the matrix operator (nI —ad,) in
equation (b.}) does not have an inverse for n = 3. So, instead of using the matrix equation
(6.5) we will use E(2®) = ¢=®? with the Euler operator £ = :131% + (14 2R)x2%
being equal for R = —3/2 with :

9

)
1 2
E=q'sg —2%5

o (6.17)

Recall from relation (6.9) that in order to calculate the superpotential F' we need to find

. —(3) . .
the matrix element :(21). The relevant recursion relation is

@ _ 1

—(3 —_ —(2 —_
BEY) = UEP)n = —2°5]) + ') = - (6.18)

where in the product (UZ?))9; we used U, 5(121) and Egzl) as given in equations (6.7), (6.11)
and (6.13) with R = —3/2. Solution to the differential equation (5.18) is given by
1 1

=% = 5 (@)% + 5 log(a”). (6.19)
Note, that the first term on the right hand side is annihilated by the Euler vector field
(6.17) E ((z')?2?) = 0 and therefore it can not be obtained from the relation (6.18) alone.
To obtain this term we used as additional information relation (4.38) which, in view of
(4.83), implies O(Z3})/0x" = 257

The prepotential according to (6.9) is then :

oF = -50) + #'=F + 2?23 = (0% — g log(@?) — o, R=—5.  (6:20)
The last term being a constant can be droped.
R=1/2
From (6.4) we derive
o=y (mgm )= (B el e

or, since C' is defined up to a constant :

z' Llog(x?) 1
C= 4 R=- 6.22
( 2?2 ! ’ 2 (6:22)
where 2! = £ (u1 + us), 2> = 7¢/4 and therefore the Euler operator is
0 0
_ 1 2
Equation (.3) gives in this case
u_l ul + ug 1 - ;Ul % —E(C) (624)
2 7'02 u1 + us o\ 222 2t ) '
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From E(2?®) =YC and (§.23) we find :

1 +1g !
=2 2l ml 1 ., Tloel@) ) (6.25)
e -2
Next
1
BES)) = UEP)a =275 +'E) = 2(2")%” + 5 (a?)?
1 1
- &) = 5@’ + 5@ (6.26)
and the prepotential according to (6.9)
z2)? 3 1
2F = Eggl) +x Egl) + mQE%) = (z')%2? + % <log(x2) - §> , R= 3 (6.27)
R=-1/2
From (6.4) we derive
1 7_3 1 1 _4x2 1
C—>[wmtu 3 —(*, %, |, R=—= (6.28)
2\ logmy wui+us ¢ x 2
where 2! = %(ul + ug), z? = %log 79 and therefore the Euler operator is :
0 10
E—gl— 4+ -~ 2
¥ 9zt + 2 Oz2 (6.29)

Equation (B.3) gives in this case

1 [ up +us 7'02 rl leda?
U== = 2 = E(C). 6.30
2 ( 1 Ul + uo % z! ( ) ( )

As in the case R = 1/2 we can determine £?) from E(Z(?)) = YC and equations (§.28)-
(6.30) and ugl) from E(= (3)) = (UZ®))y;. This leads according to (6.9) to

1 1
2F = —5(231) + x15§21) + xQEgzz) = (z')%2? + et = (z')%2? + —

1

7. Darboux-Egoroff Metric, the Three-dimensional Case

Let us now consider the three-dimensional manifolds. In this case, we can rewrite the
antisymmetric matrix V as:
0 w3 —ws
V= —ws3 0 w1 (71)
wy —wi 0

or (V)ij = (uj — u;)Bij = €ijxwr. From (4.18) and (4.19) we see that wj, vanishes when
acted on by the vectorfields E and I. That makes w;, effectively a function of one variable
s such that E(s) = I(s) = 0. Let us choose

U — U1

S =

(7.2)

U3—’U,1'
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Then equation (#.20) takes a form equivalent to the Euler top equations:

dwl . Wows dwz N wWiws dw3 N wiw?2
ds s ' ds  s(s—1)’ ds 1—s'

One verifies that d(22:1 w?)/ds = 0. Consequently,

3
> wi=-R (7.4)

k=1

where a constant R? is an integral of equations (7.3). The same constant R? characterizes
the homogeneity of the tau function. Indeed, starting from expression (4.17) one finds for
the scaling dimension [16]

