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Abstract: We present the CMB anisotropy induced by the non-linear perturbations in

the massive neutrino density associated to the non-linear gravitational clustering. We

show that the non-linear time varying potential induced by the gravitational clustering

process generates metric perturbations that affect the time evolution of the density fluc-

tuations in all the components of the expanding Universe, leaving imprints on the CMB

anisotropy power spectrum at subdegree angular scales. For a neutrino fraction in agree-

ment with that indicated by the astroparticle and nuclear physics experiments and a

cosmological accreting mass comparable with the mass of known clusters, we find that

CMB anisotropy measurements with Planck angular resolution and sensitivity possi-

bly combined to other precise cosmological observations will allow the detection of the

dynamical, linear and non-linear effects of the neutrino gravitational clustering.

1. Introduction

The atmospheric neutrino results from the Super-Kamiokande [1] and MACRO [2] exper-

iments indicate that neutrinos oscillate, these data being consistent with νµ ↔ ντ oscil-
lations. The small value of the difference of the squared masses (5 × 10−4eV2 ≤ ∆m2 ≤
6× 10−3eV2) and the strong mixing angle (sin2 2θ ≥ 0.82) suggest that these neutrinos are
nearly equal in mass as predicted by many models of particle physics beyond the standard

model. Also, the LSND experiment [3] support νµ ↔ νe oscillations (∆m2 ≤ 0.2eV2) and
other different types of solar neutrino experiments [4] suggest that νe could oscillate to

a sterile neutrino νe ↔ νs (∆m2 ' 10−5eV2). The direct implication of neutrino oscilla-
tions is the existence of a non-zero neutrino mass in the eV range, and consequently a not

negligible hot dark matter (HDM) contribution Ων 6= 0 to the total energy density of the
Universe.
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We study the cosmic microwave background (CMB) secondary anisotropies induced

by the non-linear perturbations in the massive neutrino density associated to the non-

linear gravitational clustering. The extent to which the massive neutrinos can cluster

gravitationally depends on their mass and the parameters of the fiducial cosmological

model describing the present Universe.

The linear perturbation theory describes accurately the growth of density fluctuations

from the early Universe until a redshift z ∼ 100. The solution involves the integration
of coupled and linearized Boltzmann, Einstein and fluid equations [28] that describes the

time evolution of the metric perturbations in the perturbed density field and the time

evolution of the density fields in the perturbed space-time for all the relevant species (e.g.,

photons, baryons, cold dark matter, massless and massive neutrinos). At lower redshifts the

gravitational clustering becomes a non-linear process and the solution relies on numerical

simulations.

Through numerical simulations, we compute the CMB anisotropy in the non-linear stages

of the evolution of the Universe when clusters and superclusters of galaxies start to form

producing a non-linear gravitational potential varying with time. By using a standard

particle-mesh method we analyze the imprint of the dynamics of the neutrino gravitational

clustering on the CMB anisotropy power spectrum in a flat ΛCHDM model with neutrino

fractions fν = Ων/(Ωb +Ωcdm)=0.06, 0.11, 0.16 corresponding to Ων=0.022 (mν=0.78eV),

0.037 (mν=1.35 eV), 0.053 (mν=1.89eV), assuming three massive neutrino flavors. This

model is consistent with the LSS data and the WMAP anisotropy latest measurements

[5, 6] allowing in the same time a pattern of neutrino masses consistent with the results

from neutrino oscillation and double beta decay experiments.

2. The neutrino gravitational infall

In the expanding Universe, neutrinos decouple from the other species when the ratio of their

interaction rate to the expansion rate falls below unity. For neutrinos with masses in the eV

range the decoupling temperature is TD ∼ 1MeV, occurring at a redsfit zD ∼1010 [7]. At
this time neutrinos behave like relativistic particles with a pure Fermi-Dirac phase-space

distribution:

fν(q, a) =
1

eEν/Tν+1
, Eν =

√
q2 + a2m2ν , (2.1)

where ~q is the neutrino comoving momentum, ~q = a~p, ~p being the neutrino 3-vector mo-

mentum, Eν is the energy of neutrino with mass mν and a = 1/(1 + z) is the cosmic scale

factor evolving with the time, t (a0=1 today).

