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Abstract: We begin with a brief introduction on N = 1 gauge theories, focusing on
the importance of the effective superpotential in light of the new techniques to compute

it systematically. We then proceed to consider theories for which the Konishi anomaly

proves to be enough to solve exactly for the effective superpotential. As an example we

study a chiral SO(10) gauge theory, where we also discuss the occurrence of dynamical

supersymmetry breaking.

Gauge theories with minimal N = 1 supersymmetry (SUSY) are extensively studied
because, while they are believed to display QCD-like properties like confinement, dynamical

generation of a mass gap and chiral symmetry breaking, they are still more tractable

due to some key SUSY properties like the perturbative non-renormalization theorem and

the holomorphy of the effective superpotential. In particular, the SUSY features make it

possible to derive some exact results about the vacuum structure of these theories.

The crucial ingredient for deriving such results is, as said above, the holomorphy of

the superpotential, both in the fields (possibily effective) and in the couplings [1]. The

perturbative non-renormalization theorem then implies that the (Wilsonian) effective su-

perpotential is as follows:

Weff =Wtree +Wnon−pert, (1)

that is, only non-perturbative corrections are allowed to take place. We will see that it is

precisely these corrections that can be computed in a systematic way. Once that Weff is

known, the exact SUSY vacua can be determined by extremizing it with respect to the low

energy effective (gauge invariant) fields that it depends on. (This holds provided there are

no singularities in the effective Kähler metric, which are not expected in the cases we will

consider below.)

For SUSY gauge theories, one has to assume confinement and generation of a mass gap

in the gauge sector. The latter is implemented by the introduction of the (RG invariant)
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holomorphic scale Λ, defined in terms of the running gauge coupling g(µ) and the θ angle

through:

Λβ = µβe
− 8π2

g2(µ)
+iθ
, (2)

where β is the (positive) coefficient of the one-loop-exact Wilsonian beta function. The

matter sector in its turn is described by a set of gauge invariant operators Xr which at low

energies become the effective fields.

It is then often possible to determine the effective superpotential in the following way.

For Wtree = 0, it can only depend (holomorphically) on the scale Λ and on the effective

fields Xr and it becomes possible to determine the form of Weff = Wnon−pert(Xr,Λ)
by symmetry arguments alone, and eventually fix the constant factor by an instanton

calculation. This approach is based on a case by case analysis of different gauge theories.

We will see below that there is a more systematic approach to compute Weff .

We can now add a tree level superpotential, which is typically written in terms of the

invariants Xr together with their associated couplings, Wtree =
∑
grXr. The perturbative

non-renormalization theorem and the requirement of good behaviour in several decoupling

limits then imply what is often called the “linearity principle” [2], that is, the couplings gr
only enter linearly in Weff :

Weff =
∑
grXr +Wnon−pert(Xr,Λ), (3)

namely, no dependence in gr is allowed in Wnon−pert.
If Wtree gives a mass to some or all of the matter fields, it makes sense to integrate

out the massive Xr. This is done by extremizing (3) with respect to Xr. The result gives

the v.e.v. of Xr in terms of all the couplings and Λ (assuming that all matter fields have

been integrated out). However, by writing the extremization equation as:

gr = −∂Wnon−pert
∂Xr

, (4)

one sees that the linearity principle implies that integrating out Xr is the same as perform-

ing a Legendre transform where Xr and its coupling gr are a conjugate pair.

One then obtains the effective superpotential in terms of the couplings and the holo-

morphic scale, Weff (gr,Λ). Thinking of integrating out as a Legendre transform leads to

invert the relation (4) and integrate in the effective fields through:

Xr =
∂Weff

∂gr
. (5)

The linearity principle guarantees that this procedure is exact as far as the superpotential

of the effective theory is concerned. Of course, the relation (5) for the v.e.v. of a gauge

invariant operator also follows from the path integral of the theory.

