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Abstract: Maximal and non-maximal supergravities in three spacetime dimensions al-

low for a large variety of semisimple and non-semisimple gauge groups, as well as complex

gauge groups that have no analog in higher dimensions. In this contribution we review

the recent progress in constructing these theories and discuss some of their possible ap-

plications.

1. Introduction

Locally supersymmetric theories in three spacetime dimensions coupled to matter have

at most N = 16 supersymmetries [1]. The bosonic matter is described by scalar fields,

which parametrize a target space belonging to a nonlinear sigma model. While there

is a large number of possible target spaces when N ≤ 4, the possibilities become more
restricted with increasing N : beyond N = 4, the target spaces are coset spaces G/H,

where H is the maximal compact subgroup of G. For all values of N these supergravities

may be invariant under a bosonic symmetry group G, which commutes with the Lorentz
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transformations and spacetime diffeomorphisms and which involves (subgroups of) the

target-space isometry group and the R-symmetry group SO(N). In that case there exist

supersymmetric deformations where a subgroup G0 ⊂ G is promoted to a local symmetry
[2, 3, 4, 5], thereby furnishing three-dimensional analogs of the gauged supergravities in

dimensions D ≥ 4 that have been known for a long time. In contrast to higher-dimensional
gauged supergravities, the vector fields in general appear via a Chern-Simons (CS) rather

than a Yang-Mills (YM) term. As it turns out, there is a surprisingly rich structure and

variety of possible gaugings, including semisimple and non-semisimple gauge groups as well

as novel complex gaugings which have no analog in D ≥ 4 dimensions.
There are several reasons why D = 3 (gauged) supergravities are of more general

interest. Below we list some of these reasons.

• During the last five years there has been enormous interest in the so-called AdS/CFT
correspondence, according to which a supergravity theory with an AdS groundstate

is related to a (super)conformal theory living on the boundary of the AdS space (see

[6] for a review and an extensive list of references). Much of this interest has been

focused on the AdS5/CFT4 correspondence, relating gauged maximal supergravity

with gauge group SO(6) on AdS5 [7] to the maximally supersymmetric Yang-Mills

theory on its boundary. While in this case one has essentially only one theory to

test the conjectured correspondence, the number of possibilities is far greater when

one descends by two in the number of dimensions: the AdS3/CFT2 correspondence

offers a much larger bestiary of examples, because on the one hand there are far more

superconformal theories in two dimensions, and on the other hand because gauged

supergravities are more numerous in three dimensions.

• (Ungauged) extended supergravities exhibit their maximal global and most “unified”
symmetry in three dimensions1, because all tensor gauge fields can be dualized to

scalar fields, so that the propagating bosonic degrees of freedom are uniformly de-

scribed by scalar fields, which usually live on a target space with a nice geometrical

structure. In particular for the maximal N = 16 theory, the maximally extended

exceptional Lie algebra E8 makes its appearance [8, 9], whereas in dimensions D = 4

and D = 5 the maximal-rank exceptional symmetries compatible with maximal su-

persymmetry are E7 and E6, respectively [10].

• Unlike the abelian duality relating scalar fields and antisymmetric tensor gauge fields
in higher dimensions, the duality between scalar and vector fields can be extended to

non-abelian gauge groups in three dimensions. There is a novel equivalence between

YM and certain CS gauge theories (which also holds for non-supersymmetric theories)

which has no analog in dimensions D ≥ 4. Namely, as shown in [11, 5], in three
dimensions, any YM gauged supergravity with gauge group GYM is equivalent to a

CS gauged supergravity with non-semisimple gauge group GYM n T with a certain
translation group T . Because in the latter formulation all the vectors appear via a

1Here we will not be concerned with the infinite dimensional global symmetries E9, E10 and E11, which

are known, resp. conjectured, to emerge for maximal supergravities in dimensions D ≤ 2.
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CS term rather than a YM-type kinetic term, no new propagating degrees of freedom

are generated by the gauging, as is required by the preservation of supersymmetry.

Altogether, the CS gauged supergravities thus not only contain the YM-type gauged

theories but encompass a much larger class of theories.

• Because the vectors appear via a CS term and do not propagate, their number and
hence the dimension of the gauge group are not determined a priori, unlike in dimen-

sions D ≥ 4. For this reason, the possible gaugings are more numerous and exhibit a
richer structure than the corresponding D ≥ 4 gauged supergravities. Similar com-
ments apply to the scalar potentials of these theories which provide a large variety of

symmetry breaking patterns with vacua of the anti-de Sitter, Minkowski or de Sitter-

type [12, 13, 14]. Among the novel features without analog in higher dimensions let

us mention the existence of maximally supersymmetric vacua for non-compact gauge

groups (cf. table 2 in section 9) and the occurrence of stable AdS-type vacua with

completely broken supersymmetry (for D ≥ 4, all known non-supersymmetric vacua
of maximally gauged supergravities are unstable [15, 16, 17, 18]).

• Except for certain non-semisimple gaugings, none of the D = 3 gauged supergravities
can be obtained by any known mechanism from higher dimensional supergravity.

The very existence of these theories may thus point to the existence of new “cusps”

of M theory, and the existence of new geometrical structures in eleven dimensions

of the type suggested in [19, 20] and references therein. The theories which do

originate from higher dimensions usually appear with a YM-type kinetic term, and

therefore necessarily require non-semisimple gauge groups in the CS-type formulation,

as described above. In particular they include all those theories obtained by reduction

of higher-dimensional maximal gauged supergravities on a torus, or by Kaluza-Klein

compactification of higher-dimensional supergravities on some internal manifold, such

as for instance IIA/IIB supergravity compactified on the seven-sphere, or D = 5

supergravity on the two-sphere.

• Just like D = 11 supergravity can be viewed as a strong-coupling limit of D = 10
IIA superstring theory [21] one may speculate that four dimensions might arise out

of a strongly coupled D = 3 supergravity theory [22]. In this context, a special role

is played by the dilaton field, whose expectation value on the one hand ‘measures’

the size of the S1 on which one reduces, and on the other hand appears as the string

coupling constant. The connection between the pertinent D = 3 potentials and the

potentials of D ≥ 4 gauged supergravity potentials has been studied in [4], where the
dilaton is identified with the scalar field associated with a certain grading operator

which is an element of the relevant (non-semisimple) gauge group.

• Gauged supergravity can provide an effective and economical description of an infi-
nite number of Kaluza-Klein supermultiplets in a way that is again without analog

in dimensions D ≥ 4. This has been recently demonstrated for the compactification
of matter-coupled half maximal D=6 supergravity on AdS3 × S3 which leads to an
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effective theory in three dimensions with N = 8 local supersymmetries [23]. More

specifically, the self-interactions of the the spin-1 Kaluza-Klein towers are fully de-

scribed by an N = 8 gauged supergravity with gauge group SO(4) n T∞, where T∞
is an infinite dimensional translation group, and the gauge group is embedded into

the global symmetry group SO(8,∞). (The second entry is infinite because there
are infinitely many N = 8 matter supermultiplets.) In particular, this embedding

is compatible with the quantum numbers of the Kaluza-Klein supermultiplets, and

the masses of all Kaluza-Klein states are correctly recovered from a single scalar

potential.

• Finally, there are intriguing connections to recent developments in the differential
geometry of three-dimensional manifolds. On the one hand, the models contain the

CS Lagrangians that can be used to describe knots and links and their characteristic

polynomials (invariants) [24, 25, 26]. On the other hand they contain the requisite

matter fields to realize the various elementary Thurston geometries [27, 28]; in par-

ticular, recent progress in establishing part of the Thurston conjecture [29] has been

based on the introduction of a ‘dilaton field’. The question is therefore whether these

gauged supergravities can provide a unified framework for these so far disconnected

parts of mathematics.