As neutrinos are collisionless particles, they can significantly interact with photons, baryons

and cold dark matter particles only via gravity. The neutrino phase space density is con-

strained by the Tremaine & Gunn criterion [8] that put limits on the neutrino energy

density inside the gravitationally bounded objects: in the cosmological models involving

a HDM component (the CHDM models) the compression fraction of neutrinos through a

cluster f(r) = ρν/ρcdm (where r is the cluster radius) never exceeds the background ratio

Ων/Ωcdm [9]. Because the formation of galaxies and clusters is a dynamical time process,

– 2 –



 
International Workshop on Astroparticle and High Energy Physics L.A. Popa

20

40
60
80

100
120

1 64.5 128

20

40
60
80

100
120

1 64.5 128

20

40
60
80

100
120

1 64.5 128

20

40
60
80

100
120

1 64.5 128

20
40

60
80

100
120

1 64.5 128

20
40

60
80

100
120

1 64.5 128

20
40

60
80

100
120

1 64.5 128

20
40

60
80

100
120

1 64.5 128

Figure 1: The evolution with the redshift of the projected mass distributions of cold dark matter

plus baryons (upper row) and neutrinos (lower row) obtained from numerical simulation of 1283

cold dark matter plus baryons (the total mass of 8 × 1016M�) and 10× 1283 neutrinos (the total
mass of 4.8× 1018M�) in a box of size 128 Mpc, for the ΛCHDM model with the neutrino fraction
fν = 0.06 (

∑
imνi ≈ 0.7 eV). [Units of axes are in Mpc].

the differences introduced in the gravitational potential due to neutrino gravitational clus-

tering generate metric perturbations that affect the evolution of the density fluctuations

of all the components of the expanding Universe. Fig. 1 presents the evolution of the pro-

jected mass distributions of cold dark matter plus baryons and neutrinos obtained from

numerical simulations at few redshift values z. One can see that neutrinos are accreted

by the cold dark matter and baryons, contributing in dynamic way to the gravitational

clustering process.

Neutrinos cannot cluster via gravitational instability on distances below the free-streaming

distance Rfs [10, 11, 12]. The neutrino free-streaming distance is related to the causal co-

moving horizon distance η(a) through [13]:

Rfs(a) =
1

kfs
=

η(a)√
1 + (a/anr)2

Mpc, η(a) =

∫ a
0

da

a2H(a)
, (2.2)

where anr is the value of the scale factor when massive neutrinos start to become non-

relativistic (anr = (1 + znr)
−1 ≈ 3kBTν,0/mνc2) and H(a) is the Hubble expansion rate:

H2(a) =

(
da/dt

a

)2
=
8πG

3
[Ωm/a

3 +Ωr/a
4 +ΩΛ +Ωk/a

3]. (2.3)
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Figure 2: Panel a): dependence of the neutrino free-streaming distance Rfs on the scale factor.

We show also a specific scale, λ=20h−1Mpc, constant in comoving coordinates (horizontal dashed
line) and the evolution with the scale factor of the causal horizon distance for our cosmological

models. Panel b): dependence on the scale factor of the mass M(Rfs) of the perturbation at the

scale Rfs. We show also the mass of the perturbation at the scale λ (horizontal dashed line) and

indicate the typical mass ranges for galaxies (GAL), groups (GR), clusters (CL) and superclusters

(SCL).

In the above equation G is the gravitational constant, Ωm = Ωb+Ωcdm+Ων is the matter

energy density parameter, Ωb, Ωcdm, Ων being the energy density parameters of baryons,

cold dark matter and massive neutrinos, Ωr is the radiation energy density parameter that

includes the contribution from photons and relativistic neutrinos , ΩΛ is the vacuum (or

cosmological constant) energy density parameter, Ωk = 1−Ωm −ΩΛ is the energy density
parameter related to the curvature of the Universe.

Rfs defines the minimum linear dimension that a neutrino perturbation should have in

order to survive the free-streaming. In the spherical approximation, the minimum comoving

mass of a perturbation that should contain clusterized neutrinos, corresponds to [14]

M(Rfs) =
π

6
R3fsρm ≈ 1.5× 1011 (Ωmh2)(Rfs/Mpc)3h−1M� ,

where Ωm is the matter energy density parameter.

