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Abstract: After a brief introduction to the lightcone worldsheet formalism [1] for sum-

ming the planar diagrams of field theory, I explain how the uv divergences of quantum

field theory translate to the new language of string. It is shown through one loop that,

at least for scalar cubic vertices, the counter-terms necessary for Poincaré invariance in

space-time dimensions D ≤ 6 are indeed local on the worldsheet. The extension to cover
the case of gauge field vertices will be more complicated due to the extra divergences at

p+ = 0 in lightcone gauge.

1. Introduction

Two years ago Bardakci and I developed a new formalism [1] for mapping the sum of all

planar diagrams [2] of a cubic scalar quantum field theory onto a two dimensional system

defined on the worldsheet of lightcone string theory. Since then the formalism has been

extended to cover Yang-Mills theory [3] and extended supersymmetric gauge theories with

N = 1, 2, 4 [4].
Much of my talk to this workshop was devoted to a pedagogical explanation of the

new worldsheet formalism. However, since this part of the talk was virtually the same

as one given at the August 2003 lightcone meeting [5], I limit this introduction to a brief

synopsis of the formulas needed to understand the new results reported here on how field

theoretic divergences can be dealt with locally on the worldsheet. The worldsheet is based

on light-cone parameters, an imaginary time τ = ix+ = i(t+z)/
√
2 in the range 0 ≤ τ ≤ T ,

and a worldsheet spatial coordinate 0 ≤ σ ≤ p+ chosen so that the p+ density is uniform
[6].
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The key to the worldsheet representation of an arbitrary planar diagram is that of a

free scalar gluon propagator, θ(T )e−T (p2+µ2)/2p+ in lightcone variables. It is based on the
remarkable identity [1]

exp

{
−Tp

2

2p+

}
=

∫
DcDbDq exp

{
−
∫
dτ

∫ p+
0
dσ

[
1

2
q′2 − b′c′

]}
(1.1)

where Dirichlet boundary conditions are imposed q̇ = 0 at σ = 0, p+, and also q(p+) −
q(0) = p. The Grassmann variables, with boundary conditions b = c = 0 at σ = 0, p+

assure the correct measure and ′ is shorthand for ∂/∂σ. The absence of time derivatives in
S reflects the topological nature of the free worldsheet dynamics. Note that in D = d+ 2

space-time dimensions we have all together d/2 sets of b, c ghost pairs, denoted by bold-

faced letters.

We give rigorous meaning to this formula using a worldsheet lattice [7]: τ = ka and

σ = lm with T = Na and p+ = Mm. The limit of a continuous worldsheet is equivalent

to the double limit M,N →∞ with N/M = (T/p+)(m/a) fixed. Then defining

S ≡ a

2m

N∑
j=1

M−1∑
i=0

(qji+1 − qji )2

− a
m

N∑
j=1

[
(1 + ρ)bj1c

j
1 + b

j
M−1c

j
M−1 +

M−2∑
i=1

(bji+1 − bji )(cji+1 − cji )
]
, (1.2)

the master formula on the worldsheet lattice is [1](
1− aµ2

dmM

)dN/2
exp

{
−Nap

2

2mM

}
=

1

(1 + ρ)dN/2

∫ N∏
j=1

M−1∏
i=1

dcjidb
j
i

2π
dqji e

−S , (1.3)

with boundary conditions qj0 = q0, q
j
M = q0 + p, b

j
0,M = c

j
0,M = 0. The parameter

ρ = µ2a/(dm−µ2a) provides a mass µ for the gluon in the continuum limit. The prefactor
on the right can be associated with the left boundary.

