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1. Introduction

This lecture is about string propagation on three dimensional anti de Sitter spacetime. This
has been a subject of intensive investigation since the early nineties. The original motivation can
be traced to the exact conformal invariance of the theory which can be formulated as a WZW
model on theSL(2;R) group manifold. Actually the non linear sigma model describing strings on
a backgroundAdS3 geometry plus antisymmetric NS tensor field is the simplest example of exactly
solvable string theory with a single non-trivial timelike direction. Interest in this model is enhanced
by its close connection to two and three dimensional black holes (which can be constructed as
cosets and orbifolds ofAdS3 respectively), so that understanding this string theory allows to address
many important conceptual problems of black hole physics. See [1] for a list of references of this
initial period.

A more recent incentive for studying this theory arises fromthe AdS/CFT correspondence [2].
This is a concrete realization of the holographic idea whichestablishes a duality between gravity
or string/M theory in the bulk of anti-de Sitter space and a quantum field theory on the boundary
of spacetime. In this context also AdS3 is special. Both the theory on the boundary and the non-
linear sigma model describing the worldsheet of the string in the bulk of AdS3 have an infinite
dimensional local algebra of conformal transformations. This allows on the one hand to verify
the correspondence beyond the supergravity approximation, i:e: at the full string theory level, and
on the other hand one can get important information on the string theory using the conjecture.
Reference [3] presents a profound investigation of this concrete AdS3/CFT2 example (previous
work can be found in [4]).

Lately there has been a revival of noncritical string theories in two dimensions. This is largely
due to the recent extension of the Matrix model to include fermions as well as to include a variety
of backgrounds such as D-branes and black holes. These non-critical strings come in several vari-
eties: Type 0A, Type 0B, Type I, Type IIA, Type IIB, HeteroticE8�SO(8) and HeteroticSO(24)
and therefore one is interested in constructing three dimensional non-critical M theory to obtain
a unified model of non-critial string theories in the same fashion as one proceeds with the ten di-
mensional parents. Non-critical three dimensional M theory is expected to have solutions of three
dimensional black holes,AdS3 andAdS2�S1. This 3D M theory may give important clues about
the 11 dimensional M theory.

The status of the perturbative world-sheet theory on AdS3 can be summarized as follows. The
spectrum of physical states has been definitely establishedin reference [5] where a unitary Hilbert
space was revealed after fully appreciating the role of the spectral flow symmetry. The construction
of a modular invariant partition function in [6, 7] suppliedan independent check on the field con-
tent of the model and further confirmed the well-defined structure of the free theory. However in
order to establish the complete consistency of the model onehas to consider interactions and verify
the closure of the operator product expansion. But the fusion rules are difficult to find in the non-
compact worldsheet CFT that defines string theory on AdS3 because of the non-rational structure
of the model. There are generically no null vectors in the relevant current algebra representations,
so that most of the techniques from rational conformal field theories are not available and conse-
quently the factorization properties of the model have not been fully determined yet. Nevertheless,
important progress has been achieved in recent years and this will be the subject of the forthcoming
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pages.
The outline of this short review is as follows. In Section 2 a brief introduction to free string

propagation on AdS3 and the spectrum is presented. The correlation functions onthe sphere are the
subject of Section 3 and an analysis of the partition function is performed in Section 4. Conclusions
are put forward in Section 5.

2. Review of free string theory on AdS3

AdS3 is a maximally symmetric solution of Einstein’s equations with negative cosmological
constant. A constructive definition of this manifold can be given by embedding it into a four
dimensional space with signature(�;�;+;+) satisfying a quadratic constraint

ds2 =�dX2�1�dX2
0 +dX2

1 +dX2
2�X2�1�X2

0 +X2
1 +X2

2 = l2 (2.1)

wherel is the radius of the manifold, related to the scalar curvature asR=� 2
l2 .