We show in Fig. 2 the dependence of the causal horizon distance η(a), the neutrino free-

streaming distance Rfs, [panel a)] and of the mass M(Rfs) [panel b)] on the cosmic scale

factor. The cosmological model is the ΛCHDM model with different neutrino fractions

fν . One can see that at early times, when neutrinos are relativistic, the free-streaming dis-

tance is approximately the causal horizon distance. After neutrinos become non-relativistic

(anr ∼ 10−4 for our cosmological models) the free-streaming distance decreases with time,
becoming smaller than the causal horizon distance. The time behaviors of Rfs andM(Rfs)

show that neutrino can cluster gravitationally on increasingly smaller scales at latter times.

If the causal horizon η(a) is large enough to encompass the wavelength λ, the neutrino grav-

itational infall perturbs the growth of the perturbations for this mode, leaving imprints in

the CMB angular power spectrum. Perturbations on scales λ < Rfs (k > kfs) are damped
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due to the neutrino free-streaming while the perturbations on scales λ > Rfs (k < kfs) are

affected only by gravity. In the Newtonian limit, the neutrino gravitational clustering can

be described as a deviation from the background by a potential Φ given by the Poisson

equation:

∇2Φ(~r, a) = 4πGa2ρm(a)δm(~r, a) , (2.4)

where ~r is the position 3-vector, ρm(a) is the matter density and δm(~r, a) is the matter

density fluctuation; δm = (ρbδb + ρcdmδcdm + ρνδν)/ρm, where ρcdm, ρb, ρν and δcdm, δb,

δν are the density and density fluctuations of cold dark matter particles, baryons and

neutrinos.

The equations governing the motion of each particle species (cold dark matter plus baryons

and neutrinos) in the expanding Universe are given by [15]:

d~q

da
= −aH(a) ~∇Φ, d~r

da
= ~q (a3H(a))−1, (2.5)

where ~q is the comoving momentum and H(a) is given by the equation (2.3).

The Newtonian description given by the equations (2.4) and (2.5) applies in the limit of

the week gravitational field if, at each time step, the size of the non-linear structures is

much smaller than the causal horizon size (the background curvature is negligible).

The cosmological models involving massive neutrinos show a characteristic scale de-

pendence of the perturbation growth rates [16, 17, 18].

We evolve the system of baryons plus cold dark matter particles and neutrinos accord-

ing to the equation (2.5) for the non-linear scales involved in the computation of the CMB

anisotropy (0.06Mpc−1 ≤ k ≤0.52Mpc−1), starting from the beginning of the non-linear
regime of cold dark matter plus baryons component.

The initial positions and velocities of neutrinos and baryons plus cold dark matter particles

can be generated at each spatial wave number k from the corresponding matter density

fluctuations power spectra at the present time by using the Zel’dovich approximation [19].

The matter power spectra was normalized on the basis of the analysis of the local cluster

X-ray temperature function [20]. We performed simulations with 1283 cold dark matter

plus baryon particles and 10 × 1283 neutrinos. The neutrinos and the baryons plus cold
dark matter particles was randomly placed on 1283 grids, with comoving spacing r0 of

0.5 h−1Mpc. The high number of neutrinos and this comoving spacing ensure a precision
high enough for a correct sampling of the neutrino phase space distribution [18].

According to the Zel’dovich approximation, the perturbed comoving position of each par-

ticle ~r(~r0, a) and its peculiar velocity ~v(~r0, a) are related to the fluctuations of the density

field δρ(~r0, a, k) through:

~r(~r0, k, a) = ~r0 +D(k, a)~d(~r0) , ~v(~r0, k, a) = Ḋ(k, a)~d(~r0) , (2.6)

~∇~d(~r0) = D−1(k, a)δρ(~r0, k, a) ,

where ~r0 is the coordinate corresponding to the unperturbed comoving position, ~d(~r0) is

the displacement field and D(k, a) is the growth function of perturbations corresponding

to each cosmological model.
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Figure 3: The scale dependence of znl on k for neutrinos (panel a) and baryons plus cold dark

matter particles (panel b).