This review is organized as follows. In section 2 we briefly review the results of [1]

on the ungauged supergravity theories in three dimensions. The global invariances of the

corresponding Lagrangians are discussed in section 3. In section 4 we show that arbi-

trary gauge field couplings of Yang-Mills-type in three dimensions may always be brought

into the form of particular Chern-Simons interactions. For general gaugings we may thus

restrict attention to the latter type of theories. In section 5 and 6 we present the full La-

grangian and transformation rules of the gauged supergravities in three dimensions, as well

as the conditions that must be satisfied in order that the gauging preserves supersymmetry.

The theories for N ≤ 4 supersymmetries are discussed in more detail in section 7, while
sections 8 and 9 focus on the structure of the N > 4 theories, and in particular on the

admissible gauge groups for the maximal (N = 16) theory. There, we also mention some

possible implications of our results for the AdS3/CFT2 correspondence.

2. Supergravity coupled to nonlinear sigma models

In this section we briefly summarize the results of [1] (for a discussion of the peculiarities

of pure gravity in three space-time dimensions, we refer to [30, 31]). The fields of the

nonlinear sigma model are the target-space coordinates φi and their superpartners χi, with

i = 1, . . . , d; the supergravity fields are the dreibein eµ
a, the spin-connection field ωµ

ab and

N gravitino fields ψIµ with I = 1, . . . ,N . The gravitinos transform under the R-symmetry

group SO(N), which is not necessarily a symmetry group of the Lagrangian.

Since the fields are all massless at this stage, one may assume that no matter fields

other than scalars and spinors are required, because helicity is trivial in three dimensions.

The scalar fields parametrize a target space endowed with a Riemannian metric gij(φ).
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Pure supergravity is topological in three dimensions and exists for an arbitrary number N

of supercharges and corresponding gravitinos [32]. Its coupling to a nonlinear sigma model

requires the existence of N − 1 hermitean, almost complex, structures fPij(φ), labeled by
P = 2, . . . ,N , which generate a Clifford algebra,

fPik f
Qk
j + f

Qi
k f
Pk
j = −2 δPQ δij . (2.1)

From the fP one constructs 12N(N−1) tensors f IJij = −fJIij = −f IJji that act as generators
for the group SO(N),

fPQ = f [P fQ] , f1P = −fP1 = fP , (2.2)

where, here and henceforth, I, J = 1, . . . ,N . The f IJ are covariantly constant, both with

respect to the Christoffel and SO(N) target-space connections, Γij
k and QIJi , respectively,

Di (Γ, Q) f
IJ
jk ≡ ∂if IJjk − 2Γi[kl f IJj]l + 2Q

K[I
i f

J ]K
jk = 0 . (2.3)

The SO(N) connections QIJi (φ) are nontrivial in view of

RIJij (Q) ≡ ∂iQIJj − ∂jQIJi + 2Q
K[I
i Q

J ]K
j = 1

2f
IJ
ij . (2.4)

For N = 2 the target space is Kähler and f12 is a complex structure. The SO(2)

holonomy is undetermined. For N = 3, there are three (almost) complex structures f12, f23

and f31, and the target space is a quaternion-Kähler space. The case N = 4 is special:

there exists a tensor J ij, defined by

J = 1
24ε
IJKLf IJfKL , J2 = 1 , (2.5)

which has eigenvalues ±1, commutes with the almost complex structures and is covariantly
constant. This implies that the target space is locally the product of two separate Rieman-

nian spaces of dimension d±, where d++d− = d and d± are both multiples of 4. These two
subspaces are quaternion-Kähler and correspond to inequivalent N = 4 supermultiplets.

For N = 4 we note the following identity,

f IJ ij fKLij = 4
(
d+ P

IJ,KL
+ + d− PIJ,KL−

)
, (2.6)

with (anti)self-dual projectors,

P
IJ,KL
± = 1

2δ
I[K δL]J ∓ 14ε

IJKL . (2.7)

For N > 2 the target space is an Einstein space with nontrivial SO(N) holonomy. The

holonomy group is contained in SO(N) × H′ ⊂ SO(d) which must act irreducibly on the
target space. The group H′ must be a subgroup of SO(k) (for N = 7, 8, 9 mod 8), U(k)
(for N = 2, 6 mod 8), or Sp(k) (for N = 3, 4, 5 mod 8), where k denotes the number of

independent supermultiplets whose scalar fields parametrize the target space. For N = 4
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N Target Space d

1 Riemann manifoldMR k

2 Kähler manifoldMK 2k

3 quaternion Kähler manifoldMQK 4k

4 quaternion Kähler manifoldsMQK1×MQK2 4(k1+k2)

5 Sp(2, k)/(Sp(2)×Sp(k)) 8k

6 SU(4, k)/(SU(k)×SU(4)×U(1)) 8k

8 SO(8, k)/(SO(8)×SO(k)) 8k

9 F4(−20)/SO(9) 16

10 E6(−14)/(SO(10)×U(1)) 32

12 E7(−5)/(SO(12)×Sp(1)) 64

16 E8(8)/SO(16) 128

Table 1: Target spaces for D = 3 supergravities. The number of independent supermultiplets is

denoted by k. For N = 4 there exist two types of (inequivalent) supermultiplets, counted by k1
and k2.

these results are more subtle because of the product structure. We note the following

relations (always assuming N > 2),

Rijkl =
1
8

(
f IJij f

IJ
kl + Cαβ h

α
ij h
β
kl

)
,

Rijkl f
IJ kl = 1

2

(
d+ P+

IJ,KL + d− P−IJ,KL
)
fKLij ,

Rij = (N − 2 + 18d) gij +
1
8(d+ − d−)Jij , (2.8)

where, for N 6= 4, one must set Jij = 0 and P±IJ,KL = 1
2δ
I[KδL]J . In the first equation,

Cαβ(φ) is a symmetric tensor and the target-space tensors h
α
ij(φ) form a basis of antisym-

metric tensors commuting with the almost complex structures. These tensors generate the

H′ factor of the holonomy group with corresponding structure constants fαβγ .
Beyond N = 4 the target space geometries become very restricted. This is shown in

table 1, where k denotes the number of matter supermultiplets coupled to supergravity.

Remarkably, not all values of 4 < N ≤ 16 can be realized: matter-coupled supergravities
exist only for N = 5, 6, 8, 9, 10, 12 and 16 supercharges. Furthermore, only for N ≤ 8 is
it possible to include an arbitrary number k of supermultiplets, whereas for N ≥ 9 there
exists only one theory for each admissible value of N .

Let us now turn to the Lagrangian and supersymmetry transformations. We adopt

a manifestly SO(N) covariant notation which allows to select the N−1 almost complex
structures from the f IJ tensors by specifying some arbitrary unit N -vector αI and identi-

fying the complex structures with αJf
JI . Accordingly we extend the fermion fields χi to
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an overcomplete set, χiI , defined by

χiI =
(
χi, fPij χ

j
)
. (2.9)

The fact that we have only d fermion fields, rather than dN , is expressed by the SO(N)

covariant constraint,

χiI = PIJ
i
j χ
jJ ≡ 1

N

(
δIJδij − f IJ ij

)
χjJ . (2.10)

We should stress, that the introduction of χiI is a purely notational convenience; at every

step in the computation one may change back to the original notation by choosing χi =

αIχ
iI . The covariant notation does not imply that the theory is SO(N) invariant; rather

the covariant setting allows us to treat the N supersymmetries and the corresponding

gravitinos on equal footing.