There are several possible parametrizations of AdS3. In global coordinates the metric takes
the form

ds2 = l2(�coshρ dt2+dρ2+sinhρ dθ) (2.2)

wheret 2 [0;2π);ρ 2 [0;∞) andθ 2 [0;2π). In order to avoid closed timelike geodesics and the
causality problems associated with an angular time coordinate, one works in the universal covering
of AdS3. This amounts to decompactifyingt and consideringt 2 R. Note thatθ is an angular
coordinate andρ takes real positive values,i:e: it is like a radial coordinate so one refers toρ = 0
as the center of the manifold andρ ! ∞ as the boundary of AdS3 (actually the time a light ray
takes to get arbitrarily far from any point is finite).

An alternative parametrization is given by Poincaré coordinates, leading to the metric

ds2 = l2(dφ2�e2φdγ+dγ�) (2.3)

wherefφ;γ+;γ�g 2 R3. It is easy to verify that these coordinates only cover one half of spacetime.
Analytically continuing to the complex plane one obtains the euclidean hyperbolic spaceH+

3

with metric

ds2 = l2(dφ2�e2φdγdγ̄) : (2.4)

Writing explicitly the Poincaré coordinates in terms of global coordinates it is easy to see that the
limit ρ! ∞ is equivalent toφ! ∞. Therefore the boundary ofAdS3 is parametrized byfγ; γ̄g and
the remote past (t !�∞) and future (t ! ∞) can be mapped to the points 0 and∞ of the complex
plane or to the poles of a sphere through a stereographic projection.

Being a maximally symmetric space,AdS3 possesses the maximum number of generators. The
isometry group can be easily constructed observing theSO(2;2) symmetry of (2.1) which is locally
SO(2;2) � SL(2;R)
SL(2;R) i:e: two commuting copies ofSL(2;R), namely�

J3;J��=�J� ; �
J+;J��=�2J3 : (2.5)
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The classical solutions of this theory were presented in [5]. Timelike geodesics oscilate around
the center ofAdS3 whereas spacelike geodesics representing tachyons travelfrom one side of the
boundary to the opposite. Solutions describing string propagation are obtained from the dynamics
of pointlike particles. Timelike geodesics give rise toshort strings, bound states trapped in the
gravitational potential ofAdS3. Conversely,long stringsarising from spacelike geodesics can
reach the boundary. Given one classical solution one can generate new solutions by the spectral
flow operation which amounts to stretching the geodesics in the time direction and rotating them
w times around the center ofAdS3. The spectral flow parameterw, namedwinding number, is an
integer representing the number of revolutions in the light-cone directiont +θ 1. Different values
of w correspond to distinct solutions, even at the classical level (as exhibited, for instance, by the
energy spectrum).

Consistent string propagation in the background metric (2.4) requires in addition an antisym-
metric rank two tensor background fieldB = e2φdγ^dγ̄. The theory is described by a non linear
sigma model with action

S= k
8π

Z
d2z(∂φ∂̄φ+e2φ∂̄γ∂γ̄) ; (2.6)

which is equivalent to a WZW model on the universal cover ofSL(2;R)k (or actually its Euclidean
versionSL(2;C )=SU(2)) with action

SWZW= k
8π

Z
Σ

d2σTr [(∂αg)(∂αg�1)℄ + k
12π

Z
V

d3xεi jkTr [(g�1∂ig)(g�1∂ jg)(g�1∂kg)℄ (2.7)

whereg2 SL(2;R), Σ is the worldsheet with∂V = Σ andk is the level of the Kac-Moody algebra.
Actually this action has a larger symmetry than the isometries of the group, namelyg(z; z̄) !
Ω(z)g(z; z̄)Ω̄�1(z̄), Ω being an arbitrary element ofSL(2;R). The corresponding currents