The worldsheet lattice provides a template for summing all planar diagrams in the

cubic theory. We can use the ratio of lattice constants m/a, with units of energy/time, to

define a dimensionless coupling

ĝ2 ≡ g2

64π3

( m
2πa

)(d−4)/2
. (1.4)

The worldsheet for the general planar diagram has an arbitrary number of vertical solid

lines marking the location of the internal boundaries corresponding to loops. Each interior

link j, j − 1 of a solid line at spatial location k requires a factor of δ(qjk − qj−1k ). To supply
such factors, assign an Ising spin sjk = ±1 to each site of the lattice. We assign +1 if the
site (k, j) is crossed by a vertical solid line, −1 otherwise. We also use the spin up projector
P jk = (1+ s

j
k)/2. We implement the Dirichlet conditions on boundaries using the Gaussian

representation of the delta function:(
2πm

a

)d/2
δ(qji − qj−1i ) = limε→0

1

εd/2
exp
{
− a

2mε
(qji − qj−1i )2

}
, (1.5)
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We keep ε finite until the end of the calculation. Using this device, our formula for the

sum of planar diagrams is:

Tfi = lim
ε→0

∑
s
j
i=±1

∫
DcDbDq exp


ln ĝ

∑
ij

1− sjisj−1i
2

− d
2
ln (1 + ρ)

∑
i,j

P ji




exp


− a2m

∑
i,j

(qji+1 − qji )2 −
a

2mε

∑
i,j

P ji P
j−1
i (qji − qj−1i )2


 (1.6)

exp


 am

∑
i,j

[
Aijb

j
ic
j
i −Bijbji cji +Cij(bji+1 − bji )(cji+1 − cji )−Dij(bji+1 − bji )(cji+1 − cji )

]


Aij =
1

ε
P ji P

j−1
i + P j+1i P ji − P j−1i P ji P

j+1
i + (1− P ji )(P ji+1 + P ji−1) + ρ(1− P ji )P j−1i−1 P

j
i−1

Bij = (1− P ji )
(
P ji+1P

j+1
i+1 (1− P j−1i+1 ) + P

j
i−1P

j+1
i−1 (1− P j−1i−1 ) + P

j−1
i P j−2i P ji+1

)
Cij = (1− P ji )(1− P ji+1)
Dij = (1− P ji )(1− P ji+1)P j−1i P

j−2
i

The first exponent in (1.6) supplies a factor of ĝ whenever a boundary is created or de-

stroyed. The second exponent includes the action Sq for the free propagator together with

the exponent in the Gaussian representation of the delta function that enforces Dirichlet

boundary conditions on the solid lines. The first term of the third exponent incorporates

the ε dependent prefactor in the representation of the delta function as a term in the

ghost Lagrangian. The remaining terms contain Sg together with strategically placed spin

projectors that arrange the proper boundary conditions on the Grassmann variables and

supply appropriate 1/p+ factors needed at the beginning or end of solid lines to ensure

Lorentz invariance.

2. Self Energy for Φ3

The worldsheet lattice for the one loop self energy is drawn in Fig. 1. The solid line segment

in the middle of the diagram is the internal boundary that separates the two propagators

of the two gluon intermediate state. We take ε = 0 from the beginning, so exact Dirichlet

boundary conditions are imposed. For this single diagram, the worldsheet path integral,

(1.6) with ε → 0 and qjl = q fixed on the internal boundary, immediately reduces to the
usual light-cone Feynman rules. Then we evaluate the q integration and take N large:

TSE =
( a
2πm

)d/2 ∑
k0,k,l

ĝ2

Ml(M − l)
∫
dq

exp

{−Na(p2 + µ2)
2mM

− kaM

2ml(M − l)
(
q2 + µ2

M2 − l(M − l)
M2

)}

∼ N ĝ
2

M2

∑
k,l

[
l(M − l)
M

] d
2
−1 1
kd/2

exp

{
−kaµ

2

2m

(
M

l(M − l) −
1

M

)}
(2.1)
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k1 = k0 + k

k0

l M

Figure 1: Worldsheet lattice for self-energy

The factor of N = T/a simply reflects time translational invariance, and leads to the

interpretation of its coefficient as −a times a shift in energy, −aδp− = −aδµ2/2mM . Thus
we have