The Lagrangian then takes the form

L0 = −12 i ε
µνρ
(
eµ
aRνρa + ψ̄

I
µDνψ

I
ρ

)
− 12e gij

(
gµν ∂µφ

i ∂νφ
j +N−1χ̄iI/DχjI

)
+ 14e gij χ̄

iIγµγνψIµ (∂νφ
j + ∂̂νφ

j)− 1
24eN

−2Rijkl χ̄iIγaχjI χ̄kJγaχlJ

+ 1
48eN

−2 (3 (gij χ̄iIχjI)2 − 2(N − 2) (gij χ̄iIγaχjJ)2) , (2.11)

with the covariant derivatives

Dµψ
I
ν =
(
∂µ +

1
2ω
a
µ γa
)
ψIν + ∂µφ

iQIJi ψ
J
ν ,

Dµχ
iI =

(
∂µ +

1
2ω
a
µ γa
)
χiI + ∂µφ

j
(
Γijk χ

kI +QIJj χ
iJ
)
. (2.12)

As in [1, 5], we use the Pauli-Källén metric with hermitean gamma matrices γa, satisfying

γaγb = δab + iεabcγ
c. The Lagrangian is invariant under the following supersymmetry

transformations

δeµ
a = 1

2 ε̄
Iγa ψIµ ,

δψIµ = Dµε
I − 18gij χ̄

iIγνχjJ γµν ε
J − δφiQIJi ψJµ ,

δφi = 1
2 ε̄
I χiI ,

δχiI = 1
2

(
δIJ1−f IJ

)i
j /̂∂φ

j εJ − δφj
(
Γijk χ

kI +QIJj χ
iJ
)
, (2.13)

with the supercovariant derivative ∂̂µφ
i ≡ ∂µφ

i − 1
2 ψ̄
I
µχ
iI . Observe that the terms pro-

portional to δφ in δχiI do not satisfy the same constraint (2.10) as χiI itself, because

the projection operator PIJ
i
j itself transforms under supersymmetry, such that only the

projector condition is supersymmetric.

3. Isometries and R-symmetries

The Lagrangian (2.11) and the transformation rules (2.13) are consistent with target-space

diffeomorphisms and field-dependent SO(N) R-symmetry rotations. These transformations
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correspond to reparametrizations within certain equivalence classes, but do not, in general,

constitute an invariance. The SO(N) rotations act on ψIµ, χ
iI and QIJi according to

δψIµ = SIJ(φ)ψJµ , δχiI = SIJ(φ)χiJ , δQIJi = −DiSIJ(φ) . (3.1)

From (2.4), one concludes that the f IJ should be rotated correspondingly,

δf IJ = 2SK[I(φ) fJ ]K . (3.2)

The bosonic invariance group G of the Lagrangian (2.11) that commutes with the

Lorentz transformations and spacetime diffeomorphisms, is a subgroup of the product of

the target-space isometries times the R-symmetry transformations. It is generated by those

target-space isometries whose action on the QIJi and f
IJ may be absorbed by a special

SO(N) transformation (3.1), (3.2). Specifically, its generators are Killing vector fields

Xi(φ) satisfying

LX gij = 0 , LXQIJi +DiSIJ(φ,X) = 0 ,

LXf IJij − 2SK[I(φ,X) f
J ]K
ij = 0 , (3.3)

where SIJ(φ,X) is the parameter of an infinitesimal SO(N) rotation which depends both
on Xi(φ) and on the scalar fields. The Lagrangian (2.11) is then invariant under the

combined transformations,

δφi = Xi(φ) , δψIµ = SIJ(φ,X)ψJµ , δχiI = χjI∂jX
i + SIJ(φ,X)χiJ . (3.4)

The fermion transformations can be rewritten covariantly,

δψIµ = VIJ(φ,X)ψJµ − δφiQIJi ψJµ ,

δχiI = DjX
i χjI + VIJ(φ,X)χiJ − δφj

(
Γijk χ

kI +QIJj χ
iJ
)
, (3.5)

where VIJ(φ,X) ≡ XjQIJj (φ) + SIJ(φ,X). Using (2.4) and (2.3), one verifies that the
second equation of (3.3) corresponds to,

DiVIJ(φ,X) = 1
2f
IJ
ij (φ)X

j(φ) , (3.6)

which shows that VIJ(φ,X) can be regarded as as the moment map associated with the
isometry Xi. After contracting (3.6) with fMN ij , one obtains

f IJ ij DiXj =

{
1
2dVIJ , for N 6= 2, 4

(d+ P
IJ,KL
+ + d− PIJ,KL− )VKL , for N = 4

(3.7)

The last equation of (3.3) coincides with the integrability condition related to (3.6) and is

thus automatically satisfied.

For N > 2, the above analysis shows that there are no obstructions for extending an

isometry to an invariance of the Lagrangian. For N = 2 this is different: VIJ is deter-
mined by (3.6) up to an integration constant related to the invariance of the Lagrangian
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under constant SO(2) transformations of the fermions. The isometries leave the complex

structure invariant and are therefore holomorphic. For N = 4 the (anti)selfdual almost

complex structures PIJ,KL± fKL live in the corresponding d±-dimensional quaternion-Kähler
subspace. The same holds for the moment maps, PIJ,KL± VKL, which according to (3.6) de-
pend only on the corresponding subspace coordinates. Note, however, that when one of

the subspaces is trivial, say when d− = 0, then PIJ,KL− VKL corresponds to a triplet of
arbitrary constants. This is a consequence of the fact that the model in this case has a

rigid SO(3) invariance acting exclusively on the fermions.

These integration constants in VIJ correspond to the so-called Fayet-Iliopoulos (FI)
terms that are known from the gaugings of four-dimensional N = 1 andN = 2 supergravity.

Indirectly, the above results may have implications for higher-dimensional gauged super-

gravities, as follows from considering their reduction to three dimensions. For instance, the

reduction of d = 4,N = 1 supergravity leads to d = 3,N = 2 supergravity for which the

moment maps can always be modified by an additive constant. Consequently, we expect

that there are no obstructions against a FI term in four dimensions, which is indeed the

case. For d = 4,N = 2 supergravity the situation is more subtle. The reduction of these

theories to three dimensions leads to a product of two quaternion-Kähler target spaces,

one associated with the vector multiplets and one associated with the hypermultiplets in

four dimensions. As in three dimensions there are no integration constants in the moment

maps unless one of these quaternion-Kähler spaces is of dimension zero, it follows that FI

terms are only possible in four dimensions in the absence of hypermultiplets, a result which

is indeed well known.

The generators of G are labeled by indicesM,N . . . and generate an algebra g. They

consist of combined isometries generated by Killing vectors XMi and infinitesimal SO(N)

rotations SM IJ ≡ SIJ(φ,XM). For N = 2, 4 one may have the situation that some of the

XM vanish, while the corresponding SM IJ are constant. Closure of g implies,

XMj ∂jX
N i −XNj ∂jX

Mi = fMNKX
Ki , (3.8)

[SM,SN ]IJ −XMi ∂iSN IJ +XN i ∂iSM IJ = −fMNK SK IJ , (3.9)

with structure constants fMNK.

From the integrability condition of (3.6) one derives thatDiXj− 14 fMNij VMN commutes
with the almost complex structures. For N > 2 this implies that it can be decomposed in

terms of the antisymmetric tensors hαij introduced in (2.8),

DiX
M
j − 14f

IJ
ij VM IJ ≡ hαij VMα . (3.10)

Introducing the notation VM i ≡ XM i, we establish the following system of linear differen-

tial equations,

DiVM IJ = 1
2 f
IJ
ij VM j ,

DiVMα = 1
8 Cαβ h

β
ij VM j ,

DiVMj = 1
4 f
IJ
ij VM IJ + hαij VMα , (3.11)
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where the covariant derivative contains the Christoffel connection as well as the SO(N)×H′
connections. Furthermore, we derive

fMNK VK IJ = 1
2 f
IJ
ij VMiVNj − [VM, VN ]

IJ
,

fMNK VKα = 1
8Cαβ h

β
ij VM i VN j + fβγα VMβ VN γ ,

fMNK VKi = 1
4f
IJ
ij (VM IJ VN j − VN IJ VM j) + hαij(VMα VN j − VNα VM j) . (3.12)

Under the G-transformations the quantities VM IJ , VM i and VMα transform according to
the adjoint representation of G, up to field-dependent SO(N) × H′ transformations, as is
shown by,

VN iDiVM IJ = −fMNK VK IJ + [VN ,VM]IJ ,
VN iDiVMα = −fMNK VKα + fβγα VN γ VMβ . (3.13)

For VM i this result is captured by (3.8).