J(z) =�k
2
(∂g)g�1 ; J̄(z̄) =�k

2
(∂̄g�1)g (2.8)

can be expanded in Laurent series as

Ja(z) = ∞

∑
n=�∞

Ja
n z�n�1 ; J̄a(z) = ∞

∑
n=�∞

J̄a
n z̄�n�1 (2.9)

and the coefficientsJa
n (J̄a

n) satisfy a Kac-Moody algebra given by[Ja
n;Jb

m℄ = iεab
c Jc

n+m� k
2

ηabnδn+m;0 ; (2.10)

where the Cartan Killing metric ofSL(2;R) is η+� = η�+ = 2, η33=�1 andεab
c is the Levi Civita

antisymmetric tensor. And similarly for the antiholomorphic currents.
The Sugawara stress-energy tensor is given by

T(z) = ηab

k�2
: Ja(z)Jb(z) : : (2.11)

1Strictly the spectral flow stretches the geodesic solution in thet-direction and rotates it around the center ofAdS3

(see [5]).
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It is related to the Casimir of the group asC = (k�2)T and it leads to the following central charge
of the Virasoro algebra

c= 3k
k�2

= 2+1+ 12

α2+ ; (2.12)

(α+ =p2(k�2)). The last equality emphasizes that the central charge can be written as that of
two free bosons plus a Liouville field. We will see more indications of this field content as we
proceed.

At the quantum level, the building blocks of the Hilbert space H are unitary hermitic repre-
sentations ofSL(2;R). The statesj j;m> satisfy

C0j j;m>= j( j +1)j j;m> ; J3
0j j;m>= mj j;m>;

J�0 j j;mi = (m� j)j j;m�1i ; (2.13)

with fm2R; j 2Rg or fm2R; j 2�1
2 + iRg, as required by hermiticity, and in addition they must

be Kac Moody primaries, namely

Ja
nj j;mi= 0 8 n> 0 : (2.14)

Unitarity selects the discrete (D�
j ) and continuous (C α

j ) representations, namely:� D+
j = fj j;mi; j 2 R; m= j +1; j +2; j +3; :::g.� D�
j = fj j;mi; j 2 R; m=� j�1;� j�2;� j�3; :::g.� C α

j = fj j;mi; j =�1
2 + iλ; λ 2 R; m= α;α�1;α�2; :::; α 2 Rg.

Notice that the vectors inH related by j $ �1� j represent the same physical state and
thereforej can be restricted toj ��1

2. The complete basis ofL2(AdS3) is given byC α
j=�1=2+iλ�

C α
j=�1=2+iλ andD�

j �D�
j with j >�1=2.

The representation space can be enlarged by acting on the primary states in these series with
Ja

n, n< 0. The corresponding representations are denoted bybD�
j ; bC α

j . The states in string theory
must satisfy in addition the Virasoro constraints given by

L0jΨ >=�� j( j +1)
k�2

+N

� jΨ > ; LnjΨ >= 0 ; n> 0 : (2.15)

Unlike in flat spacetime where these constraints decouple the negative norm states from the
spectrum, in string theory onAdS3 it was noticed long ago that this is not enough and the bound
j < k=2 was proposed to achieve a unitary Hilbert space [1]. However this limit presents two
important problems:i) it implies an unnatural restriction on the excitation level(and consequently
on the mass) of the states, andii) the partition function (which contains the information on the
physical spectrum of the theory) is not modular invariant.

The solution to these problems was proposed by J. Maldacena and H. Ooguri in [5]. The
full representation space contains the spectral flow imagesof the standard series mentioned above.
Actually the spectral flow operation leads to the following automorphism of theSL(2;R) currents

J3
n ! eJ3

n = J3
n� k

2
wδn;0 ; (2.16)

J�n ! eJ�n = J�n�w (2.17)
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with w2Z and consequently the modes of the Virasoro generators transform as

Ln ! eLn = Ln+wJ3
n� k

4
w2δn;0 : (2.18)

Unlike the compactSU(2) case, the new operators generate inequivalent representations of
SL(2;R) with statesj j̃ ;m̃;wi satisfying

L0jej; em;wi =  � ej(ej +1)
k�2

�wem� k
4

w2

! jej; em;wi ; (2.19)

J3
0jej; em;wi = �em+ k

2
w

� jej; em;wi : (2.20)

