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String Theory on Ad$S Carmen A. NUfiez

1. Introduction

This lecture is about string propagation on three dimerdianti de Sitter spacetime. This
has been a subject of intensive investigation since thg earkties. The original motivation can
be traced to the exact conformal invariance of the theoryclisian be formulated as a WZW
model on theSL(2, R) group manifold. Actually the non linear sigma model desogbstrings on
a background\dS geometry plus antisymmetric NS tensor field is the simpleatrgole of exactly
solvable string theory with a single non-trivial timelikettion. Interest in this model is enhanced
by its close connection to two and three dimensional bladeshéwvhich can be constructed as
cosets and orbifolds &d S respectively), so that understanding this string thedoped to address
many important conceptual problems of black hole physies [&] for a list of references of this
initial period.

A more recent incentive for studying this theory arises ftbmAdS/CFT correspondence [2].
This is a concrete realization of the holographic idea wiastablishes a duality between gravity
or string/M theory in the bulk of anti-de Sitter space and arqum field theory on the boundary
of spacetime. In this context also Agl$s special. Both the theory on the boundary and the non-
linear sigma model describing the worldsheet of the strimthe bulk of AdS have an infinite
dimensional local algebra of conformal transformationsisTallows on the one hand to verify
the correspondence beyond the supergravity approximaterat the full string theory level, and
on the other hand one can get important information on thegstheory using the conjecture.
Reference [3] presents a profound investigation of thiscoete AdS/CFT, example (previous
work can be found in [4]).

Lately there has been a revival of noncritical string the®in two dimensions. This is largely
due to the recent extension of the Matrix model to includenfens as well as to include a variety
of backgrounds such as D-branes and black holes. Theserticalcstrings come in several vari-
eties: Type OA, Type 0B, Type |, Type lIA, Type IIB, Heterofig x SQ(8) and HeteroticSO(24)
and therefore one is interested in constructing three dsinaal non-critical M theory to obtain
a unified model of non-critial string theories in the samdi@as as one proceeds with the ten di-
mensional parents. Non-critical three dimensional M tiiésexpected to have solutions of three
dimensional black holeAdS andAdS x St. This 3D M theory may give important clues about
the 11 dimensional M theory.

The status of the perturbative world-sheet theory onah be summarized as follows. The
spectrum of physical states has been definitely establisheddierence [5] where a unitary Hilbert
space was revealed after fully appreciating the role of pleetsal flow symmetry. The construction
of a modular invariant partition function in [6, 7] suppliad independent check on the field con-
tent of the model and further confirmed the well-defined $tmecof the free theory. However in
order to establish the complete consistency of the modehaa¢o consider interactions and verify
the closure of the operator product expansion. But the fugites are difficult to find in the non-
compact worldsheet CFT that defines string theory onAmEtause of the non-rational structure
of the model. There are generically no null vectors in thewaht current algebra representations,
so that most of the technigues from rational conformal fibkebties are not available and conse-
qguently the factorization properties of the model have metrbfully determined yet. Nevertheless,
important progress has been achieved in recent years andithbe the subject of the forthcoming
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pages.

The outline of this short review is as follows. In Section 2reebintroduction to free string
propagation on Ad$and the spectrum is presented. The correlation functionkeogphere are the
subject of Section 3 and an analysis of the partition fumdsgerformed in Section 4. Conclusions
are put forward in Section 5.

2. Review of free string theory on AdS;

AdS is a maximally symmetric solution of Einstein’s equationghvwegative cosmological
constant. A constructive definition of this manifold can beeg by embedding it into a four
dimensional space with signatufe, —, +, +) satisfying a quadratic constraint

de? = —dX?; — dX2 + dXZ+ dx2
X2 XX X2 =12 (2.1)
wherel is the radius of the manifold, related to the scalar cureaigR = —I%.
There are several possible parametrizations of AdB global coordinates the metric takes
the form
ds? = I%(—costp dt? + dp? + sintp d6) (2.2)

wheret € [0,2m),p € [0,00) and B € [0,2r). In order to avoid closed timelike geodesics and the
causality problems associated with an angular time coatéjrone works in the universal covering
of AdS. This amounts to decompactifyirtgand considering € R. Note that@ is an angular
coordinate ang takes real positive valueke. it is like aradial coordinate so one refers fo=0
as the center of the manifold apd— « as the boundary of AdS(actually the time a light ray
takes to get arbitrarily far from any point is finite).