4. Yang-Mills versus Chern-Simons gauged theories

So far we have been concerned with massless matter fields. We now turn to supersymmetric

deformations of these theories that can be obtained by gauging. In that case two issues

arise immediately. First the theories discussed so far did not include vector fields that are

obviously needed to effect the gauging. Secondly, when the fields are not massless then it

is no longer obvious that matter supermultiplets can be exclusively described in terms of

scalar and spinor fields, and one might want to include other fields as well. As it turns out,

these two issues are somewhat related.

First of all, one can always include vector gauge fields without changing the number of

dynamic degrees of freedom, by introducing CS terms. This seems to leave open the option

of adding additional standard YM kinetic terms (which may eventually acquire mass terms

by spontaneous symmetry breaking) to describe some of the matter degrees of freedom. In

fact, all the theories that have been constructed by direct dimensional reduction appear as

YM rather than CS gauged theories [33, 34].

However, it turns out that the YM Lagrangians in three dimensions are simply equiv-

alent to particular CS Lagrangians. The dynamic degrees of freedom are then carried by

extra (compensating) scalar fields. In this conversion every gauge field is replaced by two

gauge fields and a new scalar field, which together describe the same number of dynamic

degrees of freedom as the original gauge field. The nonabelian gauge group is enlarged to

a bigger gauge group which is necessarily non-semisimple. To see how this comes about,

consider a Lagrangian in three spacetime dimensions with YM kinetic terms quadratic in

the field strengths and with moment interactions proportional to gauge covariant tensors

OAµν ,

L = −14
√
g
(
FAµν(A)+O

A
µν(A,Φ)

)
MAB(Φ)

(
FBµν(A)+OBµν(A,Φ)

)
+ L′(A,Φ) . (4.1)

Here AAµ denote the nonabelian gauge fields labeled by indices A,B, . . ., and Φ generically

denotes possible matter fields transforming according to certain representations of the
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gauge group GYM. The structure constants of this group are denoted by fAB
C , so that the

field strengths read,

FAµν(A) = ∂µA
A
ν − ∂νAAµ − fBCAABµACν .

The symmetric matrixMAB(Φ) may depend on the matter fields and transforms covariantly

under GYM. The last term, L′(A,Φ), in the Lagrangian is separately gauge invariant and
its dependence on the gauge fields is exclusively contained in covariant derivatives of the

matter fields or in topological mass terms (i.e. CS terms).

Usually the duality is effected by regarding the field strength as an independent field

on which the Bianchi identity is imposed by means of a Lagrange multiplier. Because the

Lagrangian (4.1) depends explicitly on both the field strengths and on the gauge fields, we

proceed differently and write the field strength in terms of new vector fields BAµ and the

derivative of compensating scalar fields φA, all transforming in the adjoint representation

of the gauge group. The explicit expression,

1
2 i
√
g εµνρ(F

Aνρ(A) +OAνρ(A,Φ)) = MAB(BB µ −DµφB) , (4.2)

where MACM
CB = δBA , should be regarded as a field equation that follows from the new

Lagrangian (4.5) that we are about to present. The structure of (4.2) implies that we are

dealing with additional gauge transformations as its right-hand side is invariant under the

combined transformations,

δBAµ = DµΛA , δφA = ΛA , (4.3)

under which all other fields remain invariant. The corresponding abelian gauge group, T ,
has nilpotent generators transforming in the adjoint representation of GYM. Obviously,

the φA act as compensating fields with respect to T . The combined gauge group is now a
semidirect product of GYM and T and its dimension is twice the dimension of the original
gauge group GYM. The covariant field strengths belonging to the new gauge group are

FAµν(A) and FAµν(B,A) = 2D[µBAν], and transform under T according to δFAµν = 0 and
δFAµν = −ΛC fABC FBµν . The fully gauge covariant derivative of φA equals

D̂µφA ≡ DµφA −BAµ = ∂µφA − fABC ABµ φC −BAµ , (4.4)

and is invariant under T transformations.
The field equations corresponding to the new Lagrangian,

L = −12
√
g D̂µφAM

AB(Φ)D̂µφB +
1
2 i ε

µνρ (FAµνBAρ −OAµν D̂ρφA) + L′(A,Φ) , (4.5)

lead to (4.2) as well as to the same field equations as before for the matter fields Φ. Observe

that the Lagrangian is fully gauge invariant up to a total derivative. In this way, the YM

Lagrangian has now been converted to a CS Lagrangian, with a different gauge group and

a different scalar field content, although the theory is still equivalent on-shell to the original

one. To obtain the original Lagrangian (4.1), one simply imposes the gauge φA = 0 and

integrates out the fields BAµ.

– 11 –
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In figure 1 we schematically illustrate the implications of this equivalence for gauged

supergravities in three dimensions. When descended from higher dimensions, the ungauged

theories usually appear with the physical bosonic degrees of freedom in different guises, as

scalar and vector fields. In order to exhibit possible hidden symmetries, one then dualizes

the vector fields after which all bosonic degrees of freedom are represented by scalar fields

(in principle there can also exist ‘intermediate’ versions). The resulting theory is then on-

shell equivalent to the original one. Both theories can be gauged, but as the table shows,

the on-shell equivalence persists.

Perhaps it is worth pointing out that introducing a mass term to a CS theory or a YM

theory has different consequences with regard to the degrees of freedom [35]. An abelian

CS term with a regular mass term proportional to 12mA 2µ yields the following massive wave

equation for the vector field,

∂µAν − ∂νAµ = ± imεµνρA
ρ , (4.6)

which describes massive degrees of freedom with spin only equal to +1 or −1, depending
on the sign of the mass term. In contradistinction, a YM kinetic term with a regular mass

term 1
2m
2A 2µ leads to massive degrees of freedom carrying both spin +1 and spin −1. This

doubling of degrees of freedom is consistent with the YM-CS conversion described above,

as a YM theory takes the form of a CS theory with twice the number of vector fields.

5. The embedding tensor

We now wish to deform the Lagrangian (2.11) such that it becomes invariant under a

subset of transformations (3.4) with spacetime dependent parameters. The corresponding

subalgebra g0 ⊂ g is characterized by an embedding tensor ΘMN via

Xi = gΘMN Λ
M(x)XN i , SIJ = gΘMN ΛM(x)SNIJ , (5.1)

g
a
u
g
in
g

g
a
u
g
in
g

Gauged theory (4.5)

d scalars, 2ν CS-vectors

gauge group: G0 n T

Ungauged theory

d−ν scalars,
ν abelian vectors

Gauged theory (4.1)

d−ν scalars, ν YM-vectors
gauge group: G0

dualizationUngauged theory

d scalars, no vectors

elimination

by means of (4.2)

Figure 1: CS and YM gauged supergravity in three dimensions
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with gauge parameters ΛN (x) depending on the spacetime coordinates, and a gauge cou-

pling constant g. Unless the gauge group G0 coincides with the full symmetry group G, the

embedding tensor acts as a projector which reduces the number of independent parameters

according to

dim g0 = rankΘ . (5.2)

Although it is not obvious from the way ΘMN appears in (5.1) we will see below that it

must be gauge invariant and symmetric under interchange of the indices M and N . Via
tMΘMN t

N it defines an element in the symmetric tensor product (g⊗ g)sym. In order that
the gauge tranformations generate a group, ΘMN must satisfy the condition,

ΘMP ΘNQ f
PQ

R = f̂MN
P ΘPR , (5.3)

for certain constants f̂MN
P , which are subsequently identified as the structure constants of

the gauge group. One can verify that the validity of the Jacobi identity for the gauge group

structure constants follows directly from the Jacobi identity associated with the group G,

subject to projection by the embedding tensor. The symmetry and gauge invariance of