Finally, the complete Hilbert space of string theory onAdS3 is obtained by applying creation
operatorseJa

n;n< 0 on the primary states of the current algebra and the physical state conditions(L0�1)jej; em;w; eN;hi =  � ej(ej +1)
k�2

�wem� k
4

w2+ eN+h�1

! jej; em;w; eN;hi= 0 ; (2.21)

Lnjej; em;w; eN;hi = �eLn�weJ3
n

� jej; em;w; eN;hi= 0 for n> 0 (2.22)

whereeN is the excitation level ofeJn andh is the conformal weight of the state in the internal theory
2. Notice that the representationsbD�;w=�1

j̃
and bD�;w=0

k
2�2� j̃

are equivalent. This has an important

consequence on the values allowed forj. Indeed, recalling the symmetryj $�1� j which implies
j ��1

2, j is restricted as required by the no-ghost theorem [5] to�1
2
< j < k�3

2
: (2.23)

Note that if one starts with̃j >�1=2 the representation obtained after the spectral flow satisfies
j = k

2 �2� j̃ < k�3
2 . Conversely if there were a representationD̂�

j with j > k�3
2 in the Hilbert

space, the spectral flow would generate a representationD̂�
j with j <�1=2, in contradiction with

the standard harmonic analysis. The upper bound onj was interpreted in [3] as the condition that
only local operators be considered in the dual field theory onthe boundary. This interpretation fits
in nicely with the AdS/CFT dictionary which assigns states in the bulk to operators in the boundary.

Therefore the Hilbert space of string theory on AdS3 can be summarized as

H =�∞
w=�∞

" Z k�3
2�1=2

d jD̂w
j 
 D̂w

j

!��Z� 1
2+iλ

d j
Z 1

0
dαĈ w

j;α
 Ĉ w
j;α�# : (2.24)

This proposal for the spectrum was independently verified bythe computation of a modular invari-
ant partition function in [6, 7].

2We have been considering string theory onAdS3, but more generally we could take a backgroundAdS3�N , with
N a compact internal manifold.
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3. Correlation functions on the sphere

The computation of correlation functions in this theory is rather involved because the underly-
ing CFT is non-rational and very little is known about this kind of non-compact theories in general.

Nevertheless certain expectation values of primary fields have been calculated using different
procedures. The path integral method was started in [8] and applied to the computation of two and
three point amplitudes using the free field approximation in[9]. A generalization of the bootstrap
approach was designed by Teschner to deal with the non-compact nature of the hyperbolic space
H+

3 �SL(2;C )=SU(2) and some two, three and four point functions for this euclidean model were
given in [10]. The physical interpretation of these exact results, as correlation functions of the dual
CFT2, was performed by Maldacena and Ooguri in [3]. Let us review some of these results.

The states inH+
3 belong to representations withj =�1

2 + iλ, λ 2 R and they can be realized
in global coordinates by operators of the form

Φ j(x; x̄;z; z̄) = 1+2 j
π

�
e�φ=α+ + jγ�xj2eφ=α+�2 j

(3.1)

and their current algebra descendants. Herex; x̄ keep track of theSL(2;C ) quantum numbers and
can be identified as the location of the operator in the dual CFT on the boundary ofH+

3 . We refer
the reader to references [10] for explicit expressions of expectation values of these operators.

For string theory applications one has to consider real values of j and consequently these
amplitudes have to be analytically continued. This analysis was performed in [3]. However not all
correlators that are necessary for string theory can be obtained by analytic continuation of (3.1) and
expectation values of these fields. In order to consider states of the spectral flow representations, it
is convenient to use fields with definiteSL(2) weights. These are given by

Φ jmm̄(z; z̄) = Z
d2x xj+mx̄ j+m̄Φ�1� j(x; x̄;z; z̄); (3.2)

and operators of the spectral flow representations are obtained acting on (3.2) with the spectral flow
operator defined as

F (z; z̄) = ei
p

k
2 [φ(z)+φ(z̄)℄ : (3.3)

Similarly the correlation functions can be converted to them basis, then one performs the spectral
flow and finally transforms the result back to thex basis. This procedure was applied in [3] to
obtain three point functions in arbitrary winding sectors.

