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1. General remarks

The novel feature in particle physics which emerged in the second half of the twentieth

century is undoubtedly confinement. It still remains an unsolved problem, but there is

strong evidence that the physical reason for confinement is explained by the time-honored

t’Hooft-Mandelstam picture [1, 2].
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Figure 1: Monopole condensation and

colour-electric flux tube formation in the

QCD vacuum

Figure 2: The fate of the light cone upon

transition from Minkowskian to Euclidean

metric
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Monopoles condense to form the physical vacuum and force the colour-electric field

lines into a flux tube. This is analogous to the formation of magnetic flux tubes in a type

II superconductor due to condensation of Cooper pairs. It leads to the interesting question:

Which influence has the presumably non-trivial structure of the vacuum and especially the

flux tube on high energy scattering of hadrons.

I first shall give a very sketchy overview of what we know about the vacuum. The only

answer to this question which is based on first principles, that is the QCD Lagrangian,

comes from numerical simulations of the lattice regularized version of QCD. Many inves-

tigations have been devoted to this problem, especially by Di Giacomo and collaborators

from the Pisa Group [3]. All are consistent with the t’Hooft-Mandelstam picture. It is how-

ever an extremely difficult task to get information on high energy scattering from lattice

QCD and this has a very simple kinematical reason. High energy scattering is governed by

dynamics near the light cone ~x 2−c2t2 = 0. Lattice QCD has to be performed in Euclidean
metric with the substitution t → x4 = ict and hence the light cone shrinks to the point

~x 2 + x24 = 0, see Figure 2. Therefore one has to continue from a tiny region to the full

range of scattering dynamics. This will, if possible at all, be a very difficult task. This all

will be treated in a devoted talk at this conference by E. Meggiolaro [4]. A more imme-

diate way to get from lattice calculations information related to high energy scattering is

the investigation of glueball spectra, which should lie on Regge trajectories. This will be

treated in the talk of M. Teper [5].

A rather save knowledge we have of the vacuum is that there exist instantons. These

are minima of the classical non-Abelian Lagrangian in Euclidean geometry. These solutions

are inherently nonperturbative, they are of the form:

Aµ =
x2

x2 + ρ2
∂µg(x)g

−1(x) g(x) =
x0 + i~σ.~x√

x2
(1.1)

They are typical for the gauge group SU(2) as can be seen from the occurrence of the Pauli

matrices σ but also exist for the QCD Lagrangian since SU(2) is a subgroup of SU(3).

The size of an instanton is determined by the size parameter ρ and a crucial function is

the instanton size distribution D(ρ). For small size instantons the distribution function

can be calculated from first principles and the contribution to high energy scattering has

been intensively discussed by Ringwald and Schrempp [6, 8, 10, 9]. A dedicated H1-

experiment [11] at DESY finds that instantons improve the fit compared to conventional

Monte-Carlo simulations which, however does not prove definitely their contribution to

high energy reactions.

Large size instantons have to be treated by models, as the instanton liquid model of

Shuryak. Since instantons lead to high multiplicities in particle production they might be

quite essential for the increase of cross sections with high energy [12, 13, 14], this will be

treated in the contribution of E. Shuryak to this conference [7].

Another source of information we have about the QCD vacuum comes from the sum-

rule technique developed by Shifman, Vainstein and Zakharov [15]. It is based on the

operator product expansion in quantum field theory. It is proven to all orders in pertur-

bation theory and assumed to be valid beyond it. It leads to power corrections to purely
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perturbative results of vacuum expectation values of products of operators