The ideas above extend to the gauge sector of the theory. Consider the tree level

action of the gauge theory, with the coupling running at one-loop. We can write it as the

following F-term:

−βS log Λ
µ
, (6)
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where we have introduced the glueball superfield S, defined by:

S = − 1

32π2
trWαWα, Wα = −

√
2iλα + θ

βFαβ + . . . . (7)

The term (6) can be interpreted as saying that S and −β log Λ/µ are conjugate in the same
way as Xr and gr. We can then trade the dependence on Λ in Weff into dependence on S

by simply integrating in S. We compute:

S =
1

β
Λ
∂Weff

∂Λ
, (8)

and then invert it to reexpress Λ = Λ(S, gr).

Finally, we can express the effective superpotential in terms of this new set of variables:

Weff (S, gr,Λ) =WV Y (S,Λ) +Wpert(S, gr). (9)

We have split it into two parts. The first, WV Y , is the pure gauge part and takes the

Veneziano-Yankielowicz form [3]. (Note that we have re-added the “tree level” term (6) so

that the holomorphic scale Λ appears instead of the cut-off µ.) By extremizing it one gets,

for instance for a pure SU(N) theory, the relation SN = Λ3N .

The second part, Wpert(S, gr), can be computed systematically and in a perturbative

expansion, as pointed out recently in [4, 5, 6]. Note however that, since by virtue of the

linearity principle we do not lose any information by integrating out and in again, exactly

the same information is contained in Weff (S, gr) and in Wnon−pert(Xr,Λ).
The new techniques developped in [4, 5, 6] are reviewed in [7]. Here we will instead

focus on a class of theories for which this approach is at best problematic. Indeed, the

approach of [6] relies on the presence of a matter field in the adjoint representation of

the gauge group, while the perturbative method of [5], which applies to more generic

representations, requires the matter fields to have a mass. Both of these requirements are

not met by purely N = 1 theories (i.e. with no adjoint) with chiral matter content.1
On the other hand, in purely N = 1 gauge theories one can see that the Konishi

anomaly relations [9] are often enough to solve forWpert(S, gr) – see [10] for several examples

of this, including some particular chiral theories.

Here we will review how the Konishi anomaly can be used to determine the effective

superpotential, and then apply the method to a chiral theory which displays dynamical

SUSY breaking.

The Konishi anomaly for a U(1) rotation of the superfield Φ can be roughly written

as:

D̄2Φ†eV Φ =
∑
#grXr −#S, (10)

where on the LHS the action of V is always in the representation to which Φ belongs, and

on the RHS the numerical coefficients depend on the specific theory being considered. The

first term is generated by the tree level superpotential, while the second term is generated

at one loop. There will be as many relations as there are fundamental matter fields.

1A chiral theory containing also adjoint matter has been considered in [8]. In this case the techniques

of [6] are applicable.
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The highest component of (10) is nothing else than the usual chiral anomaly. More

interesting to us is the lowest component of (10). It is a relation between chiral operators,

i.e. precisely the class of operators that can have a non-trivial v.e.v. in a SUSY vacuum.

However, the chiral operator on the LHS can be written as a SUSY variation of another

gauge invariant operator, and thus it trivially has a vanishing v.e.v. in a SUSY vacuum.

We are thus left with a set of relations which can be solved for the v.e.v.s of Xr in terms of

the couplings gr and S, the gluino condensate. Once this is done, one can plug these values

into the relation (5) and obtain linear differential equations for the coupling dependent

part of Weff , that is Wpert. The last step consists in adding the relevant S-dependent

(VY) superpotential, by considering some limit where the low energy physics simplifies.

It is straightforward to apply this method to analyze, for instance, SU(Nc) SQCD

with some flavors, Nf < Nc. By adding a mass term for the quark superfields, one finds

an expression for the meson matrix in terms of the mass matrix and S, which then, after

taking into account the pure SU(Nc) low energy physics, integrating out the glueball

superfield and integrating in the meson superfield, leads to the celebrated Affleck-Dine-

Seiberg superpotential:

Wnon−pert = (Nc −Nf )
(
Λ3Nc−Nf
detM

) 1
Nc−Nf

. (11)

Note that this method directly fixes the numerical coefficient, without having to ultimately

resort to instanton computations.

We now turn to a different set up, chiral theories which have been argued to display

dynamical SUSY breaking [11, 12]. Some of these have been studied along these lines in [13].