The results for the scattering amplitudes ofn� string states presented in [3] exhibit several
subtleties forn� 3. On the one hand, expectation values of states belonging todiscrete repre-
sentations are only well defined if the sum of the isospinsj of the external operators satisfies

∑i j i < k�3. Moreover the four point functions on the sphere do not factorize as expected into
a sum of products of three point functions with physical intermediate states unless the quantum
numbers of the external states verifyj1+ j2 < k�3

2 and j3+ j4 < k�3
2 . The interpretation of these

constraints was proposed in [3]: correlation functions violating these bounds do not represent well-
defined computations in the dual CFT2 description of the theory. This explanation is similar to the
interpretation of the upper bound on the spin of the physicalstates (i:e: j < k�3

2 ) as the condition
that only local operators be considered in the boundary CFT.However in the latter case one has a
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clear understanding of the constraint from the representations ofSL(2;R) which define the theory
in the bulk. Similarly one would like to better understand this unusual feature of the correlation
functions from the worldsheet viewpoint.

On the other hand, a curious aspect of this model is that physical amplitudes ofn string states
may violate winding number conservation up ton�2 units. Again, this fact is well understood
from the representation theory ofSL(2;R) [3]. But the computation of winding non-preserving
scattering amplitudes proposed in [3] involves, as mentioned above, the insertion of spectral flow
operators in the correlators and this implies the calculation of expectation values of more vertex
operators than then original ones. This procedure has been applied to three point functions, but
four point functions violating winding number conservation by one or two units require the calcu-
lation of correlators with five or six operator insertions, with the consequent complications. These
amplitudes are needed to definitely settle the question about the unitarity of the theory through the
analysis of their factorization properties.

In order to develop techniques that simplify these computations and allow to perform others
that would clarify the full structure of the model, the free field description of the theory appears
as a powerful tool. This approximation was initially applied in [4] to derive the spacetime CFT
and establish the conjectured AdS/CFT correspondence (forrelated work see [11]). Even though
this approach is expected to give a good picture of the theoryonly near the boundary of AdS3,
the computation of two and three point amplitudes of string states in the world-sheet theory using
the Coulomb gas formalism has produced results in complete agreement with the exact ones in
the bosonic theory [12] and sensible results were also obtained in the supersymmetric case [13].
Furthermore the analysis of unitarity in this approximation should give important information on
the consistency of the complete theory. Thus we now discuss the extension of this formalism to
higher point functions and to higher Riemann surfaces.

The Coulomb gas formalism developed by Dotsenko and Fateev [14] and by Feigin and Fuchs
[15] for conformal minimal models is a more practical way to compute the conformal blocks than
the bootstrap programme of Belavin, Polyakov and Zamolodchikov. However the generalization
of this method to other models with extended conformal algebras is incomplete in most cases.
Indeed, even in the simpler compact SU(2) WZW CFT, the naive Coulomb gas construction of
[16] fails to reproduce the well-known fusion rules of the admissible representations. Actually the
correct fusion rules and characters were derived in [17] where the structure of zero modes and the
embedding of the SU(2) parafermion (PF) modules in the bosonFock space was found to play a
crucial role.

The extension of this procedure to the non-rationalSL(2;R) CFT however is not straightfor-
ward [18] since it has an infinite continuous set of fields.3 Rational CFTs (RCFT) instead contain
a finite number of representations of the modular group. Theyare not necessarily minimal but all
the primary fields (possibly infinite) can be organized into afinite number of blocks corresponding
to an extended symmetry algebra linearly transforming intoeach other under the modular group.
The simplest example beyond the minimalc< 1 models is thec= 1 bosonic theory compactified
on a circle with rational square radius. Similarly in the finite reducibleZN parafermion CFTs which