〈A1(x)A2(y)〉 = 〈: A1(x)A2(y) :〉pert +
∑
i

Fi

(
(x− y)2

)
〈Oi(x)〉 (1.2)
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Figure 3: Contribution of the gluon condensate to the

vacuum expectation value of a current of a quark and

an antiquark

operators Oi(x) is determined by the

operator products and the coefficient

functions Fi

(
(x − y)2

)
can be calcu-

lated in perturbation theory, but the

values of the condensates, 〈Oi(x)〉, are
phenomenological input describing certain aspects of the vacuum structure. If the oper-

ator O(x) is the gauge and Lorentz-invariant normal ordered product : g2/2 tr FµνF
µν :,

the contribution of the condensate to the vacuum expectation value of a current can be

visualized by the picture given in Figure 3

An inherent difficulty of this approach is that the perturbative part, indicated above

by the normal ordering :: cannot be defined clearly. A certain pragmatism is necessary and

has let to impressive results. From many analyses the vacuum expectation value of the

above mentioned gluon operator, the gluon condensate, has been determined to, see e.g.

[16]

〈: g2/2 tr FµνFµν :〉 = (1± 0.15 GeV)4 (1.3)

Here and in the following bold letters denote matrix valued quantities for instance

Fµν =
∑
c F
c
µνλ

c/2.
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The presence of a colour-magnetic field in the vac-
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Figure 4: Violation of factori-

sation through partial spin align-

ment due to the presence of a

colour-magnetic vacuum field

uum leads to interesting effects as has been stressed

by O. Nachtmann and collaborators [17, 18]. In the

perturbative treatment of virtual photons through the

Drell-Yan process factorisation is assumed, but since the

quark and the antiquark travel through the same mag-

netic field (Figure 4) their spins get correlated and violate

factorisation. Such a violation of the standard factori-

sation ansatz has been indeed observed in the reaction

π−p→ Xγ∗↪→µ+µ−
Neither instantons nor condensates can explain con-

finement. In order to investigate deeper a possible in-

fluence of the confinement mechanism on high energy

reactions one has to rely on models. In the following I

shall present an approach to soft high energy scattering

developed in Heidelberg by Nachtmann, Pirner, myself

and many excellent graduate students. In order to inves-

tigate nonperturbative effects on scattering one has to do

two things: First to develop a formalism which allows to

calculate nonpertubatively amplitudes of high energy re-

actions, at least in principle and second to perform then

the actual calculation. The first step has been done by Nachtmann in 1991 and I shall very

shortly outline the principle ideas, for details I refer to the original literature [19] and to

reviews [22, 23, 24, 21].

2. Nonperturbative scattering

The formalism of Nachtmann is based on the functional integral approach to quantum field

theory. According to it the vacuum expectation value of a function of a quantized field A

is expressed formally as the functional integral:

〈f(A)〉 =
∫
DAf(A) exp(−iSQCD[A]) (2.1)

In order to treat scattering of two highly energetic quarks one first considers the scat-

tering of them in an external field. Making use of the WKB approximation the scattering

amplitude is to leading order in energy given by the phases
∏
i=1,2 e

−ig ∫PiAdx picked up
by the quarks along their classical lightlike paths Pi, i = 1, 2, see Figure 5
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Figure 5: Scattering of a highly energetic

quark and an antiquark in WKB approxima-

tion

Figure 6: Scattering of two dipoles with

dipole vectors Ri and impact parameter ~b
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The amplitude for scattering in a quantized field is then given by the functional integral

over these phases with the exponential of the action as weight.

〈e−ig
∫
P1
Adx

e
−ig ∫

P2
Adx〉 =

∫
DA

∏
i=1,2

e
−ig ∫

Pi
Adx
exp(−iSQCD[A]) (2.2)

This expression is not gauge invariant and therefore one has to fix the gauge to make it

well defined. If we are however interested in the effects of confinement it is essential not

to consider the scattering of colour siglets and not of hypothetical free quarks. It was

therefore proposed [20] to consider Wegner-Wilson loops with light-like sides rather than

Wilson lines as building blocks for high energy scattering. This leads to the scattering

amplitude of two dipoles with vectors ~R1, ~R2 and impact parameter ~b:

J(~b, ~R1, ~R2, z1, z2) = 〈Tr e−ig
∫
W1
Adx
Tr e

−ig ∫
W2
Adx〉 (2.3)

visualized in Figure 6. A loop is composed of the light-like paths of the quark and the

antiquark inside a hadron and the strings connecting them in the remote past and future.