Here we devote our attention to one of the simplest chiral theories, namely SO(10) with

one matter field Σ in the spinorial 16 representation. This theory is peculiar because there

are no invariants that can be written. This means that there is no classical moduli space,

but also no way a superpotential, either tree level or non-perturbative, can be written.

One can however write a Konishi anomaly relation as in (10):

D̄2Σ†eV Σ = −4S. (12)

In a SUSY vacuum, the consequence of (12) would be to impose S = 0. However two lines

of arguments can be brought up against this conclusion. Following [11], one could argue

that in such a symmetric vacuum, anomaly matching of unbroken U(1) global symmetries

would imply a highly unlikely SUSY effective theory. Or, in the spirit of [12], a strong

coupling instanton computation would yield 〈S〉 6= 0 in the vacuum.
Both of these lines of arguments lead to removing the assumption that there exists a

SUSY vacuum. However since there is no small parameter controlling the SUSY breaking,

this is often referred to as dynamical SUSY breaking at strong coupling. Another well

known and very similar example is the one of SU(5) with matter in the antisymmetric 10

and anti-fundamental 5̄ representations.

At this point we use a trick to make the theory “calculable”, also employed in [14]

albeit in a different approach. We add a flavor v in the 10 of SO(10). Now we can write
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two invariants:

X = v2 and Y = vΣ2, (13)

and we can use them to write a tree-level (renormalizable) superpotential:

Wtree = mX + λY. (14)

The Konishi anomaly relations now read:

D̄2v†eV v = 2mX + λY − 2S, (15)

D̄2Σ†eV Σ = 2λY − 4S. (16)

These relations now imply that in a SUSY vacuum Y = 2S/λ and, if m 6= 0, X = 0.
At this point we can either use the equations of motion of the fundamental fields, or use

a “classical” generalization of the Konishi relations (where the one-loop term is vanishing)

to argue that when m 6= 0, we would also have Y = 0 in a SUSY vacuum, and consequently
also S = 0. To prevent being back in the same situation as before, we take for the time

being m = 0. Thus classically X can take any value and parametrizes the vacuum. On the

other hand the Konishi relations fix the v.e.v. of Y , so that we can write:

Y =
2S

λ
=
∂Weff

∂λ
. (17)

This is straightforwardly solved as:

Weff = C(S) + S log λ
2. (18)

To determine C(S), we observe that when X 6= 0, the gauge symmetry is broken to SO(9).
Moreover Σ acquires a mass through the tree level superpotential. Thus for large enough

v.e.v. X � Λ2, the low energy theory is expected to be pure SO(9) SYM. The full effective
superpotential is then:

Weff = 7S(1 − log S
Λ3
) + S log λ2. (19)

It implies for instance that there are 7 SUSY vacua, all of them additionally parametrized

by X.

We can now integrate in Y and integrate out S to get:

Wnon−pert = 5
(
4Λ21

Y 2

) 1
5

. (20)

This is a runaway superpotential like (11).

Now we can consider turning on the mass term mX in the tree-level superpotential.

Since we know that already classically this term is compatible with a SUSY vacuum only

for Y = 0, that is, precisely at the singularity of (20), we see that the extremization of

the full superpotential will have no solutions. However, since the mass term lifts all the

flat directions, we still expect the potential of the theory to have a non-SUSY minimum,

with the location being given in terms of m. For small m, we expect the minima to be
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located at large values of the invariants X and Y , which means that the original SO(10)

gauge symmetry is broken at weak coupling (of course here after gauge symmetry breaking

a non abelian gauge symmetry subsists, which makes the low energy physics still strongly

coupled, unlike the “calculable” theory of [11]). To recover the original model, one takes

the limit m→∞, so that the matter field v decouples. This simply brings back the SUSY
breaking vacuum to a strong SO(10) coupling, thus consolidating (and systematizing) the

arguments made before on the theory without the vectorial matter.

To conclude, in this contribution we hope to have convinced the reader that the Konishi

anomaly provides a systematic way to derive non-perturbative superpotentials in purely

N = 1 theories, that is theories where the method [6] of generalizing the Konishi anomaly
is typically not available.
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