3Alternative procedures leading to the correct results for the admissible representations were followed in [19] and
[20] where it is shown that the four point functions obey crossing symmetry and monodromy invariance. However the
unitary representations relevant for string theory do not belong to this class.
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describe the cosetSL(2;R)=U(1) [21] there is a subset of models with rational central charge(i:e:
fractional levelsk) where all the Virasoro primaries appear as descendants in the (finite number
of) PF highest weight modules. Many physically interestingcases correspond to fractional levels
k, for example critical bosonic string theory on the cosetSL(2;R)=U(1) demandsk = 9

4 and in
applications to superstring theory the levelk is the number of NS5-branes. The finitely reducible
PF models correspond to the continuous and discrete unitaryrepresentations ofSL(2;R).

Actually there is a tight link between the spectrum of stringtheory on AdS3 and that of the
coset. The states in the coset are those ofSL(2;R) that are annihilated byJ3

n andJ̄3
n with n> 0, and

have zero mode eigenvalues given by the non-compact parafermionic charges ˜m= (n�wk)=2 and
m̃= �(n+wk)=2, n2 Z. It is then possible to reconstructSL(2;R) starting from the coset much
like in the compactSU(2) case.

The construction in [18] is based on the Wakimoto free field representation of theSL(2;R)k

current algebra which can be expressed in terms of three fields with propagatorshρ(z)ρ(0)i = hX1(z)X1(0)i=�ln z ; hX0(z)X0(0)i= ln z (3.4)

as

J3 =�rk
2

i∂X0 ; J� = �rk
2

i∂X1�rk�2
2

∂ρ

!
e�p 2

k i(X0+X1) (3.5)

and the stress tensor is

T = 1
2

�
∂X0�2� 1

2

�
∂X1�2� 1

2
(∂ρ)2� 1

α+ ∂2ρ : (3.6)

Thus the current algebra can be realized in terms of two free bosonsX0;X1 and a Liouville fieldρ
with background chargeQ�q 2

k�2 (which roughly correspond to the global coordinates of AdS3

[22]) in full agreement with the commutation relations (2.10). Actually it can be verified that these
currents satisfy the OPEs

J+(z)J�(z0) � k(z�z0)2 � 2J3(z0)
z�z0 ; (3.7)

J3(z)J�(z0) � �J�(z0)
z�z0 ; (3.8)

J3(z)J3(z0) � � k
2(z�z0)2 : (3.9)

In terms ofZk PF currents of the cosetSL(2;R)=U(1), J� can be rewritten as

J+ =p
kΨ+

1 e
p

2
k iX0 ; J� =p

kΨ�
1 e�p 2

k iX0 : (3.10)

These currents are defined through the OPEs

Ψ+
1 (z)Ψ�

1 (0) = z�2∆1

�
1+ 2∆1

c
z2T(0)+ :::� ;

T(z)Ψ+
1 (0) = z�2�∆1Ψ+

1 (0)+z∂Ψ+
1 (0)+ :::� (3.11)
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and new currents can be generated through

Ψ�
1 (z)Ψ�

p (0) = z∆1+∆p+∆p+1Ψ�
p+1(0)+ ::: (3.12)

In general there are infiniteΨ�
p but the requirement of finite reducibility selects a subset of models

with a finite number.

The vertex operators creating string states are given in this parametrization by

Φw
jm̃m̃ =Vjm̃m̃ei(m̃+wk

2)p 2
k X0(z)+i(m̃+wk

2)p 2
k X0(z̄) = e

2 j
α+ ρ(z)ei

p
2
k m̃X1(z)ei

p
2
k (m̃+ k

2w)X0(z)�c:c: (3.13)

with m̃�m̃2Z. The fieldsVjm̃m̃ belong to the non-compact PF discrete and continuous series; they
are Virasoro primaries carrying no charge with respect toJ3; J̄3. The conformal dimension andJ3

0

eigenvalue ofΦw
jm̃m̃

are given by (2.19) and (2.20) respectively.