Unfortunately even the definition of the functional integral is only well understood for

Gaussian measures, that is an action S which is quadratic in the stochastic variable A.

There are essentially two a priori methods to treat more general processes:

• Numerical evaluation of the integrals in the lattice regularized version.
• Perturbation theory: The action is split into a quadratic part and the rest

SQCD[A] = S0[A] + igsSint[A] (2.4)

and the exponential measure exp(−iS[A]) is expanded in gs,

exp(−iS0[A]) = exp(S0[A])
(
1− igsSint[A] + . . .

)
(2.5)

Now the functional integrals are Gaussian and can be performed. This method was used

originally by Feynman in order to derive the perturbative series and led him to his famous

rules and diagrams.

Unfortunately both methods seem not to be very useful for our purpose, the lattice

calculation because of the difficulties to treat high energy reactions on an Euclidean lattice

as mentioned above, perturbation theory since we are interested in nonperturbative effects.

3. The stochastic vacuum model and high energy reactions

We therefore have to rely on models and in the following I shall concentrate on an approach

based on a model proposed by Yuri Simonov and myself [25, 26]. I emphasize that the

version treated here needs more assumptions than the original version and I shall call it

the extended version of the stochastic vacuum model. Again I give only a very short outline

and refer to the literature [22, 23, 24, 28, 21].

The basic assumption of the model is: The long range part of QCD can be approxi-

mated by a Gaussian stochastic process in the Gluon Field Strength Fµν

– 7 –
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The implications are most easily seen in the cumulant (linked cluster) expansion of

expectation values:

〈 Tr e−ig
∫
F dσµνFµν(x)〉 =

exp

[
− 1
2
g2
∫
F

∫
F
dσµνdσ

′
κλ〈 Fµν(x)S(x, x′)Fκλ(x′)〉 + higher cumulants

]
(3.1)

The path ordered generalized Schwinger string S(x, x′) = exp
(
− ig ∫ x′x dz.A

)
has to be

introduced to ensure gauge invariance.

The Gaussian assumption corresponds to the assumption that all higher cumulants in

3.1 are zero. Therefore, in the model the long range part of QCD is determined by the

nonlocal correlator of two gluon fields. All vacuum expectation values of gauge invariant

expressions factorise into products of these correlators. The correlator is charaterized

essentially by two quantities, its strength given by the gluon condensate and its correlation

length.

The model is especially convenient to evaluate Wegner-Wilson loops, since the line

integrals can be transformed into surface integrals using the non-Abelian Stokes theorem

〈Tr e−ig
∫
CAµ(x) dxµ〉 n.A.Stokes= (3.2)

〈Tr e−ig
∫
W Fµν(x) dσµν 〉 Gaussian= e−

g2

2

∫
W

∫
W 〈Fµν(x)S(x,x′)Fκλ(x′)〉dσµν dσ′κλ (3.3)

There are several nice features of the SVM:

• It yields confinement for non-Abelian gauge theories; for Abelian theories only if
magnetic monopoles condense. It also yields a very reasonable value for the string tension,

σ = 0.17 GeV2 if the correlator of obtained from lattice QCD [29] is inserted.

• The resulting dynamical picture is string formation [30]in conformity with the
t’Hooft-Mandelstam picture. The model is consistent with low energy theorems [34].
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Figure 7: The field density of a static quark-antiquark pair, on the left figure the separation is 2

and on the right figure 9 correlation lengths, from [30]
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•It yields Casimir scaling for loops in different representations of SU(3), confirmed by
lattice results [31, 32].