E(logT) = Zu] tr (V;V) —tr (VQ)

3
Z (7.5)

[\.’JI»—l

Recalling that (V');; = €;j,wy, we can rewrite the above as :

Mw

1 3.3
E(logT) = 522 e”kwk =

j=11i=1 k=1

(7.6)

As shown in [17], for n;; different from zero the homogeneity of the Lamé coefficients h;
must vanish. In such case, the Lamé coefficients h; depend only on one variable s due to
the fact that I(h;) = E(h;) = 0. The relations 9;h? = 8ih? translate for the function h?(s)

to
dh% _ th dh%

— = 1 1—s5)—/=. .
¥ ds (s =1)s ds =(1-9) ds (7.7)
Also, since
u; —u; Oh? )
== k | .
W ik By’ 1,7,k cyclic (7.8)
we find e.g.
s dh? s dh?
— il § = -1 7.9
Y3 Oy ds Y% 2hyhs ds (7.9)
and so hgws = hows and similarly hiws = how;. We conclude that
2
w? = _B —h? i=1,2,3 (7.10)
n1
and comparing equations (7.3) with equation (7.7) we obtain like in [1§] :
dh? dh3 dh? R
—L =(s—1)s 1—5)—2 =2 hihahs . 7.11
Sds (s )ds ( )ds 1*7711123 ( )
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8. Rational Landau - Ginsburg Models

In this section we will show how to associate the canonical Darboux-Egoroff structure to
the rational Landau - Ginsburg models. Following Aoyama and Kodama [i19] we study a
rational potential :

1
W(z) = —=2"" +an_12" "+ ...
(2) n+ 1° + On-12 te ot Z — Uma1 + 2(z — V1)

Um,
+ — 8.1
m(z — Um+1)m ( )

U1 ()

5 t...

which is known to characterize the topological Landau-Ginzburg (LG) theory. The rational
potential in this form can be regarded as the Lax operator of a particular reduction of the
dispersionless KP hierarchy [19, 20, 21]

The space of rational potentials from (8.1) is naturally endowed with the metric :

(8.2)

oW oy W
g(0:W, 8y W) = Res.ckerw” (¥> dz

W/
where O, W = sap_12" 1 +...+ap+ Zi’iﬁ + ... describes a tangent vector to the space
of rational potentials obtained by taking derivative of all coefficients with respect to their
argument. W'(z) is a derivative with respect to z of the rational potential W :

/ _.n n—2 Um
W (Z) =2z"+ (n - 1)04”712 + ... — W . (83)
Next, we find the flat coordinates z,a =1,...,m + 1 and Z,,y = 1,..,n such that
ow ow ow ow ow ow
- - —_— af3s —, prg n ; N A~ = 0 8.4
g(axaﬂaxﬁ) 7] ﬁ g(ﬁxw 8:1;5) n’Y(S g(ax,a 8.’1)7) ( )

with constant and non-degenerate matrices 7,4 and 7,s.

Consider first the function w = w(W, z) such that W(z) = w™™/m and z = @41 +

T + ...+ 2™ = Y w1 We take 2 ~ 11 or |w| < 1. Tt follows that

'y — _L 8_W — /ﬂ _ 17!, m+l—a
W'dz = ] dw, oz w oz W'w (8.5)
Consequently:
ow ow . (OW/0xo)(OW /0xg)
g(%, 8—%) = ReSZ:OO ( W dz (86)

= —R W/ m+l—a, m+1-0 dz = R wm+17awm+1fﬁ o — 5
= €S:=c0 w w Z = NeSy=c0 R W= Sy fmmra -

Hence z, are flat coordinates with the metric 7,3 = do4g=m+2. The coefficients v;, j =
1,...,m+1 of W(z) are given in terms of the flat coordinates as [19]:

v = g TayTay  Tay, k=1,...,m (8.7)
ar1+..+ap=(k—1)m+k
Um+1 = Tm+1 -
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Examples are :