At each wave number k used in the computation of the CMB anisotropy we compute the

perturbed particles comoving positions and peculiar velocities at the beginning of the non-

linear regime anl, by using the set of equations (2.4)–(2.5). We assign to each particle a

momentum according to the growth function, when the power of each mode is randomly

selected from a Gaussian distribution with the mean accordingly to the corresponding

power spectrum [21, 22, 23]. In the computation of the set of equations (2.6) we consider

only the growing modes, the non-linear power spectra up to kmax = 6.28 h Mpc
−1, and

neglect the contribution of the redshift distortions.

We show in Fig. 3 the dependence on the spatial wave number k of the redshift znl =

1/anl−1 for each component. One can see from Fig. 3 that neutrinos (panel a) enter in the
non-linear regime later than cold dark matter particles and baryons (panel b). Thus, the

neutrino halo of the cluster starts to form after the cold dark matter plus baryon halo is

advanced in the non-linear stage, causing the accretion of neutrinos from the background.

At each spatial wavenumber k we evolve the particles positions and velocities according

to the set of equations (2.4)–(2.5). We start this process from the scale factor acdmnl at

which cold dark matter particles plus baryons start to enter in the non-linear regime. At

each time step, the density on the mesh is obtained from the particle positions using the

Cloud-in-Cell method and equations (2.6) are solved by using 7-point discrete analog of the

Laplacian operator and the FFT technique. The particle positions and velocities are then

advanced in time with a time step da required by the computation of the CMB anisotropy

power spectra. The system of particles was evolved until the scale factor ast when it reaches

its virial [24] equilibrium.

3. Imprints of neutrino gravitational clustering at Planck angular scales

As the anisotropy produced by the non-linear density perturbations depends on the time

variations of the spatial gradients of the gravitational potential produced by different com-

ponents (cold dark matter, baryons, neutrinos), we calculate the CMB anisotropy in the
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Figure 4: Panel a1): time evolution of the energy density perturbations of the different components

as computed by including linear and non-linear effects of neutrino gravitational clustering (solid

lines) and by neglecting the non-linear aspects of neutrino gravitational clustering (dashed lines):

cold dark matter (cdm), baryons (bar), massive neutrinos (ν), and massless neutrinos plus photons

(rad). Panel a2): the same as in panel a), but for the time evolution of the gravitational field

[k=0.06Mpc−1 and fν = 0.06].

presence of the gravitational clustering by using N-body simulation in large boxes with the

side of 128 Mpc, that include all non-linear scales used in the computation of the CMB

anysotropy power spectrum from λmin ≈ 12Mpc (kmax ≈ 0.52Mpc−1) to λmax ≈ 110 Mpc
(kmin ≈ 0.06Mpc−1), taking into account the time evolution of all non-linear density per-
turbations influencing the CMB power spectrum (see also Fig. 1). One should note that

λmax corresponds to the comoving horizon size at the matter-radiation equality for our

cosmological models (λeq ≈ 16Ω−1m h−2Mpc). The non-linear structures are assumed to be
formed by two components: cold dark matter plus baryons and neutrinos in the form of

three massive neutrino flavors, both components evolving in the gravitational field created

by themself. For the purpose of this work we neglect the hydrodinamical effects [25]. The

neutrino gravitational clustering can affect both the homogeneous and the inhomogeneous

components of the gravitational field. The changes in the homogeneous component of the

gravitational field are determined by the changes of the energy density of neutrinos and

cold dark matter particles plus baryons. They affect the Hubble expansion rate, the sound

horizon distance and the neutrino free-streaming distance. The changes in the inhomoge-

neous component of the gravitational field are determined by the changes in the energy

density for all matter components and the changes in the neutrino phase space distribution

function. They affect the growth of the energy density perturbations of cold dark matter,

baryons, photons, massive and massless neutrinos. Panel a1) of Fig. 4 presents the evolu-

tion with the scale factor of the energy density perturbations of different components in

the non-linear regime, for the mode k = 0.06 Mpc−1 (solid lines). For comparison, we plot
also (dashed lines) the energy density perturbations of the different components obtained
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Figure 5: The imprint of the neutrino linear and non-linear gravitational clustering on the CMB

anisotropy power spectrum expressed in terms of ∆T/T obtained for the filtering perturbation with

the massM . We report in the panels the richness of these perturbations from the bottom to the top

according to the increasing of the power at multipoles about ` ∼ 750. In each panel, the dashed line
corresponds to the fiducial ΛCHDM cosmological model, without including the non-linear effects of

neutrino gravitational clustering.