δµ2 = −2mĝ
2

aM

∑
k,l

[
l(M − l)
M

] d
2
−1 1
kd/2

exp

{
−kaµ

2

2m

(
M

l(M − l) −
1

M

)}
. (2.2)

We see that the worldsheet lattice has provided a cutoff for the usual field theoretic ultra-

violet divergences. The removal of this cutoff in this quantity is simply taking the limit

M →∞, which is the limit of a continuous worldsheet. More generally, for the finite time
transition amplitude, the continuum limit is M,N →∞, with Na/Mm = T/p+ fixed.
We first observe that this limit is well defined as long as d < 2. The k, l sums go to

integrals over continuous variables t = (kaµ2/2m) (M/l(M − l)− 1/M ) and x = l/M :
∑
k

1

kd/2
→
∫
dt

td/2

[
aµ2

2m

(
M

l(M − l) −
1

M

)](d−2)/2
,

1

M

∑
l

→
∫ 1
0
dx

Then we find

δµ2 → −µ2ĝ2
[
aµ2

2m

](d−4)/2
Γ

(
1− d
2

)∫ 1
0
dx(1 − x(1− x))(d−2)/2 +O(M (d−2)/2).

Order by order in perturbation theory, one could invoke dimensional regularization, which

defines divergent quantities as the continuation in dimension from a region where they are

– 4 –
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finite. Then we would conclude from this formula that the mass shift is Lorentz invariant.

Divergences in mass shift would appear as Lorentz invariant poles at integer d ≥ 2, and
they could be covariantly absorbed in the input mass parameter µ.

However, dimensional regularization is pretty useless for non-perturbative numerical

work, because, in the presence of an ultraviolet cutoff (necessary for digitizing the prob-

lem), calculations at general d contain non-covariant artifacts, which are negligible only

in sufficiently small dimensions. It is essential in dimensional regularization to take the

continuum limit with d in a range where the quantity is finite before continuing to the

physical dimension, a procedure that is impossible on a computer.

Indeed, the cutoff provided by the worldsheet lattice introduces non-covariant artifacts

simply because the cutoff M = p+/m is a component of momentum so all divergent terms

introduce frame dependence. We can see why this happens by noting that the corrections

to the continuum limit for d < 2 are of O(M (d−2)/2) and obviously non-covariant. As d→ 2
these terms fall off more and more slowly eventually becoming comparable to the Lorentz

invariant term and then for d > 2 dominating it. Thus the worldsheet lattice by itself

will consistently produce Lorentz invariant results only when divergences are completely

absent, i.e. for d < 2.

If we want to numerically analyze the system for d ≥ 2 without introducing an addi-
tional uv cutoff, the worldsheet lattice must be supplemented with explicit counter-terms

that remove the Lorentz violating artifacts introduced by divergences. For example, at

d = 2 a logarithmic divergence in the self energy appears as lnM = ln(1/m) + ln p+, and

the non-covariance is actually in the finite part. There is the distinct possibility that the

necessary counter-terms are not local on the worldsheet, though it is relatively easy to find

local counter-terms that fix the problems in the self energy at least for d = 2, 4.

To see this, take the interesting asymptotically free case of TrΦ3 scalar field theory in

D = 6 space-time dimensions (d = 4). Then in the self-energy one encounters the δ → 0
limit of the quantity

∞∑
k=1

e−kδ

k2
→ π

2

6
+ δ ln δ +O(δ2), (2.3)

and one finds for the mass shift

δµ2 → −2m
a
ĝ2
∑
l

x (1− x)
[
π2

6
+ δl ln δl

]

x =
l

M
, δl =

aµ2

2Mm

1− x(1− x)
x(1− x) ,

and then, as M →∞, the behavior

δµ2 → C1M + C ′0 lnM + C0. (2.4)

Clearly the C1, C
′
0 terms are non-covariant, and they must be removed by counter-terms.