Vm = (Zm)™, Vmo1 = (M — Dxp1(zm)™ 2, ..., v1 =21 (8.8)
To represent the remaining coefficients of a;,i = 1,...,n of W in terms of the flat coordi-
nates we consider a relation:
1 | T2 T,
z=w+ —+—=+...+—— 8.9
w o w? wn (8.9)

valid for large z and |w| > 1. In this limit we impose a relation W = w™™!/(n + 1) from
which it follows that

ow 0z

17, — om0 —w — W a7
Widz = w"dw, G w —357 w7, (8.10)
We find
ow ow. (OW/0z~)(0OW/0Zs)
g(arﬁy’ 85156) - ReSZEKeI‘W’ ( W/ dZ (811)

= Res.ekerw (W/w_ww_(S) dz = Resy—ow" " *dw = 6y y5-ni1 -

Hence . are flat coordinates with the metric 7,5 = dy45—n+1. By similar considerations
Noy =0fora=1,...m+1,y=1,...,n.

From expression (8.9) and W (z) = w™™!/(n + 1) one can find relations between coef-
ficients a, and &, [[d] starting with a,,_1 = —%; and so on.

We will now show how to associate to the rational potentials W canonical coordinates
ui,i =1,...,n+m+ 1 for which the metric (8.2) becomes a Darboux-Egoroff metric.

Let o, i = 1,...,m +m + 1 be roots of the rational potential W’(2) in (8.3). Equiva-
lently, W'(a;) =0 for all i = 1,...,n+m+ 1. Thus W'(z) can be rewritten as

[ (2 = ay)
"(z) = == 12
W) = (312)
Next, define the canonical coordinates as
u=W(), i=1,...,n+m+1. (8.13)
The identity :
52’ . 8uz N 8W(Oéz)
7 8u]' - 8Uj
Oa; OW ow
= W'(a;)m— + — (o) = —(a 14
W) gt + (o) = (@) (8.14)
implies that
ow 8an,1 -1 80,0 81)1/8Uj Um, avm+1
—(z2) = ——2" et — 4+ ——— 4+ ... 8.15
Ou; (2 Ou; SR Ouj * 2 — Umil et (2 = Umg1)™FE Ou; (8.15)
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can be rewritten as
n+m+1

ow ., . k1 g2k(Z — k) (aj — vgppn)™ ! 816
Ey (2) = (2 — vmpr)™ L TP ‘ (8.16)
J m+l1 K1,k (0 — Q)
Consider oW ow (OW /0us) (OW D)
U; U4
g(%’ W) = ReszeKerW/ ( W J ) dz . (817)
i j

Recalling (8.12) and (8.18) we find that g(OW /du;,0W /Ou;) = 0 for i # j. For i = j, we
find

ow ow . (8W/8ui)2
g(a—ui’ 8—%) = Res;ekerw <T dz

L m+1
— (a’L Uerl) — aanfl (818)

Fmtl .
[ (s — o) O

where the last identity was obtained by comparing coefficients of the 2"~! term in (8.1§)

and (8.16).
Hence, in terms of the coordinates u; the metric can be rewritten as g = SV | 72 (u)(du;)?
with the Lamé coefficients : 5
(p—1
he(u) = —"—. 8.19
Hu) = S (319)
8.1 N=3 Model, Example of Rational Landau - Ginsburg models
Consider the model with n =m =1 in (8.1):
1 T2
W(z) = -2* 8.20
(2) 57 —|—a:1+z_x3 (8.20)
where as coefficients we used the flat coordinates 1 = —%; and z9,x3 corresponding to
1,9 of the previous section. The flat coordinates z,,a = 1,2,3 are related to the flat
metric :
(OW/020) (OW /0z5) 100
1™ = oy = Resekerm ( “W, g ) dz=1001|. (8.21)
010

The metric tensor can be derived from the more general expression involving the structure
constants

o (8.22)

The non-zero values of the components of c,g, are found

Caﬁ’y = ReS, ke ((8W/8xa)(8W/6x5)(6W/8x7)) s

through relation n®?# = ¢*A1,

from (8.22) to be :
MU 12 1 (222 /g 28— 3B g, (8.23)

the other values can be derived using that ¢ is symmetric in all three indices. These
values can be reproduced from the formula (4.5§) with the prepotential :