There is however also a very unpleasant feature: a Gaussian a process for non-

commuting variables is not uniquely defined.

We now apply the model to high energy scattering by evaluating the expectation values

of the Wegner Wilson loops in 2.3 using the model [20, 33]. Though the model has been

formulated in Euclidean metric, it is easily continued to Minkowski space [23]. This has

the following reason: If we Fourier-transform the correlator the integration over the light-

like paths in Figure 6 leads to δ-distributions δ(k0 + k1) and δ(k0 − k1), hence only the
transverse components k2, k3 survive. These components are not affected by continuation

from Minkowskian to Euclidean metric or vice versa and therefore the Euclidean results

for correlators (from lattice e.g.) can be used for high energy scattering. It has been

shown recently that also a continuation of tilted loops in Euclidean space leads to the same

result [34].

Another nice feature is that for a single loop with light-like sides one obtains:

1

Nc
〈Tr e−ig

∫
W1
Adx〉 = 1 (3.4)

and therefore we have no problems with the quantum field theoretical wave function renor-

malization.

We next come to the question how to treat the two loops ?

• There is a pedestrian way: one expands the exponentials and applies Gaussian
factorisation [33].

• A more refined method was developed in [36]. The product of two traces, each in
SU(3) is expressed in one TRACE in SU(3)⊗ SU(3), formally

Tr e
−ig ∫W1AdxTr e−ig

∫
W2
Adx

= TR e
−ig ∫W1Adx⊕(−ig)

∫
W2
Adx

(3.5)

and factorisation of the stochastic variables valued in SU(3) ⊗ SU(3) is assumed. This
procedure guarantees unitarity. Both methods need an extension of the original version of

the model. If one wants to calculate one loop one has to assume factorisation of matrices

Fµν . For two or more loops one must assume factorisation of the colour components

F cµν . Furthermore, the application of the non-Abelian Stokes theorem to two loops is far

from trivial. Here special choices for the resulting surface have to be made. This choices

influence the numerical results and lead to different sets of input parameters but do not

affect the general results.

3.1 General results

We consider first the dipole-dipole cross section

σ(R1, R2) =

∫
d2b

∫
dφ1
2π

dφ2
2π

J(~b, ~R1, ~R2) (3.6)

The same mechanism which leads to confinement also leads to string-string inter-

action in high energy scattering which manifests itself in a linear increase of the cross

– 9 –
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section with dipole size as can be seen in Figure 8. It should be noted however that internal

fermion loops will lead eventually to string breaking and the cross section will level off, like

the confining potential. This is expected to happen between one and two fm.

– 10 –
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The order of magnitude comes out

0.5 1 1.5 2
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40

50
�(R1; 0:8fm)

mb

R1 fm

dipole

beh.

string behaviour

Figure 8: The dipole-dipole cross section for one

dipole fixed at R2 = 0.8 fm

reasonable if both radii are put to typ-

ical hadronic sizes of somewhat below 1

fm without any recurrence to high energy

parameters.

The resulting dipole-dipole cross sec-

tion (3.6) factorises to good approx-

imation and a convenient numerical

parametrization is

σ(R1, R2) = 0.67
1

4π2
(< g2FF > a4)2

× R1
(
1− e− R1

3.1a

))
R2

(
1− e− R2

3.1a

))
The parameters fine-tuned for p-p

scattering are:

correlationlength a = 0.35fm 〈g2FF 〉a4 = 23.8
If one dipole is very small, QCD fac-

torisation should hold: All nonperturba-

tive effects should be accounted for by

properties of the larger dipole. But even

for a very small dipole scattering off a

large one the string contribution is still

important. This looks like a violation of

factorisation but it is not. It has been

shown recently [35] that also in the model

the string part of the interaction can in-

deed be pushed into the nonperturba-

tive part of the large dipole using only

mathematical identities. If both dipoles

are small, the string contribution in the

model is negligible.