ΘMP implies that f̂MP
QΘQN + f̂NP

QΘMQ = 0, which can be written in G-covariant form,

ΘPL (f
KL
MΘNK + f

KL
NΘMK) = 0 . (5.4)

Subsequently we introduce the gauge fields AMµ into the definition of the covariant

derivatives. For example, we have

Dµφi = ∂µφi + gΘMN AMµ XN i , (5.5)

for the scalar fields. Their covariant field strengths follow from the commutator of two

covariant derivatives, e.g.,

[Dµ,Dν ]φi = gΘMN FMµν XN i , (5.6)

and take the form

ΘMN F
M
µν = ΘMN

(
∂µA

M
ν − ∂νAMµ − g f̂PQMAPµA

Q
ν

)
. (5.7)

The extra minimal couplings (5.5) render the Lagrangian invariant under local transforma-

tions (3.4), (5.1) provided we assume the following transformation behavior of the vector

fields

ΘMN δA
M
µ = ΘMN

(
−∂µΛM + g f̂PQMAPµ Λ

Q
)
. (5.8)

However, they violate supersymmetry and the central question is whether new terms in

the supersymmetry variations and in the Lagrangian can be found such as to regain this

symmetry. It is at this point that the need arises to include a CS term for the vector fields,

LCS = 1
4 ig ε

µνρAMµ ΘMN

(
∂νA

N
ρ − 13g f̂PQ

N APνA
Q
ρ

)
, (5.9)

and assume the following supersymmetry transformations,

ΘMN δA
M
µ = ΘMN

[
2VM IJ ψ̄IµεJ + VMi χ̄iIγµεI

]
. (5.10)
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In order for this to work and to preserve gauge invariance, it is necessary to adopt a

symmetric, gauge invariant, embedding tensor.

Although the embedding tensors must be found case by case, let us briefly mention

some general properties. For semisimple gaugings, the Lie algebra g0 always decomposes

as a direct sum

g0 =
⊕
i

gi ⊂ g , (5.11)

of simple Lie algebras gi. In this case, the embedding tensor can be written as a sum of

projection operators

ΘMN =
∑
i

εi ηMP(Πi)
P
N , (5.12)

where Πi projects onto the i-th simple factor g0i, ηMP is the Cartan-Killing form, and the

constants εi characterize the relative strengths of the gauge couplings. There is only one

overall gauge coupling constant g for the maximal theory (N = 16), but there may be

several independent coupling constants for lower N .

For non-semisimple gaugings, (5.11) is replaced by

g0 =
⊕
i

gi ⊕ t , (5.13)

where t represents the solvable part of the gauge group. For the non-semisimple gauge

groups which typically appear in theories obtained by dimensional reduction, the latter

subalgebra decomposes into

t = t0 ⊕ t′ . (5.14)

The abelian subalgebra t0 here transforms in the adjoint of the semisimple part of the

gauge group and pairs up with the semisimple subalgebra in the embedding tensor, which

has non-vanishing components only in (gi⊗ t0)sym and in (t′⊗ t′)sym. There are also many
examples of nilpotent and almost nilpotent gaugings, where the semisimple part is absent

or ‘small’. Many examples of non-semisimple gaugings can be generated from semisimple

ones by a singular “boost” within the global symmetry group G, as explained in [4].

6. T -tensors, consistency constraints, and the Lagrangian

Before presenting the full Lagrangian of the gauged supergravity, we define the so-called

T -tensor (originally introduced in higher-dimensional supergravity [36]) as

T IJ,KL ≡ VM IJΘMNVN KL , T IJi ≡ VM IJΘMNVN i ,
T ij ≡ VM iΘMNVN j , Tα

i ≡ VMαΘMNVN i ,
Tαβ ≡ VMαΘMNVN β , T IJα ≡ VM IJΘMNVNα .

(6.1)

The T -tensor components that carry indices α, β do not appear directly in the Lagrangian

and transformation rules and are only defined for N > 2. From (5.4) and (3.13) it readily

follows that the T -tensor transforms covariantly under the gauged isometries. The addi-

tional masslike terms and the scalar potential in the Lagrangian and the corresponding
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terms in the supersymmetry variations of the fermion fields, which we will specify shortly,

are encoded in three tensors, A1, A2 and A3, which are related to the T -tensor.

A central result of [5] is that a gauge group G0 ⊂ G with a gauge invariant embed-
ding tensor ΘMN describing the minimal couplings according to (5.5), is consistent with

supersymmetry if and only if the associated T -tensor (6.1) satisfies the constraint,

T IJ,KL = T [IJ,KL] − 4

N−2 δ
I[K TL]M,MJ − 2 δI[KδL]J

(N−1)(N−2) T
MN,MN . (6.2)

For N = 1 andN = 2, this constraint degenerates to an identity. The consistency constraint

(6.2) has a simple group-theoretical meaning in SO(N): denoting the irreducible parts of

T IJ,KL under SO(N) by

( × )sym = 1 + + + , (6.3)

with each box representing a vector representation of SO(N), equation (6.2) eliminates the

“Weyl-tensor” type representation

P T IJ,KL = 0 . (6.4)

The condition for a consistent gauging is now fully captured by constraints (5.4) and (6.2)

applied to a symmetric embedding tensor ΘMN . Specific cases will be discussed in later

sections.

Let us now present the full Lagrangian and transformation rules. The Lagrangian is

given by

L = −12 i ε
µνρ
(
eµ
aRνρa + ψ̄

I
µDνψIρ

)
− 12e gij

(
gµν DµφiDνφj +N−1χ̄iI /DχjI

)
+ 14 ig ε

µνρAMµ ΘMN

(
∂νA

N
ρ − 13g f̂PQ

N APνA
Q
ρ

)
+ 14e gij χ̄

iIγµγνψIµ (Dνφj + D̂νφj)− 1
24eN

−2Rijkl χ̄iIγaχjI χ̄kJγaχlJ

+ 1
48eN

−2 (3 (gij χ̄iIχjI)2 − 2(N−2) (gij χ̄iIγaχjJ)2)
+ eg
(
1
2A
IJ
1 ψ̄Iµ γ

µν ψJν +A
IJ
2 j ψ̄

I
µ γ
µχjJ + 12A3

IJ
ij χ̄

iIχjJ
)

− 2 eg2
(
gij AI J2i A

I J
2j − 2N−1AIJ1 AIJ1

)
, (6.5)

with covariant derivatives defined by

Dµφi = ∂µφ
i + gΘMN A

M
µ XN i , D̂µφi = Dµφi − 12 ψ̄

I
µχ
iI ,

DµψIν =
(
∂µ +

1
2ω
a
µγa
)
ψIν + ∂µφ

iQIJi ψJν + gΘMNA
M
µ VN IJ ψJν ,

DµχiI =
(
∂µ +

1
2ω
a
µγa
)
χiI + ∂µφ

j
(
Γijk χ

kI +QIJj χ
iJ
)

+ gΘMNA
M
µ

(
δij VN IJ − δIJgikDkVN j

)
χjJ . (6.6)
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The supersymmetry transformations read

δeµ
a = 1

2 ε̄
Iγa ψIµ ,

δAMµ = 2VM IJ ψ̄IµεJ + VMi χ̄iIγµεI ,

δψIµ = DµεI − 18gij χ̄
iIγνχjJ γµν ε

J − δφiQIJi ψJµ + g AIJ1 γµ εJ ,

δφi = 1
2 ε̄
I χiI

δχiI = 1
2

(
δIJ1−f IJ

)i
j /̂Dφj εJ − δφj

(
Γijk χ

kI +QIJj χ
iJ
)
− gN AJiI2 εJ , (6.7)

with

DµεI =
(
∂µ +

1
2ω
a
µγa
)
εI + ∂µφ

iQIJi εJ + gΘMNA
M
µ VN IJ εJ . (6.8)