An alternative parametrization is given by Poincaré comtiis, leading to the metric

ds? = 12(dg? — ®?dy*dy ) (2.3)

where{@ y",y } € R3. Itis easy to verify that these coordinates only cover oriedfigpacetime.
Analytically continuing to the complex plane one obtains éuclidean hyperbolic spatt
with metric

ds? = 12(dg? — €dydy) . (2.4)

Writing explicitly the Poincaré coordinates in terms oflgd coordinates it is easy to see that the
limit p — oo is equivalent tap— . Therefore the boundary #fdS is parametrized byy,y} and
the remote past (+ —) and future { — ) can be mapped to the points 0 anaf the complex
plane or to the poles of a sphere through a stereographieqpia,).

Being a maximally symmetric spackd S possesses the maximum number of generators. The
isometry group can be easily constructed observingt@, 2) symmetry of (2.1) which is locally
SQ2,2) ~ SL(2,R) ® SL(2,R) i.e. two commuting copies dbL(2,R), namely

(33,35 =+ |, [3N,0]=-28° . (2.5)
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The classical solutions of this theory were presented inTbhelike geodesics oscilate around
the center ofAdS whereas spacelike geodesics representing tachyons frarebne side of the
boundary to the opposite. Solutions describing string @agagion are obtained from the dynamics
of pointlike particles. Timelike geodesics give risedioort strings bound states trapped in the
gravitational potential oAdS. Conversely,long stringsarising from spacelike geodesics can
reach the boundary. Given one classical solution one caergennew solutions by the spectral
flow operation which amounts to stretching the geodesichartime direction and rotating them
w times around the center &dS. The spectral flow parametar, namedwinding numberis an
integer representing the number of revolutions in the ligitie directiort 4+ 6 1. Different values
of w correspond to distinct solutions, even at the classicall las exhibited, for instance, by the
energy spectrum).

Consistent string propagation in the background metri) (@2quires in addition an antisym-
metric rank two tensor background fiell= e?°dy A dy. The theory is described by a non linear
sigma model with action

k _ _
S=¢ / d22(0gp+ 2%0ydy) 2.6)

which is equivalent to a WZW model on the universal covestf2, R)i (or actually its Euclidean
versionSL(2,C)/SU(2)) with action

Swzw = g [ FOTr(0:0)0*g )] + 13- | e Tri(g 00 @ 0,00 0g)] @)

whereg € SL(2,R), X is the worldsheet witldV = Z andk is the level of the Kac-Moody algebra.
Actually this action has a larger symmetry than the isorestof the group, namely(z z) —
Q(2)9(z,2Q1(z), Q being an arbitrary element &1(2, R). The corresponding currents
k 1 = k ~ 1
@ =-50099" . J2=-5009 )9 (2.8)
can be expanded in Laurent series as

B(2) = i Rz" . PBig= i Rzt (2.9)

n=—oo n=—oo

and the coefficientd? (J_ﬁ‘) satisfy a Kac-Moody algebra given by
: k
(95 3n] = €534 m = 5N Mnimo (2.10)

where the Cartan Killing metric @L(2,R) isn*~ =n~* =2,n% = —1 ande2 is the Levi Civita
antisymmetric tensor. And similarly for the antiholomoiphurrents.
The Sugawara stress-energy tensor is given by

T(2) = k”_""bz PRI (2.11)

Lstrictly the spectral flow stretches the geodesic solutidihét-direction and rotates it around the centePafS
(see [5]).
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It is related to the Casimir of the group@s= (k—2)T and it leads to the following central charge

of the Virasoro algebra
3k 12

= 241+ 2.12
C=1—5=2+1+ el (2.12)
(o = +/2(k—2)). The last equality emphasizes that the central charge eawritten as that of
two free bosons plus a Liouville field. We will see more indiicas of this field content as we
proceed.

