

PROCEEDINGS OF SCIENCE

The Disk Mass Project; breaking the disk-halo degeneracy

M. Verheijen*

Astrophys. Institut, Potsdam

M. Bershady

Univ. of Wisconsin, Kapteyn Astronomical Institute, Groningen

D. Andersen

MPIA, Heidelberg

R. Swaters

Department of Physics and Astronomy, Johns Hopkins University, Baltimore

K. Westfall

Univ. of Wisconsin, Kapteyn Astronomical Institute, Groningen

A.Kelz

Astrophys. Institut, Potsdam

M.-M. Roth

Astrophys. Institut, Potsdam

The density profiles of dark matter haloes, as inferred from rotation curve decompositions, depend critically on the adopted M/L of the disk component. The maximum-disk hypothesis is an often used refuge to circumvent this disk-halo degeneracy. However, a direct and absolute measurement of the M/L can be derived from the vertical component of the stellar velocity dispersion ellipsoid. In this talk, we will present our ongoing Disk Mass project in which we use a novel technique to measure the stellar velocity dispersion in a statistically significant sample of nearly face-on spiral galaxies. For this purpose, we have designed and build two wide-field special-purpose Integral Field Units for the WIYN and Calar Alto telescopes. We will describe these IFUs and present some first results.

(See also astro-ph/0201407 and astro-ph/0311555)

BDMH 2004 – Baryons in Dark Matter Halos 5–9 October 2004 Novigrad(Croatia)

*Speaker

PROCEEDINGS OF SCIENCE