This can be done locally on the worldsheet. First note that the C1 term can be canceled

by a constant energy shift, which can be interpreted as a worldsheet boundary term (i.e.
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a perimeter cosmological constant). Then one can devise an isolated up spin with ghost

insertions to contribute a counter-term
∑
l
1
l ∼ lnM to cancel C ′0. The remaining C0

term is just a covariant mass shift. It is not at all clear, however, that the counter-terms

needed in vertex loop diagrams can also be prescribed locally on the worldsheet. One of the

longstanding drawbacks of standard lightcone gauge perturbation theory is the need for

counter-terms that are not polynomials in the p+’s, and there is no simple a priori principle

for specifying them. It is possible that worldsheet locality provides such a principle. If

true, this would give an a priori justification to apply the logic of string theory to help

define and solve large Nc QCD. Bardakci [10] has stressed that M
+− boost invariance is

precisely worldsheet scale invariance. Perhaps the remaining Mk− Lorentz invariance is
the underlying physical reason for worldsheet conformal invariance.

In the following we take an alternative more systematic approach, based on observa-

tions Glazek has made about controlling Lorentz invariance in the light-cone formalism

[11]. The troubles outlined above can be traced to the way the worldsheet lattice cuts off

the transverse momentum integrals, Λ⊥ ∝ Mm/a, so the continuous worldsheet M → ∞
has no uv cutoff. This can be cured by introducing an M independent cutoff on transverse

momentum which is held fixed as M → ∞. The theoretical drawback is that it violates
invariance under a Galilei subgroup of the Lorentz group. However we shall find that the

problem of restoring this invariance is not severe.

The simplest way to implement an M independent uv cutoff in transverse target space

is to include a factor e−δq
j2
k /2 in the world sheet path integrand whenever (k, j) marks the

beginning of a solid line.1 That is, we add terms δ(1 − P j−1k )P jkq
j2
k /2 to the worldsheet

action. These terms obviously violate Galilei invariance (a part of Lorentz invariance), and

we must be careful that the invariance is restored after the limit δ → 0.
Let us now redo the self energy calculation with δ 6= 0.

δµ2 = −2mĝ
2

a

∑
k,l

1

l(M − l)
1

(kM/l(M − l) +mδ/a)d/2

exp

{
−kaµ

2

2m

(
M

l(M − l) −
1

M

)
− kaδ
2M

[
(p1l + p0(M − l))2
kaM + δl(M − l)m

]}
. (2.5)

Now we can safely take the continuum limit M → ∞. Define T = kaM/l(M − l)m and
x = l/M , we find

δµ2 = −2ĝ2
(m
a

)2−d/2 ∫ 1
0
dx

∫ ∞
0
dT

1

(T + δ)d/2

exp

{
−Tµ

2

2
(1− x(1− x))− T δ

2

[
(xp1 + (1− x)p0)2

T + δ

]}
. (2.6)

The explicit dependence on the boundary values of q reflects the violation of Galilei boost

invariance introduced by the cutoff δ: this is the price paid for regaining manifest longitu-

dinal Lorentz boost invariance. Inspection of the formula shows that these Galilei boost

1This device was first used in [8] to facilitate a mean field approximation [9] on the worldsheet.

– 6 –



j
h
w
2
0
0
3

27th Johns Hopkins Workshop on Current Problems in Particle Theory:
Symmetries and Mysteries of M Theory Charles B. Thorn

violations will disappear for δ → 0 as long as d < 4, i.e. in less that 6 space-time di-
mensions. In this case, the divergences can be absorbed in a shift of µ2 consistently with

Lorentz invariance and with no counter-terms.

We do want to study the 6 dimensional case, so we can’t quite escape the need for

counter-terms. To study this issue for the self energy, we set d = 4 and analyze the δ → 0
behavior of the mass shift.