for the same mode k by neglecting non-linear aspects of neutrino gravitational clustering

(linear regime). Panel a2) of Fig. 4 presents the evolution with the scale factor of the scalar

potential Ψ of the conformal Newtonian gauge line element, that plays the role of the grav-

itational potential in the Newtonian limit [26, 27], by including (solid line) or not (dashed

line) the non-linear effects of neutrino gravitational clustering (for the transformation re-

lation between the scalar potentials of the synchronous gauge and conformal Newtonian

gauge see equation (18) from [28]). As we have shown before, the difference in the evolution

of a perturbation mode k depends on how this mode relates to the neutrino free-streaming

wave number kfs. Considering that our simulation at each time step is a sample of the

evolution of the matter in the non-linear regime, we study the imprint of the gravitational

clustering on the CMB anisotropy power spectrum by smoothing the density field obtained

from simulation at each time step with a filter with the scale Rfs corresponding to the

cluster mass value M(Rfs). For each non-linear mode k only the perturbations with the

mass M ≤ M(Rfs) are taken into account for the computation of the CMB anisotropy
power spectrum. Fig. 5 presents some of our computed CMB anisotropy power spectra

obtained when different filtering mass values M(Rfs) are considered. It is usual to use the

Coma cluster as the mass normalization point (MComa = 1.45×1015h−1M�); for the Coma
cluster we assume a richness AComa=106. According to [29], the relation between the mass
of the perturbation and the richness A of the corresponding cluster can be written in the
form

M =MComa
A

AComa = 1.45 × 10
15

( A
106

)
h−1M� .

By comparing the angular power spectra obtained including or not the non-linear effects of

neutrino gravitational clustering, we find a decrease of the CMB angular power spectrum

induced by the neutrino non-linear gravitational clustering of ∆T/T ≈ 10−6 for angular
resolutions between ∼ 4 and 20 arcminutes, depending on the cluster mass and neutrino
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fraction fν.

Clearly, new high sensitivity and resolution anisotropy experiments will have the capa-

bility to detect the neutrino gravitational clustering effect. In particular, the instruments

on-board the ESA Planck satellite 1 will measure the CMB angular power spectrum with

very high sensitivity up to multipoles ` ∼ 1000 − 2000 with a stringent control of the sys-
tematic effects. Fig. 6 compares Planck and WMAP 2 performances. The CMB angular

power spectrum is reported without beam smoothing and by taking into account the beam

window functions of several Planck frequency channels and of the highest WMAP fre-

quency channel (which is very close to that of the LFI 70 GHz channel). The corresponding

angular power spectra of the residual nominal white noise (i.e. after the subtraction of the

expection of its angular power spectrum) are also displayed. Of course, binning the power

spectrum on a suitable range of multipoles, as usual at high `, will allow to recover the

CMB power spectrum also at multipoles higher that those corresponding to the crossings

between the noise and CMB power spectra reported in the figure 3.

The characteristic angular scale left by the the neutrino gravitational clustering on the

CMB anisotropy power spectrum is given by

θ =
Rfs

η0 − η(a) ,

where Rfs is the scale of the filtering perturbation with the mass M(Rfs), η(a) is the

particle horizon distance at the time at which the non-linear perturbation mode k cross

the horizon and η0 is the particle horizon at the present time. Fig. 7 (left panel) presents

the evolution of the characteristic scale θ and of the corresponding multipole order of the

CMB anisotropy power spectrum with the mass M(Rfs).