These fields have both left and right dimensions non-zero, thus their correlators will not be
holomorphic or antiholomorphic in their arguments. But in any CFT, if there is a finite number of
primary fields with respect to a holomorphic symmetry group,all n-point functions are the sum of
a finite number of terms, with each term the product of a holomorphic and an anti-holomorphic
function.

Expectation values are computed in the Coulomb gas formalism inserting screening operators
to balance the background charge. In the bosonized theory there are three screening operators,
namely

η�(z) = e� α+
2 ρe�i

p
k
2X1 ; S(z) = ∂X1e� 2

α+ ρ: (3.14)

Their positions have to be integrated and the contour choices available correspond to different
conformal blocks. Unlike the minimal conformal models hereη� are dimension one fermions and
their charge conjugates are given by the following dimension zero fermions

ξ�(z) = e
α+
2 ρe�i

p
k
2X1 : (3.15)

In fact, (η�;ξ�) are members of two non-commuting fermion ghost systems withcentral charge
c=�2 which are embedded in the boson Fock space. The lack of commutation means that states
cannot in general be simultaneously diagonalized in terms of both systems. TheU(1) currents
are j�(z) = �η�ξ� and the operatorsj�0 count the fermion charge asj�0 [Vjm̃℄ = j� m̃. Vertex
operators with integer or non-negativej�0 charge are local with respect to the(η�;ξ�) system or
independent of the zero modeξ�0 respectively.

All the PF/Virasoro highest weight states correspond to unitary representations ofSL(2;R)
and the vertex operators creating them are given by (3.13). However the descendants of the dis-
crete series are constructed with the screening charges as

H
η�Vj� k

2+1;�( j� k
2�p)(z) with p= 1;2; :::.

This embedding of the non-compact PF in the boson Fock space is substantially different from the
compact case where all the unitary highest weight representations are independent of both fermion
zero modesξ�0 . This structure plays a crucial role in closing the operatoralgebra onto unitary states
in the compact case. Moreover there are no null states inSL(2;R). These are extremely significant
in the minimal models since they determine the differentialequations to be satisfied by the corre-
lators and, in the cases where there are a finite number of fields, they allow a complete solution of
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the theory. Feigin and Fuchs showed that the null states can be built acting with screening opera-
tors on the vertex operators with shifted charges. Therefore, inserting them in the correlators they
determine the non-vanishing expectation values in the Coulomb gas formalism and thus the fusion
rules.

It would be interesting to include the spectral flow representations in this formulation. Actually
the spectral flow operator has a current algebra null vector (and through the Sugawara relation
(2.11) a conformal-current null vector), namelyJ��1j k2; k

2 >= 0. Thus the winding sectors might
mimic the role of the null states to determine the fusion rules. Actually it is not possible to construct
a modular invariant partition function unless the spectralflow representations are considered (see
below).

4. The partition function

The one loop partition function for bosonic strings on thermal AdS3 �i:e: H+
3 =Z, which is

equivalent to the euclidean black hole background� was computed in [6] using path integral
methods previously introduced by Gawedski [8]. More recently, a modular invariant partition
function reproducing the spectrum discussed in Section 2 was found in [7]. Here the starting
point is the vacuum amplitude for the cosetSL(2;R)=U(1) computed in [23] and the result for
SL(2;R) is reconstructed by coupling the coset to a free time-like boson corresponding toJ3 (and
J̄3). Actually it was shown in [7] that one can write the modular invariant partition function for
SL(2;R) as aZk orbifold of the productSL(2;R)

U(1) �U(1)p2k, namely

Z(τ; τ̄) = 4
p

τ2(k�2)3=2
Z

d2s d2t
e

2π
τ2
[Im(s1τ�s2)℄2jϑ1(s1τ�s2)j2 �� ∑

m;w;m0;w0 ζ"w+s1� t1
m+s2� t2

#(k)ζ" w0+ t1
m0+ t2

# (�k) (4.1)

wheresi 2 [0;1) are part of the holonomy parameters andζ(R2) refer to theU(1) characters of a
boson compactified at radiusR (imaginary for a time-like boson).