3.2 Comparison with experiment

In order to apply the model to hadron-

hadron scattering one forms a superposi-

tion of dipole-dipole amplitudes with light-cone wave functions of hadrons as weights. For

a reaction 1 2→ 3 4 one obtains the expression:

T (s, t)=2isintd2bei~q.
~b

∫
d2R1dz1

∫
d2R2dz2 ψ

∗
3(R1, z1)

× ψ1(R1, z1)ψ∗4(R2, z2)ψ2(R2, z2)J(s,~b, ~R1, ~R2, z1, z2)

– 11 –
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For hadron wave functions Gaussians were used which are normalised to one – this

is necessary for consistency – and the width is adjusted to measurable quantities as the

electromagnetic radius or decay constants. For baryons a three quark structure [33] could

be used but most applications have been made so far in the much simpler quark-diquark

picture. For real or virtual photons wave functions [37] of the form as obtained in pertur-

bation theory are used, but with a quark mass m(q2) which was adjusted to the two point

function of the corresponding interpolating field operator. In model investigations it has

been shown that this simple procedure yields indeed a reasonable description of confine-

ment effects in the spacelike region. The model has been applied to many processes and I

show here only a few examples.

In Figure 9 the Pomeron contribution to total
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Figure 9: Pomeron contribution to to-

tal hadron-hadron cross sections at
√
s ≈

20 GeV from [21]

hadron-hadron cross sections at
√
s ≈ 20 GeV is

shown. The famous ratio σπN : σNN ≈ 2 : 3 comes
out correctly in the model but not as a consequence

of the quark counting rule which is not valid in the

model, but as a consequence of the different sizes of

mesons and nucleons. Also the ratio σKN : σπN ≈
0.85 comes out correctly in the model.

Since the model leads to a representation in

impact parameter space, one can easily obtain

differential cross sections. For differential cross

sections for |t| > 0.5 GeV2the matrix cumulant
method [36] is essential. In Figure 10 I show re-

sults obtained in [38].
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Figure 10: Differential cross sections for πp, Kp and pp elastic scattering at
√
s ≈ 20 GeV, from

[38]
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The model as it stands yields no energy dependence, it has to be put in by hand. One

way is to adopt the two Pomeron model of Donnachie and Landshoff [39] and to couple

small dipoles (R ≤ RC ≈ 0.2fm) to the hard Pomeron with intercept 0.42 and large dipoles
(R > RC) to the soft Pomeron with intercept 0.08. In this way many phenomenological

features can be explained: The peculiar Q2 dependence of the residues of the soft and

the hard pomeron, the hard behaviour of the charm contribution to the proton structure

function, the difference between this contribution and the softer energy dependence of J/ψ

photoproduction among others. As an example I show the photon-proton cross section for

different values of the photon virtuality Q2 over the measured energy range at HERA.

0 50 100 150 200 250

100 0.15

0.4

0.85

1.5

2.5

0 50 100 150 200 250

100
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Figure 11: γ∗p cross sections σγ∗p/µb for different photon virtualities Q2/GeV2 as function of the
energy W/GeV, from [40]
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In Figure 12 the virtual Compton scattering

0 5 10 15 20

1

10

100

Figure 12: Cross section for the reaction

γ∗p → γp in nb at < W >= 75 GeV as

function of the virtuality Q2/GeV2 of the

incoming photon, from [41]

cross section γ∗p → γp is shown and compared

with experiment (after subtraction of the purely

electrodynamical contribution). We see also in

that case where ,,generalized gluon” distributions

occur, a very satisfactory agreement with experi-

ment from the nonperturbative to the perturbative

region.

In general the model gives a unified descrip-

tion of scattering amplitudes and has been applied

to: pp, πp, Kp, J/ψp total, differential elastic and

diffractive cross sections, γ(∗)p reactions, photo-
and electroproduction, γ(∗)γ(∗) reactions. It has
also been used to look into the microscopic struc-

ture of scattering, for instance by calculating un-

integrated gluon distributions [35].