1 1 1 3
F(ml,xg,mg) = 6;62(%3)3 + 6(%1)3 + 212073 + 5(;62)2 (log o — 5) . (8.24)
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The prepotential satisfies the quasi-homogeneity relation (il.2) with d = 3 with respect
to the Euler vectorfield :

B @ 3,0 10 0

1,0 3 40
Spy = S22 23 9 2
O0r1 2 “0x9 93 0x3 T ozt * 2% 52 * 2% 53 (8.25)

We now adopt a general discussion of canonical coordinates from Section i to the case of
n=m = 1. Let a4, i = 1,2,3 be roots of the polynomial W'(z) = z — x5/(z — x3)2. So,
satisfy W'(a;) = 0 or a;(o; — x3)? — 9 =0 for all i = 1,2, 3.

Then, it follows by taking derivatives of a;(c; — 333)2 = x9 with respect to xo,z3 that

80&1' _ QOéi aozi _ 1 (8 26)
8:63 30[1' - (E3’ 6(]32 (ai - :Ug)(BOéi - (E3) '
and further that 5 5 )
i = 7332 = a’i’ Yi — (827)

8—LL‘3 (Oéi — LL‘3)2 8.732 a; — T3

for the canonical coordinates u; = W(o;) = 3a? + z1 + 22/(e; — x3). We now present a

method of inverting the derivatives in (8.2’
.22). The sum of the canonical coordinates is equal

=

) or alternatively to find the matrix elements

mi; of the matrix M from relation (4
to 2% | u; = 3x1 + 23 and therefore

8LL‘1 8.733 2 8uz
1=3 2 =h:(3+2 8.28
8ui +ams 8uz ¢ +aTs 8LL‘2 ( )
where we used the fact that 5 5
X3 2 U;
=mi— 8.29
87]4 mi1 83:2 ( )
because of 5 5
T u; m;
87;‘ = Mi1Miq, ﬁ = TNap mzf’ h? = m?l (8-30)
T (07 1
e -1 R
Hence, from relation (8.28) it holds that h? = (3 + 223 g;‘;) or by using equation (8.27)
that 5
x1 9 Q; — X3
=hi=—"" 8.31
8ui ¢ 30é¢ — X3 ( )

Plugging the last equation into equation (8.29) and using relation (8.27) we obtain

8x3 1

S — .32
Oui ?)Oéi — I3 (8 3 )
Similarly, from
8.732 2 8uz
=m;— 8.33
87]4 mi1 83:‘3 ( )
we obtain
8ui (ozi — -773)(3051‘ — LL‘3) (30(7; — .Tg) ' '
Furthermore,
Oa; Oy % ooy % (8.35)

auj N 8:62 8’[1,]' + 8;63 8’[1,]'
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gives for i # j:

aozi 1 aj(aj - 263)
_ 20 8.36
8Uj (30[1 - :Ug)(BOéj - (E3) < (305Z - (E3) +a ( )
and for i =j :
80(7; 30@

90 Bar—aa? (8:37)

Using (8.36) we can take a derivative of h? in (8.31) and find the rotation coefficients
defined in (2.2) to be

(ozk - .Tg)(?)ak — .Tg) 1
Bii = — . 8.38
! (3051' - xB)(BO‘j - 533) \/(Oéz - 373)(3042' — LL‘3)(04]' — LL‘3)(30¢j — LL‘3) ( )
Its square is then
1 1 ox
2 1
N (ozi — Oéj)2 (4:L‘3 — 30%)2 8uk’ (8'39)

where i, j, k are cyclic. Recall that in equation (7.1) we have introduced the functions
wi = (uj — u;)B5, where again we used the cyclic indices i, j, k. The difference of canonical
coordinates can be written as : u; —u; = (0; — ;)(3ag — 4x3)/2 which together with
equation (8.38) yields:

1.5 190x1 1 ap —x3

2
= _pEo_ 2 TR " 8.40
Yk 4"k 4 Ouy, 43 — x3 ( )