MoreoverZ(τ; τ̄) can be expressed in terms of the following light-cone momenta

P+
L;R = n+p

2k
�rk

2
w� ; P�L;R = n�p

2k
�rk

2
w+; (4.2)

corresponding to two compact light-cone bosonsX� = 1
2(X1�X0) as4

ZSL(2;R) = 4
p

τ2 (k�2)3=2
Z

d2s d2t
e

2π
τ2
(Im(s1τ�s2)2jϑ1(s1τ�s2jτ)j2 �� ∑

n�;w�2 Ze�iπ
p

k
2((P+L +P+R )s2+(P�L +P�R )(s2�2t2))�� q

1
2

�
P+L +p k

2(s1�2t1)��P�L +p k
2s1

�
q̄

1
2

�
P+R�p k

2(s1�2t1)��P�R�p k
2s1

� : (4.3)

4Herem;m0 have been Poisson resummed and traded byn� = n�n0 andw� = w�w0.
001 / 11



P
o
S
(
W
C
2
0
0
4
)
0
0
1

String Theory on AdS3 Carmen A. Núñez

The spectrum extracted from this partition function corresponds to the discrete and continuous
representations ofSL(2;R) as discussed in Section 2, consistently with the vertex operators (3.13)
written in light-cone coordinates [24] with quantum numbers j, m̃+ ˜̄m=�k(w�t1) andm̃� ˜̄m= n,
namely

exp

(r
2

k�2
jρ+ i

r
2
k

�
k
4

wX++�m̃� k
4

w

�
X�+ k

4
X̄�+� ˜̄m� k

4
w

�
X̄+�) : (4.4)

It is interesting to discuss the possibility of expressing (4.3) as a modular invariant combination
of SL(2;R) characters. The characters of the coset were computed in [18] from the embedding of
the PF modules in the boson Fock space. DenotingH the holomorphic subspace of states in the
boson Fock space andHlocal the subspace which contains states that are relatively local with respect
to the(η�;ξ�) systems, theD+

j (D�
j ) PF modules are inH +

small (H
�

small) which is the restriction of
states inHlocal to those independent of the zero modesξ+0 (ξ�0 ). Thus one obtains the characters of
the discrete and continuous series with charge ˜m= j + p andm̃= α+ p respectively as

χD+
jp = η(τ)�2q� c

24+∆ jp

∞

∑
r=0

(�1)rq
1
2r(r+2p+1) ; (4.5)

χC
jp = η(τ)�2q∆λ;α+p (4.6)

where∆ j;p =� j( j�1)
k�2 + ( j+p)2

k . It was shown in [25] that a modular invariant partition function can
be obtained from these characters, but the expression computed in [8] performing the path integral
has contributions from states which do not fit in the discreteand continuous representations. The
equivalent analysis forSL(2;R) has not been performed yet.

5. Conclusions

The unitarity constraints for string theory on AdS3 are well understood at the free level, both
for the bulk and boundary theories. However, several extra constraints are necessary to render the
theory unitary when interactions are considered. The interpretation of these conditions is clear
from the BCFT viewpoint but not from the perspective of the theory in the bulk of AdS3.

I have argued that the free field formulation of the theory might allow a better understanding
of the worldsheet theory and discussed some speculative ideas on the possibility of using methods
of RCFT in this non-rational CFT. In particular the Coulomb gas formalism reproduces the exact
results for two and three point functions and the partition function reflects this free field content.
However further work is necessary in order to determine the fusion rules and their relation to the
modular transformation properties of the characters, a sort of non-compact version of Verlinde
theorem.

As conclusion I try to motivate suggestions for further study. The computation of four point
functions in the free field formalism is an interesting problem in itself and it could moreover give
information about the factorization properties of the model. Important information could be ob-
tained also from the two point functions on the torus. Analyzing their modular invariance in the
factorization limit could illuminate the worldsheet origin of the unitarity constraints.
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