Generally agreement with experiment is on the

20 % level or better. The charm contribution to

the photon structure function however comes out

by nearly a factor 2 smaller than present exper-

iments. A serious problem is the absence of any

sign of odderon contributions in photoproduction

of pseudoscalar and tensor mesons. In this case

the exchanged trajectory for diffractive scattering

must have C-parity −1, that is it must have Odd-
eron quantum numbers. From the point of view

of QCD such a trajectory occurs naturally since

the symmetric coupling of three gluons just gives

such a state with C-parity −1. The weak or absent
Odderon contribution to pp scattering can be ex-

plained by diquark clustering, but no such excuse

is possible for diffractive meson production. If the proton can break up into a state with op-

posite parity there is no special suppression mechanism at work even in the quark-diquark

picture. Cross sections for photoproduction of the π0, f2(1270) and the a
0
2(1320) have been

calculated in the model [42, 43]. They are displayed in Table 1, third row. The numbers

were big enough to motivate an experimental search at HERA, the experiment [44] will

be described in the contribution by Kiesling. I only quote the numbers in Table 1, second

row. There is a huge discrepancy between prediction and experiment especially for the π,

it becomes even more marked if one looks at the spectra.

– 14 –
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The discrepancy is astonishing, since an
Reaction H1 Theor.

γp→ π0N∗ < 38 294 ± 150
γp→ f2N

∗ < 12 21 ± 10
γp→ a02N

∗ < 62 190 ± 100
Table 1: Experimental limits (95% c.l.)

from H1 [44] and theoretical predictions [42,

43] for photoproduction with Odderon ex-

change

Odderon contribution is expected from QCD.

Possible reasons for the failure are:

• The γπ0O coupling is overestimated in
the model and the Goldstone boson nature of

the pion lets it play a special role. This argu-

ment does not apply for a2, f2 production since

these are ,,normal” mesons. Therefore better

data for f2 and a2 production are important.
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• The Odderon and Pomeron intercepts come

5 10 15 20
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4
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2   
3

22

++

--

.

Figure 13: Lattice results for glueball

masses on the Pomeron and odderon tra-

jectory. The lines have a slope of 0.25

GeV−2

out to be one in the model. There are however

investigations [45] based on the glueball spectra

which predict an intercept of the C = −1 tra-
jectory of −1.5, which would make it completely
unobservable. Indeed, if one takes the glueball

masses from lattice calculations and assumes – for

reason of no better knowledge – that the Odderon

trajectory is parallel to the Pomeron trajectory

with a slope of 0.25 GeV−2, one obtains an Odd-
eron intercept near −1, as can be seen in Figure
13. The Pomeron intercept comes out to small,

but as can be seen the Odderon intercept is much

lower. In order to explain the absence of a signal

in the H1 data of π0 production an intercept of

the Odderon αO(0) ≤ 0.5 is sufficient.

4. Conclusions

We have seen that the structure of the QCD vacuum can have many effects on high en-

ergy reactions. Calculations based on first principles are difficult model investigations are

encouraging. Small size instanton effects are model independent and at the threshold of

observability, large size instanton effects are model dependent but may explain important

features of high energy scattering as the soft energy dependence in hadronic interactions.

The presence of a magnetic field in the vacuum, due to gluon condensation, leads to an

violation of factorisation in Drell-Yan processes.

In the investigations based on the stochastic vacuum model it turns out that low energy

parameters as determined from spectroscopy or lattice calculations determine an important

part of high energy reactions. Furthermore it turns out that the same mechanism which

leads to confinement also leads to an important contribution to high energy reactions via

string-string interaction. In general the agreement between the results of the model and

experiment is very satisfactory for a very broad range of reactions but there is a serious

discrepancy for diffractive processes where the odderon is exchanged.
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