δµ2 = −2ĝ2
∫ 1
0
dxeδ(α(x)−β(x))

∫ ∞
δ

dT
1

T 2
exp

{
−Tα(x) + δ

2

T
β(x)

}

= −2ĝ2
∫ 1
0
dx

(
1

δ
+ ln δ − β(x)

2
− α2(x)

∫ ∞
0
dT lnTe−α(x)T

)
+O(δ)

α(x) =
µ2

2
(1− x(1− x)) (2.7)

β(x) =
1

2
[(1− x)p0 + xp1]2 (2.8)

In the δ → 0 limit the non-covariant artifact resides in the term ĝ2 ∫ dxβ(x), a finite positive
contribution to δµ2. The corresponding contribution to the path integral is of course

−Tδµ2/2p+ = −(aN/2mM)ĝ2
∫
dxβ(x). (2.9)

All of the divergences can be covariantly absorbed in a mass shift. But we still need to

design a worldsheet local counter-term that removes this finite but non-covariant artifact.

To construct a suitable counter term we recall from [3] the generating formula for

correlators of qji on a fixed time slice j of the worldsheet path integral representation of

the free propagator:

〈
exp

{
M−1∑
i=1

Jiqi

}〉
= exp


m2a

∑
i

i(M − i)
M

J2i +
m

a

∑
i<j

i(M − j)
M

JiJj

+
qM
M

∑
i

iJi +
q0
M

∑
i

(M − i)Ji
}
(2.10)

Differentiating (2.10) twice with respect to Ji and setting all J = 0, we find

〈qj2l 〉 =
[qM
M
l +
q0
M
(M − l)

]2
+
m

a

l(M − l)
M

(2.11)

1

M

M−1∑
l=1

〈qj2l 〉 =
∫ 1
0
dx [p1x+ p0(1− x)]2 +

mM

6a
+O

(
1

M

)
(2.12)

= 2

∫ 1
0
dxβ(x) +

mM

6a
+O

(
1

M

)
(2.13)

where in the last line we have used the boundary conditions q0 = p0, qM = p1.
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Referring to (2.9), we see that we can represent the necessary counter-term as

ĝ2
aN

2mM

∫
dxβ(x) =

a

2m

[
N

2M2

M−1∑
l=1

〈qj2l 〉 −
mN

12a

]
=
N∑
j=1

M−1∑
l=1

〈
ĝ2

a

4mM2
q
j2
l

〉
− ĝ2N

24
.

After representing the 1/M2 in the summand by local modifications of the ghost action near

the point (l, j), the first term can be seen as a sum over all locations of a local world sheet

insertion. The last term is precisely of the right structure to be absorbed in a boundary

perimeter term (boundary “cosmological constant”). We have already seen in [12] that such

a perimeter term is needed to properly include a mass for the scalar field in the worldsheet

description, so it is not surprising that in the process of mass renormalization we should

be required to adjust its value to make the final answer covariant.

Summarizing, we have found that if we use our new uv cutoff δ, then for D < 6 the

mass shift shows no non-covariant artifacts, and the divergence (for 4 ≤ D < 6) can be
covariantly absorbed in µ2. For D = 6 there is a finite non-covariant artifact in the mass

shift which can be canceled by a worldsheet local counter-term together with an adjustment

of the value of the boundary cosmological constant. The remaining ultraviolet divergences

are covariant and can be absorbed in µ2.

3. Wave function renormalization

Before moving on to the three point vertex we need to analyze wave function renormal-

ization, which though finite for D < 6 will show log divergences at D = 6, which will

contribute to the renormalization of the coupling ĝ. For this it is convenient to work in

energy space by defining

T (E) =

∞∑
N=1

eaENTN (3.1)

where TN is the amplitude for evolution through N time steps. Then the free gluon

propagator is simply

∆0(p
2) =

∞∑
N=1

exp

{
(aE − λ)N −Na(p1 − p0)

2 + µ2

2mM

}
=

1

ea(p
2+µ2)/2mM+λ − 1 (3.2)

where we have defined the off-shell four momentum p = (p, p+, p−) = (p1 − p0,mM,E).
We have also included a boundary cosmological constant λ = O(ĝ2) which, as we have

seen, will be necessary to cancel non-covariant artifacts in loop diagrams.