The gauge transformations take the form

δφi = gΘMN Λ
MXN i ,

δψIµ = gΘMN Λ
MVNIJ ψJµ − δφiQIJi ψJµ ,

δχiI = gΘMN Λ
M(χjI DjVN i + VNIJ χiJ)− δφj

(
Γijk χ

kI +QIJj χ
iJ
)
,

ΘMN δA
M
µ = ΘMN (−∂µΛM + g f̂PQMAPµ Λ

Q) . (6.9)

For N > 2, the tensor A1 is given by

AIJ1 = −
4

N−2 T
IM,JM +

2

(N−1)(N−2) δ
IJ TMN,MN . (6.10)

In the cases N = 1, 2, this tensor is only partially determined as we shall describe in the

next section. For all values of N the tensors A2 and A3 are given functions of A1 and the

T -tensor (6.1),

AI J2 i =
1

N

{
DiA

IJ
1 + 2T

IJ
i

}
,

A3
IJ
ij =

1

N2

{
− 2D(iDj)AIJ1 + gij AIJ1 +A

K[I
1 f

J ]K
ij

+2Tij δ
IJ − 4D[iT IJ j] − 2Tk[i f IJkj]

}
. (6.11)

Using (6.2) and its derivatives, one may verify that these tensors satisfy the symmetries

implied by their appearance in (6.5):

AIJ1 = AJI1 , P
K
I
j
i A
J K
2 j = AJI2 i , A3

IJ
ij = A3

JI
ji = P

K
I
j
i A3

KJ
kj . (6.12)

7. Discussion of low N theories

In this section we discuss the gauged supergravities for low values of N , following [5]. The

cases N = 1, 2 are special because the tensor A1 entering the potential and the gravitino

mass term is not uniquely determined by the conditions derived in the foregoing section, and
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thus in general is not expressible in terms of the T -tensor alone. This leaves the freedom

for additional deformations (and thus scalar field potentials) which are not induced by

gauging. The additional freedom for N = 1 and N = 2 appears via real and complex

holomorphic superpotentials, respectively. For N ≥ 3, on the other hand, all deformations
correspond to gaugings.

7.1 N = 1

In this case, the target space is a Riemannian manifold of arbitrary dimension d. The

tensor A1 has just one component, which is a gauge invariant function F (φ) on the target

space,

ΘMNX
N i∂iF = 0 . (7.1)

Reading off the values for A2 and A3 from (6.11), we obtain

A1 = F , A2 i = ∂iF , A3 ij = gijF − 2Di∂jF + 2Tij , (7.2)

with Tij = X
M
i ΘMNX

N
j . As a consequence, any subgroup of isometries can be gauged (for

example, by choosing a constant function F ). The gravitino ψµ is never charged under the

gauge group, and the gauging is restricted to the matter sector. The case ΘMN = 0 and

F 6= 0 corresponds to deformations of the original theory that are not induced by gaugings.
The scalar potential V is given by

V = 2g2
(
gij ∂iF∂jF − 2F 2

)
, (7.3)

so that the function F serves as the real superpotential. Stationary points of F define

(anti-de Sitter) supersymmetric ground states.

7.2 N = 2

The target space in this case is a Kähler manifold and may be conveniently parametrized by

d/2 complex coordinates and their conjugates, (φi, φ̄ı̄). Its metric and the SO(2) connection

are given in terms of the Kähler K(φ, φ̄) potential as gī = ∂i∂̄K, Qi ≡ Q12i = −14 i∂iK.
Any subgroup of the invariance group can be gauged. Partial results for abelian N = 2

gaugings have been obtained in [37, 38, 39, 40].

According to (3.3) only holomorphic isometries of the target space can be extended to

symmetries of the Lagrangian. Such isometries are parameterized by holomorphic Killing

vector fields (Xi,X ı̄),

∂ı̄X
j = 0 , DiX̄ +D̄Xi = 0 .

The second condition implies that the Kähler potential remains invariant under the isom-

etry up to a Kähler transformation. We write this special Kähler transformation in terms

of a holomorphic function S(φ), i.e.,

δK(φ, φ̄) = −Xi ∂iK −X ı̄ ∂ı̄K = 4i (S − S̄) . (7.4)
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Equation (3.6) may then be solved as

V ≡ V12 = −14 i(X
i∂iK −X ı̄∂ı̄K) + S12 = −12 iX

i∂iK + 2S .

For every generator XM of the invariance group we thus identify a holomorphic func-

tion SM, determined by (7.4) up to a real constant. The particular transformation (which
we denote with the extra labelM = 0),

X0 i = 0 , S0 = 1
2 , V0 = 1 , (7.5)

constitutes a central extension of the isometry group and generates the SO(2) R-symmetry

group that acts exclusively on the fermions. These symmetries play a role in the presence

of FI terms. We refer to [5] for further details.

For the T -tensor, we introduce the notation

T ≡ T IJ,IJ = 2T 12,12 , Ti ≡ T 12i =
1
2 i∂iT . (7.6)

The tensor AIJ1 is determined by (6.10)

A111 = −T − eK/2<W , A221 = −T + eK/2<W , A121 = A
21
1 = e

K/2=W , (7.7)

with an holomorphic superpotential W (φ), which, because of gauge covariance, must satisfy

ΘMN (X
N iDiW − 2iVNW ) = ΘMN (XN i∂iW − 4iSNW ) = 0 , (7.8)

with the Kähler covariant derivative DiW ≡ ∂iW + ∂iKW . The tensors A2, A3 follow

from (6.11); for A2 we find,

A1 12 i = −iA1 22 i = −12(∂iT + e
K/2DiW ) , A212 i = iA

2 2
2 i =

1
2 i(∂iT − e

K/2DiW ) . (7.9)

The scalar potential of the gauged theory is given by

V = g2
(
4 gīı ∂iT ∂ı̄T − 4T 2 + gīı eKDiWDı̄W − 4 eK |W |2

)
. (7.10)

Note that in three dimensions, the scalar potential contains terms quartic in the moment

map V, since the T -tensor is quadratic in V. This is in contrast with e.g. four dimensions,
where the corresponding part of the scalar potential is quadratic in V.
Analogous to the N = 1 case, there are two kinds of supersymmetric deformations

of the original theory. On the one hand, there are the gaugings, which are completely

characterized by an embedding tensor ΘMN . The above analysis shows that there is no

restriction on the T -tensor, and therefore any subgroup of the invariance group of the

theory is an admissible gauge group, as long as its embedding tensor satisfies (5.4). On

the other hand there are the deformations described by the holomorphic superpotentialW ,

which are not induced by a gauging. In case both deformations are simultaneously present,

their compatibility requires (7.8). Pure N = 2 supergravity (without gauging) can have a

cosmological constant corresponding to a constant W and vanishing T . This implies that

the gravitino mass matrix is traceless. An alternative way to generate a cosmological term

in pure supergravity makes use of gauging the R-symmetry group. In that case, T equals a

nonzero constant (equal to Θ00) andW = 0; the gravitino mass matrix is then proportional

to the identity. The latter version has been considered in [37].
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7.3 Some comments on N = 3 and N = 4 theories

For N = 3, the target space is a quaternion-Kähler manifold. In this case, the consis-

tency condition (6.2) reduces to an identity such that any subgroup of isometries can be

consistently gauged. For N = 4 on the other hand, the target space is locally a product

of two quaternion-Kähler manifolds of dimension d±. The almost-complex structures f IJ

decompose into two sets of three almost-complex structures f±,

f+P ≡ 1
2 (J + 1) f

P = 1
2f
P − 14ε

PQR fQR , (P = 1, 2, 3) ,

f−P̄ ≡ 1
2 (J − 1) f

P = − 12f
P − 14ε

PQR fQR , (P̄ = 1, 2, 3) , (7.11)

corresponding to the decomposition of the SO(4) R-symmetry group,

SO(4) = SO(3)+ × SO(3)− . (7.12)

In this basis, the consistency condition (6.2) that encodes supersymmetry of the theory

takes the form

TPQ = 1
3 δ
PQ TRR , where TPQ = VMPΘMNVN Q , (7.13)

and correspondingly for T P̄ Q̄. The off-diagonal components, TPQ̄ are constrained by the

quadratic constraint (5.4), see reference [5] for details. Unlike the cases N < 4, it is thus

no longer possible to gauge any subgroup of the isometry group. We refer to [5] for further

details. Henceforth, we will call a subgroup of G ‘admissible’ if its embedding tensor obeys

(5.3) and (6.2), so that supersymmetry is preserved.