Fig. 7 (right panel) presents few confidence regions of the fν −M parameter space

that can be potentially detected by the Planck surveyor by using the CMB anisotropy

measurements in the presence of the gravitational clustering, under the hypothesis that

the other cosmological parameter can be measured with other observations (grey regions)

and by using the Planck data to jointly determine fν , M and the other cosmological

parameters (solid lines). We consider for this computation only the Planck “cosmo-

logical” channel between 70 and 217 GHz, a sky coverage fsky = 0.8 and neglect for

simplicity the foreground contamination [18]. By assuming known the other main cos-

mological parameters, we obtain a neutrino fraction fν ≈ 0.011 ± 0.007 for an accreting
mass M ≈ (8.2 ± 3.1) × 1014h−1M� (errors at 68% confidence level). By assuming known
the other main cosmological parameters, we obtain a neutrino fraction fν ≈ 0.011 ± 0.007
for an accreting mass M ≈ (8.2 ± 3.1) × 1014h−1M� (errors at 68% confidence level).
Planck surveyor will have in principle the capability to measure the non-linear imprints

of the neutrino gravitational clustering on the CMB anisotropy power spectrum for a neu-

trino mass range in agreement with that indicated by the astroparticle and nuclear physics

1http://astro.estec.esa.nl/Planck
2http://lambda.gsfc.nasa.gov
3At ` higher than ' 1500 − 2000 the confusion noise from extragalactic source fluctuations dominates

over the instrumental noise, while Galactic foregrounds are relevant at multipoles less than few hundreds.
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Figure 6: Comparison between Planck and WMAP resolution and sensitivity. For each con-

sidered frequency channel, the crossing between the CMB convolved angular power spectrum and

the unsubtractable instrumental white noise angular power spectrum indicates the multipole value

where the signal to noise ratio (` by `) is close to unity.

experiments and a cosmological accreting mass comparable with the mass of the known

clusters. Of course, even with the high sensitivity and resolution of Planck it is hard

to firmly constrain fν and M by jointly recovering the other cosmological parameters, a

goal that can be achieved in combination with other precise cosmological information, such

as galaxy large scale structure surveys, measures of element abundances from big-bang

nucleosynthesis and Type 1a supernovae observations.

4. Conclusions

We study the CMB anisotropy induced by the non-linear perturbations in the massive

neutrino density associated to the non-linear gravitational clustering. Through numerical

– 10 –
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Figure 7: Left panel: evolution of the characteristic angular scale θ of the neutrino gravitational

clustering with M(Rfs) for different neutrino fractions. We report also the corresponding multi-

pole orders l ∼ θ−1 of the CMB anisotropy power spectrum. Right panel: confidence regions of
the fν −M parameter space as potentially detectable by Planck by using the CMB anisotropy
measurements in the presence of the gravitational clustering assuming known the other main cos-

mological parameters (grey regions) or by jointly recover fν, M and the other main cosmological

parameters (solid lines).

simulations, we compute the CMB anisotropy angular power spectrum in the non-linear

stages of the evolution of the Universe when clusters and superclusters start to form, pro-

ducing a non-linear time varying gravitational potential.

We found that the non-linear time varying potential induced by the gravitational clustering

process generates metric perturbations that affect the time evolution of the density fluc-

tuations in all the components of the expanding Universe, leaving imprints on the CMB

anisotropy power spectrum at subdegree angular scales. The magnitude of the induced

anisotropy and the characteristic angular scale depends on how each non-linear mode k of

the perturbations relates to the neutrino free-streaming wavenumber kfs at each evolution

time step. By smoothing the density field obtained from simulations with a filter with

the scale corresponding to the cluster scale, we find an imprint on the CMB anisotropy

power spectrum of amplitude ∆T/T ≈ 10−6 for angular resolutions between ∼ 4 and 20
arcminutes, depending on the cluster mass and neutrino fraction fν .

This result suggests that the CMB anisotropy experiments with such levels of sensitivities

and angular resolutions should detect the dynamical effect of the non-linear gravitational

clustering. For a neutrino fraction in agreement with that indicated by the astroparticle

and nuclear physics experiments and a cosmological accreting mass comparable with the

mass of known the clusters, we find that CMB anisotropy measurements with Planck

angular resolution and sensitivity in combination with other precise cosmological observa-

tions will allow the detection of the dynamical, linear and non-linear, effects of the neutrino

gravitational clustering.
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