Now we include up to one loop corrections to the full propagator

∆(p2) = ∆0(p
2)
{
1 + ∆0(p

2)(Π(p2) + ΠC.T.) +O(ĝ
4)
}

(3.3)

Π(p2) =
ĝ2

M

∑
k,l

1

l(M − l)
1

(kM/l(M − l) +mδ/a)2 exp
{
− ka
2m

p2 + µ2

M
− 2kλ

}

exp

{
−kaµ

2

2m

(
M

l(M − l) −
1

M

)
− kaδ
2M

[
(lp1 − (M − l)p0)2
kaM +ml(M − l)δ

]}
. (3.4)
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Since both the mass shift δµ2 and λ are of order O(ĝ2), we may, to this order, replace µ

by its physical value and drop λ in the expression for Π. We express ∆0 in terms of the

physical mass µ2ph = µ
2 + δµ2, expand it to first order in ĝ2, and plug into (3.4)

∆0(p
2) = ∆̂0(p

2) + ∆̂0(p
2)2
(
ea(p

2+µ2ph)/2mM

(
aδµ2

2mM
− λ
)
+Π(p2) + ΠC.T.

)
+O(ĝ4)

∆̂0(p
2) =

1

ea(p
2+µ2ph)/2mM − 1

The physical mass is of course defined by the requirement

Π(−µ2ph) + ΠC.T. +
(
aδµ2

2mM
− λ
)
+O(ĝ4) = 0, (3.5)

which reproduces the covariant mass shift already discussed. When this condition is met

the p2 → −m2ph limit of the quantity in square brackets exists and is equal to the wave
function renormalization constant Z:

Z = lim
p2→−m2ph

[
1 + ∆̂0(p

2)(p2 + µ2ph)

{
a

2mM

(
aδµ2

2mM
− λ
)
+Π′(−µ2ph)

}]
(3.6)

= 1 +
aδµ2

2mM
− λ+ 2mM

a
Π′(−µ2ph) (3.7)

The discussion so far has retained both the worldsheet lattice cutoffs and the uv cutoff δ.

Now we simplify the expression for Z by taking the worldsheet continuum limit M → ∞
holding δ fixed:

Z →
M→∞ 1− λ− ĝ

2

∫ 1
0
dxx(1 − x)

∫ ∞
0

TdT

(T + δ)2
exp

{
−α(x)T − δT

T + δ
β(x)

}
(3.8)

∼
δ→0 1 +

ĝ2

6
ln(δµ2)− λ+ ĝ2

∫ 1
0
dxx(1− x) (1− Γ′(1) + ln(α(x)/µ2)) (3.9)

where in the last line we see the log divergence as δ → 0. From our earlier considerations,
we know that the value of λ to this order should be λ = ĝ2/24.

4. The triangle graph and coupling renormalization

We first evaluate the 1PIR one loop correction to the cubic vertex shown in Fig. 2, which is

finite for d < 4. We do the calculation in the presence of the uv cutoff δ introduced in the

last section. There are two relevant kinematic configurations in which the spatial location

of the loop l is in the range 0 < l < M1 and M1 < l < M respectively. We work out the

first case, depicted in the figure, in great detail and then briefly discuss the second case.
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k2

k1

k0

l M1 M

q − p0

p1 − p0 p2 − p1

p2 − p0

Figure 2: Worldsheet for the triangle diagram shown on the right.