Since I = 3% | 8/8u; = 8/dx; then

’ 1 1
Zwk =——, E(log7)= 1 (8.41)
k=1

47
The explicit form of the roots «; is needed to find expressions for w; and its dependence
on the parameter s. It is convenient to introduce ¢ = x/(x3)® and a; = a;/x3 which
satisfy equation a;(a; — 1) = ¢q. Let us furthermore introduce a parameter w such that
q = 4(w? — 1)?/(w? + 3)3. This parametrization makes it possible to obtain the compact
expressions for wg. The three solutions to the algebraic equation

(w2 — 1)

12 =g=4" 7 8.42

a1 =g =1 (8.42)
are: ( )2 ( )2
4 w+1 w—1

_ S St v = 7 8.43

M= 2yg @7 2ryg BT 213 (8.43)

Note, that as <> a3z under w +» —w transformation, which shows that w is a purely imagi-
nary variable. First, we find that the variable s from (7.2) can be expressed as :
(a2 —a1) (Bag —4) (w—33(w+1)

5= (a5 —a1) Baz —4)  (w+3)3(w—1) (8.44)

Next, from relations h? = (a; — 1)/(3a; — 1) and equation (8.40) we derive :

2 1@ =1) 5 1
L7 4w2-9) 7?4

(w+1)
w(w —3)’

1 (w—1)

T (8.45)

W

w w
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They provide solutions to the Euler top equations (i7.3). The corresponding function [23, 1]

3)2(w+1)
+ 3)(w? 4 3)

v = & (5.46)

connected with wy’s through relations [23, 24, 25):

o - s)@f(y -1) <v _ Q(yl_ 8)) (v = ﬁ) :
=T oo y) (5)
=l (| ey o

with the auxiliary variable v defined by equation

dy _yly—1L(y—s) 1 1 1
p S ) 549

is a solution of the Painlevé VI equation [2-3, 4, ?-5]
d? 1/1 1 1 d 1 1 1 \d
& (v —+ (E2 (2 —+ &
ds 2\y y—1 wy—s/ ds s s—1 y—s/) ds

yly —(y —s) F_i s—1 35(5—1)]
s2(s—1)2

8 82 T8 -12 "8y —sp2 (8.49)

Introducing parameter = = (w — 3)/(w + 3) one can rewrite expressions (8.4G) and (8.44)

as :

2 2 3 2
y:x(:v—i-)’ S:x(:v—l-)’ (8.50)
2+zr+1 2¢ + 1

which reproduces the k = 3 Poncelet polygon solution of Hitchin [24, 25).
We now proceed to calculate the underlying 7-function. Our knowledge of the 7-
function is based on equation (4.17) from which we derive that

3
0;logT = B(ui —uy) . (8.51)
=1

The identity I(log7) = 0, shows that 7 = 7(x2,x3) is a function of two variables xg, z3.
Furthermore, it satisfies :

3 0 1 0 1

A solution to the above equation is

1/1 1
logT = 1 <§ log z2 + log :1:3> +f <§ log z2 — log :133> (8.53)
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where f(-) is an arbitrary function of it’s argument. In order to determine the function f
we use equation (8.51) to calculate the derivative

3 3

dlogT Ou;
rouke Z 8—:13?38]' logT = Z ajﬁgj(ui —uj). (8.54)
j=1 i,j=1
A calculation based on equation (8.39) yields:
0 11 1, /1
.’11'38—:1:310g7': g]__i%q = Z_f (glog:vg—logar;),) (855)

where the last equality was obtained by comparing with equation (8.53) (recall that ¢ =

xo/(x3)3). Integration gives (ignoring an inessential integration constant) :

1 1
f (5 log zo — log x3> =51 (log g + log(—4 + 27q)) . (8.56)
Using that xo = qx% we can now rewrite log 7 as

1

24bg@%—4+2m». (8.57)

1
logT = Zlogm% +

Inserting parametrization of q from (8.42) and using relation uy — ug = 8z3w3(w? + 3)72
we obtain the following expression for log T :

log 7 = log(ug — u3)i + % log ((w —1)%w+1)%w = 3w+ 3)2“)716) : (8.58)

It is easy to confirm I(log7) =0 and E(log7) = 1/4 based on this expression.
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