8. Symmetric target spaces with N > 4

Beyond N = 4, the only admissible target spaces are the symmetric spaces listed in table 1.

Hence they are coset spaces G/H, where the isotropy group is equal to the (maximal)

holonomy group SO(N)× H′. The scalar fields may be described by means of a G-valued
matrix L(φi), on which the rigid action of G is realized by left multiplication, while SO(N)×
H′ acts as a local symmetry by multiplication from the right. The generators of the group
G constitute a Lie algebra g, which thus decomposes into {tM} = {XIJ ,Xα, Y A}. The XIJ
generate SO(N), theXα generate the compact group H′, while the remaining (noncompact)
generators Y A transform in a spinor representation of SO(N). The connection with the

general quantities introduced above is given via

L−1∂iL = 1
2 Q

IJ
i XIJ +Qαi X

α + ei
A Y A ,

XM i ∂iL = tM L− 12S
MIJ LXIJ + SMα LXα ,

L−1tML = 1
2 V

M IJ XIJ + VMαXα + VMA Y A ,
gij = ei

A ej
B δAB , f IJij = − ΓIJAB eAi eBj , VMi = ei

A VMA . (8.1)

Equations (3.12) then correspond to the fact that the map

tM → L−1tML , (8.2)
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is an isomorphism of the algebra g; the actual equations follow straightforwardly from

the commutator [L−1tML, L−1tNL], upon using the explicit commutation relations of the
generators XIJ , Xα and Y A. Linear first-order differential equations such as (3.11) can be

derived for any coset space (see, e.g. [41]) and the actual results follow after substituting

the appropriate expressions for the coset-space curvatures. Here we should add that the

above analysis can be straightforwardly extended to N = 4 with symmetric target spaces,

as all these spaces are known and exhibit the same characteristics as outlined above.

The symmetric space structure in particular implies, that the T -tensor (6.1) coincides

with the image of the embedding tensor ΘMN under (8.2),

TAB = VMAΘMN VNB , (8.3)

This allows us to lift the consistency condition (6.4), according to which the SO(N) rep-

resentation in the T -tensor vanishes, to a field-independent condition on the embedding

tensor,

PMN
PQΘPQ = 0 . (8.4)

Here P projects onto the unique irreducible representation in (g⊗g)sym that contains the
representation of the T -tensor, via (8.3). It is a non-trivial fact that the T -tensor, which is

assigned to R-symmetry representations, and appears in the fermionic masslike terms and

the scalar potential, can be assembled into representations of the global symmetry group

G, as was first noticed in the context of maximal gauged supergravity in four dimensions

[16]. For the symmetric target spaces, admissible subgroups of G are characterized by an

embedding tensor that obeys (5.3) and (8.4).

Note that the consistency conditions (5.3) and (8.4) remain covariant under the com-

plexified global symmetry group GC. Indeed, non-semisimple gaugings in four dimensions

were originally found in [42] by analytic continuation of SO(8) in the complexified global

symmetry group E7(C). In three dimensions, a similar construction should exist relat-

ing the different non-compact real forms of the gauge groups listed in table 2 below, and

explaining why ratios of coupling constants between the factor groups remain the same.

9. Admissible gauge groups for N = 16

To illustrate the variety of possible gaugings, we now turn to the maximally extended

N = 16 supergravity. In this case the embedding tensor transforms as an element of the

symmetric tensor product of two adjoint (and in this case also fundamental) representations

of E8(8)
(248⊗ 248)sym = 1⊕ 3875 ⊕ 27000 , (9.1)

As shown in [2] (8.4) becomes

(P27000)MN
PQΘPQ = 0 . (9.2)

so that the embedding tensor decomposes into a singlet and the 3875 representations of

E8(8). Following [9], we split the generators of g = e8(8) into 120 compact ones X
IJ = −XJI
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with SO(16) vector indices I, J = 1, . . . , 16, and 128 noncompact ones {Y A} with SO(16)
spinor indices A = 1, . . . 128. Then the condition (9.2) implies that only special SO(16)

representations can appear in Θ; we have

Θ = ΘIJ |KLXIJ ⊗XKL +ΘIJ |A (XIJ ⊗ Y A + Y A ⊗XIJ) + ΘA|B Y A ⊗ Y B , (9.3)

with [2, 13]

ΘIJ |KL = −2θ δIJKL + 2δI[K ΞL]J + ΞIJKL ,

ΘIJ |A = −17 Γ
[I

AȦ
ΞJ ]Ȧ ,

ΘA|B = θ δAB +
1
96 ΞIJKL Γ

IJKL
AB , (9.4)

and the SO(16) Γ matrices ΓI
AȦ
, where the indices Ȧ = 1, . . . , 128 label the conjugate

spinor representation. The tensors ΞIJ , ΞIJKL and Ξ
IȦ transform as the 135, 1820 and

1920 representations of SO(16), respectively; hence ΞII = 0 = Γ
I
AȦ
ΞIȦ, and ΞIJKL is

completely antisymmetric in its four indices. The singlet contribution in (9.4) is absent for

non-semisimple and complex gauge groups.

Although the solutions to (9.2) have not been exhaustively classified, it is known that

all the irreducible components occurring in (9.4) can and do appear, depending on the

type of gauge group. The simplest examples are the semisimple gaugings with maximal

supersymmetry constructed in [2], for which we have quite generally

θ ,ΞIJ , ΞIJKL 6= 0 and ΞIȦ = 0 (for semisimple g0) . (9.5)

In this case, the sum (5.12) contains at most two terms, i.e. the gauge groups are typically

products of two simple groups G1×G2 with a fixed ratio of coupling constants g1/g2, such
that there is only one free parameter in the theory. Schematically, we have the admissible

gauge groups

G0 = E8 , E7 ×A1 , E6 ×A2 , F4 ×G2 , D4 ×D4 . (9.6)

which appear in all those real forms that are consistent with E8(8). Remarkably, the

ratio g1/g2 does not depend on the chosen real form. Furthermore, as shown in [2, 13],

all these theories possess maximally supersymmtric (AdS or Minkowski) ground states.

The corresponding theories with their corresponding gauge groups, which are particular

noncompact versions of the groups (9.6), are listed in table 2. In the last column, the

table lists the symmetry groups of the ground states, which are superextensions of the

three-dimensional AdS group SL(2,R)×SL(2,R). Besides the fully supersymmetric vacua,
there are also many known stationary points with partially broken supersymmetry [12,

13, 14]. However, because no general and complete results on the extremal structure of

the associated potentials are available to date2, many further extremal points could exist

besides the known ones.