We find for 0 < l < M1, introducing an off shell energy E = E1 + E2

G13 =
( a
2πm

)d/2 ĝ3
M

∑∫
dq

1

l(M1 − l)(M − l) exp
{
−(N − k2)a

2m

[
(p2 − p0)2 + µ2

M

]}

exp

{
−(k2 − k1)a

2m

[
(q − p0)2 + µ2

l
+
(p2 − q)2 + µ2
M − l

]
− δ
2
q2
}

exp

{
−(k1 − k0)a

2m

[
(q − p0)2 + µ2

l
+
(p1 − q)2 + µ2
M1 − l +

(p2 − p1)2 + µ2
M −M1

]}

exp

{
−k0a
2m

[
(p1 − p0)2 + µ2

M1
+
(p2 − p1)2 + µ2
M −M1

]
+ aNE − ak′0E2

}
(4.1)

=
( a
m

)d/2 ĝ3
M

∑ 1

l(M1 − l)(M − l)
∆0(Q

2
1)∆0(Q

2
2)∆0(Q

2
3)

(T1 + T2 + T3 + δ)d/2
exp

{
−µ

2

2
(T1 + T2 + T3)

}

exp

{
−T1T3Q

2
1 + T1T2Q

2
2 + T2T3Q

2
3

2(T1 + T2 + T3)
− δ
2

[
(p0T3 + p1T1 + p2T2)

2

(T1 + T2 + T3 + δ)(T1 + T2 + T3)

]}
(4.2)

In this formula we have introduced the Ti defined by

T1 =
a

m

k1 − k0
M1 − l , T2 =

a

m

k2 − k1
M − l , T3 =

a

m

k2 − k0
l
. (4.3)

the integers N1 = k1 − k0, N2 = k2 − k1 range independently over the positive integers.
We have also introduced the off shell d+ 2 momenta

Q1 = (p1 − p0,mM1, E − E2),
Q2 = (p2 − p1,m(M −M1), E2),
Q3 = (p2 − p0,mM,E). (4.4)

The sums over N − k2, k0, and k1 − k′0 just produce the external leg propagators ∆0(Q2i ).
The integer l takes all values 0 < l < M1.
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In the worldsheet continuum limit the sums over N1,N2, l will be replaced by integrals

over T1, T2, T3, so we shall need the Jacobian

∂(T1, T2, T3)

∂(N1,N2, l)
=
( a
m

)2 T1 + T2 + T3
l(M − l)(M1 − l) . (4.5)

The full range 0 < Ti < ∞ is covered in the continuum limit when the result G23 of the
calculation with M1 < l < M is combined with the one discussed above. We then obtain

for the worldsheet continuum limit with fixed δ of the sum of both diagrams:

G13 +G
2
3 = ∆0(Q

2
1)∆0(Q

2
2)∆0(Q

2
3)
ĝ3

M

( a
m

)(d−4)/2 ∫ ∞
0

dT1dT2dT3
T1 + T2 + T3

(T1 + T2 + T3 + δ)
−d/2

exp

{
−µ

2

2
(T1 + T2 + T3)− T1T3Q

2
1 + T1T2Q

2
2 + T2T3Q

2
3

2(T1 + T2 + T3)

}

exp

{
−δ
2

[
(p0T3 + p1T1 + p2T2)

2

(T1 + T2 + T3 + δ)(T1 + T2 + T3)

]}
(4.6)

We see explicitly that the δ → 0 limit is finite for d < 4. For d = 4 (6 space-time

dimensions), the integral is only logarithmically divergent in this limit so it is safe to set

δ = 0 in the exponent for all d ≤ 4. Adding the tree contribution, we see that up to one
loop the 1PIR three vertex is as δ → 0 just the tree value times the factor

1

Z1
= 1 + ĝ2

( a
m

)(d−4)/2 ∫ ∞
0

dT1dT2dT3

(T1 + T2 + T3)1+d/2
exp

{
−µ

2

2
(T1 + T2 + T3)

}

exp

{
−T1T3Q

2
1 + T1T2Q

2
2 + T2T3Q

2
3

2(T1 + T2 + T3)