2Even for D = 4, the complexity of the potentials has prevented the identification of new stationary

points beyond those already found in [15, 17], although the potentials are now known on a larger manifold

of scalar field configurations thanks to the high performance symbolic algebra program developed in [14].
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gauge group G0 ratio g1/g2 (nL, nR) ground state symmetry group

SO(8)×SO(8) g1/g2 = −1 (8, 8) OSp(8|2,R)×OSp(8|2,R)

SO(7, 1)×SO(7, 1) g1/g2 = −1 (8, 8) F(4)×F(4)

SO(6, 2)×SO(6, 2) g1/g2 = −1 (8, 8) SU(4|1, 1)×SU(4|1, 1)

SO(5, 3)×SO(5, 3) g1/g2 = −1 (8, 8) OSp(4∗|4)×OSp(4∗|4)

SO(4, 4)×SO(4, 4) g1/g2 = −1 (8, 8) Minkowski vacuum

G2(2)×F4(4) gG2/gF4 = −3/2 (4, 12) D1(2, 1;−23 )×OSp(4∗|6)

G2×F4(−20) gG2/gF4 = −3/2 (7, 9) G(3)×OSp(9|2,R)

E6(6)×SL(3) gA2/gE6 = −2 (16, 0) OSp(4∗|8)×SU(1, 1)

E6(2)×SU(2, 1) gA2/gE6 = −2 (12, 4) SU(6|1, 1)×D1(2, 1;−12 )

E6(−14)×SU(3) gA2/gE6 = −2 (10, 6) OSp(10|2,R)×SU(3|1, 1)

E7(7)×SL(2) gA1/gE7 = −3 (16, 0) SU(8|1, 1)×SU(1, 1)

E7(−5)×SU(2) gA1/gE7 = −3 (12, 4) OSp(12|2,R)×D1(2, 1;−13 )

E8(8) gE8 (16, 0) OSp(16|2,R)×SU(1, 1)

Table 2: The N = 16 theories with semisimple gauge groups G0. Except for the last row, the gauge

groups appear as direct products of two factors whose coupling constant ratio g1/g2 is determined

by (9.2). All these theories admit a maximally supersymmetric AdS (or Minkowski, for G0 =

SO(4, 4) × SO(4, 4)) ground state, whose symmetry group factorizes according to GL × GR, as
specified in the last column; the supercharges split accordingly into nL + nR = 16.

A second class are the non-semisimple gaugings, whose existence can also be inferred

from the fact that in higher dimensions there are many maximal gaugings with non-

semisimple groups [42, 43, 44, 45, 46]. For the non-semisimple gaugings, in general all

components of the embedding tensor in (9.4) are non-vanishing, in particular the ‘off-

diagonal’ components (mixing compact and non-compact generators)

ΞIȦ 6= 0 (for non-semisimple g0) . (9.7)

For N = 16, the most prominent examples are [4]

G0 = SO(p, q)n T28 for p+ q = 8 ;

G0 = CSO(p, q; r)n Tp,q,r for p+ q + r = 8 and r > 0 (9.8)

Here, T28 is an abelian group of 28 translations transforming in the adjoint of SO(p, q).

Similarly, Tp,q,r is a group of translations, but of smaller dimension

dimTp,q,r = dimCSO(p, q; r) = 28− 12r(r − 1) . (9.9)
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Note that the groups in (9.8) involving SO(p, q) or CSO(p, q; r) with p 6= 0, 8 admit only
one embedding, whereas there are two inequivalent SO(8) n T28 gaugings, corresponding

to the compactifications IIA and IIB supergravity on S7. Quite generally, reduction of a

higher-dimensional gauged supergravity (with semisimple or non-semisimple gauge group)

on a torus will always lead to a non-semisimple gauge group in three dimensions. In view

of the equivalence of CS and YM type gauge theories explained in section 4, the gauged

supergravities with the gauge groups (9.8) are consequently on-shell equivalent to the ones

obtained by reducing the SO(p, q) and CSO(p, q; r) theories of [42] on S1. Further examples

of non-semisimple gaugings can be generated from semisimple ones by the boost method

described in [4].

In contrast to the semisimple gaugings, the non-semisimple ones do not admit maxi-

mally supersymmetric groundstates. The potentials contain exponential factors and their

minimum is usually reached at infinity. This phenomenon is well-known from higher-

dimensional gauged supergravities. The non-existence of fully supersymmetric vacua is

also related to the disappearance of the supersymmetric vacuum that is known to occur

when one reduces maximal gauged supergravity from four or five to three dimensions on a

torus.

The most curious solution of the consistency conditions is the complex gauge group

G0 = SO(8,C) . (9.10)

which can be realized in two inequivalent ways, corresponding to two possible and inequiv-

alent embeddings of SO(8,C) into the (real) Lie group E8(8) (there are similar complex

gauge groups SO(n,C) for N = 2n = 12, 10 supergravities). This gauging provides an

example of a purely off-diagonal embedding tensor for which

θ = ΞIJ = ΞIJKL = 0 and ΞIȦ 6= 0 (for g0 = so(8,C)) , (9.11)

so ΞIȦ is the only nonvanishing component in (9.4). Because it does not require an imag-

inary unit, this embedding exhibits some rather strange properties. Like the semisimple

gauge groups of table 2, the SO(8,C) gauged supergravities cannot be derived from higher

dimensions by any known mechanism. Furthermore, they feature a de Sitter stationary

point at the origin breaking all supersymmetries, and with tachyonic instabilities. (There

are indications that these models possess no further extrema besides the one at the ori-

gin.3) We note that CS gauge theories with complex gauge groups are of considerable

interest ([24]; see also [26] and references therein for some recent developments). The

embedding of such theories into supergravity with non-trivial matter couplings may well

provide interesting new perspectives.

As we already explained in the introduction, the existence of the large variety of

gauged supergravities in three space-time dimensions, with potentials that have stationary

points corresponding to AdS backgrounds, is important in the context of the AdS/CFT

correspondence. In the case at hand the correspondence implies a relation between an

AdS solution of a certain three-dimensional gauged supergravity and a two-dimensional

3T. Fischbacher, private communication.
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(super)conformal theory living on the boundary of the AdS space. The two-dimensional

theories are characterized by an infinite-dimensional superconformal algebra. These alge-

bras have all been classified [47]; they consist of a sum of two algebras, pertaining to the

left- and right-moving sectors, respectively, containing an nL- and an nR-superextended

Virasoro algebra. On the supergravity side, the maximal finite-dimensional subalgebra will

correspond to the symmetry algebra of the AdS3 stationary point. To illustrate this, one

may consider the theories listed in table 2, which admit maximally supersymmetric AdS3
stationary points whose symmetry algebra are listed in the last column. Indeed, each of

these symmetry algebras coincides with the maximal finite subalgebra of a corresponding

superconformal algebra of [47] with the appropriate numbers, nL and nR, of supercharges.

The infinite-dimensional superconformal algebras appear in the asymptotic symmetries

of the supergravity fields [48, 49]. For the pure extended (N > 1) supergravity theories,

this phenomenon was analyzed in [50]. For nL,R > 4, this analysis confirmed the presence of

terms in the algebra that are quadratic in the generators, in accord with the known form of

the corresponding infinite-dimensional superconformal algebras. It should be interesting to

extend this analysis to the propagating bulk fields described by the matter-coupled gauged

supergravities of this paper.

In the spirit of the AdS/CFT correspondence the supergravity Lagrangians (6.5) ob-

tained for the theories listed in table 2 allow the construction of the n-point correlation

functions of a closed subset of chiral primary operators of the associated superconformal

theories. To date, no concrete proposal for these N = 16 boundary theories has been

put forward — partly due to the lack of known brane configurations whose near horizon

geometry would admit an isometry group related to any of the gauge groups in table 2.

In contrast, the most prominent example of an AdS3/CFT2 correspondence, the D1-D5

system, relates IIB string theory on AdS3 × S3 ×M4 [51] to an N = (4, 4) superconformal
field theory described by a non-linear sigma model whose target space is a deformation of

the symmetric orbifold (M4)
n/Sn [6]. The corresponding low-energy effective supergravity

is the half-maximal theory constructed in [23].

Gauged supergravities with non-semisimple gauge groups on the other hand make

their appearance in the generalization of the AdS/CFT correspondence to so-called domain

wall/QFT dualities, relating string theory on near-horizon Dp-brane geometries to d = p+1

dimensional super-Yang-Mills theories with sixteen supercharges [52, 53]. In particular, the

N = 16 theory with gauge group SO(8)nT28 describing the warped AdS3×S7 near-horizon
D-string geometry [54], is holographically dual to IIA matrix string theory [55].
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