}
(4.7)

for d < 4. For d = 4, we extract the log divergence by breaking the integration domain into

a region with T1 + T2 + T3 > ε for which we may set δ = 0 and a region T1 + T2 + T3 < ε

for which we may drop the exponent and then evaluate it explicitly:∫
T1+T2+T3<ε

dT1dT2dT3
(T1 + T2 + T3)(T1 + T2 + T3 + δ)2

=
1

2

∫ ε
0

TdT

(T + δ)2
∼ 1
2

(
ln
ε

δ
− 1
)

Then the modification factor for d = 4 can be written

1

Z1
∼ 1 + ĝ

2

2

(
ln
ε

δ
− 1
)
+ ĝ2

∫
T1+T2+T3>ε

dT1dT2dT3
(T1 + T2 + T3)3

exp

{
−µ

2

2
(T1 + T2 + T3)− T1T3Q

2
1 + T1T2Q

2
2 + T2T3Q

2
3

2(T1 + T2 + T3)

}
(4.8)

Incorporating the wave function renormalization factors Z3/2, we see that the divergence

can be absorbed in a renormalized coupling

ĝr = ĝ

(
1 +
ĝ2

2
ln
1

µ2δ
+
3

2

ĝ2

6
lnµ2δ

)
= ĝ

(
1 +
ĝ2

4
ln
1

µ2δ

)
(4.9)

Recall that ĝ2 = g2/64π3, where g is the conventionally defined coupling. In terms of it,

the renormalization reads

gr = g

(
1 +

g2

256π3
ln
1

µ2δ

)
(4.10)
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and the Callan-Symanzik beta function is

β(gr) ≡ µdgr
dµ
= − g3r
128π3

+O(g5r ) (4.11)

To compare to the standard result, remember that this result is strictly the Nc →∞ limit,
and g is

√
Nc times the conventional coupling. At finite Nc one can decompose Φ into

adjoint and singlet components. Then one finds different renormalizations for the Adj3,

Adj2S and S3 vertices. The corresponding beta functions are (4.11), (4.11) times 8/3, and

(4.11) times 6, respectively. Then the Nc = 1 beta function is to be compared to the one

for the S3 vertex. The field Φ for the case Nc = 1 is just a single hermitian scalar field.

But with our definition the, cubic term goes to gΦ3/3 instead of the customary gΦ3/3!;

after taking this difference into account, which means multiplying our beta function by 1/4,

we get the known result for Nc = 1, with −3/256π3 multiplying the customary coupling
cubed.

5. Conclusion

The worldsheet “template” for summing planar diagrams has been set up for a whole range

of interesting theories, including QCD and supersymmetric gauge theories. In this talk I

have shown in detail how the field theoretic renormalization program plays out on the

worldsheet for theories with scalar cubic couplings through one loop. We have given in

this case a local worldsheet description of the counter-terms necessary for one loop Lorentz

invariance for space-time dimensions D ≤ 6. More generally it is hoped that the principle
of worldsheet locality will assist the renormalization program for gauge theories in light-

cone gauge. Because field theoretic locality is not manifest in this gauge it is of no direct

use in restricting counter-terms. The new worldsheet locality, if it survives the regulation

of uv divergences, will be manifest and will therefore provide a new principle for classifying

counter-terms. The main obstacle still to be overcome is the worldsheet regulation of the

p+ = 0 singularities that occur in gauge theories in light-cone gauge.

The eventual goal of the worldsheet description of field theory is to bring the powerful

techniques of string theory to bear on the problem of quark confinement in QCD.2 There is

a remote chance that it will enable a completely analytic understanding of this important

problem. But even if this is not possible, a numerical attack on the worldsheet formulation

of the problem may offer insights complementary to those provided by lattice gauge the-

ory. In particular, the two-dimensionality of the worldsheet lattice promises to bring new

efficiencies to numerical spectrum calculations, perhaps allowing a closer approach to the

continuum answers.

Acknowledgments: I am grateful to K. Bardakci and S. Glazek for valuable discussions.

This research was supported in part by the Department of Energy under Grant No. DE-

FG02-97ER-41029.

2This goal is of course shared by practitioners of the AdS/CFT correspondence [13–16].
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