At the quantum level, the building blocks of the Hilbert spa¢ are unitary hermitic repre-

sentations oSL(2,R). The statesj, m > satisfy

Colj,m>=j(j+1)|j,m> ,  3|i,m>=m/j,m>,
Fli.m = (mFj)j.mE1) | (2.13)

with{me R, j e R} or{meR,j € —%+ iR}, as required by hermiticity, and in addition they must
be Kac Moody primaries, namely

Bljm=0 ¥n>0 . (2.14)

Unitarity selects the discret@ft) and continuous(() representations, namely:

o Df ={|j,m); jeR m=j+1j+2,j+3..}.

e D ={[jm); jER, m=—j-1-j-2,-j-3,..}.

o (P ={|jm); j=-3+iINAeR m=a,a+la+2..; aeR}

Notice that the vectors iri{ related byj <+ —1 — j represent the same physical state and
thereforej can be restricted tp > —%. The complete basis af?(AdS) is given bij“:
Cl_1/24in andDi x D with j > —1/2.

The representation space can be enlarged by acting on thargrstates in these series with
J3, n< 0. The corresponding representations are denote@fhffﬁ. The states in string theory
must satisfy in addition the Virasoro constraints given by

—1/2+ix X

ii+1)
k—2

Lo/W >= (— +N>HJ> ;o LyW>=0 , n>0 . (2.15)
Unlike in flat spacetime where these constraints decougeégative norm states from the
spectrum, in string theory oAdS it was noticed long ago that this is not enough and the bound
j < k/2 was proposed to achieve a unitary Hilbert space [1]. Howhis limit presents two
important problemsi) it implies an unnatural restriction on the excitation lefaid consequently
on the mass) of the states, ainfthe partition function (which contains the information dret
physical spectrum of the theory) is hot modular invariant.
The solution to these problems was proposed by J. MaldaageshddaOoguri in [5]. The
full representation space contains the spectral flow imag#g standard series mentioned above.
Actually the spectral flow operation leads to the followingamorphism of theSL(2, R) currents

k
P o PB=3- SWho (2.16)

I == (2.17)
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with w € Z and consequently the modes of the Virasoro generatorddramss

Ln— Lp=Ln+w3 - ngénp . (2.18)

Unlike the compacBU(2) case, the new operators generate inequivalent reprasestaif
SL(2,R) with stateq |, h,w) satisfying

N A [ NP -~
L0|J,m,W> - ( k_?2 wm 4VV2 |J,m,W) 3 (219)
3’:",\, ~ k o~
Joli,mw) = | M+ EW [j.mw) . (2.20)

Finally, the complete Hilbert space of string theoryAaS is obtained by applying creation
operatorsJNﬁ‘, n < 0 on the primary states of the current algebra and the pHysdit® conditions

(Lo— 1) mwN,h) = (-J(kjjzl)—wm— 'z(lwz+ﬂ+h—1) T mwNh =0 ,(2.21)
Lol T, A w, N, by = (Ln )|j mwN,h) =0 forn>0 (2.22)

whereN is the excitation level of, andh is the conformal weight of the state in the internal theory
2. Notice that the representatlodsi"" 1 and fD”’ CJ’ are equivalent. This has an important
consequence on the values aIIowedeolndeed recalllng the symmetjy—> —1— j which implies
j>- 2, j is restricted as required by the no-ghost theorem [5] to

1 . k-3
—§<j<T . (2.23)
Note that if one starts with> — —1/2 the representation obtained after the spectral flow sgisfi
j=%-2-]< X3 conversely if there were a representat@jf with j > %2 in the Hilbert
space, the spectral flow would generate a representﬁlfbwnh j < —1/2, in contradiction with
the standard harmonic analysis. The upper bounglwas interpreted in [3] as the condition that
only local operators be considered in the dual field theortherboundary. This interpretation fits
in nicely with the AdS/CFT dictionary which assigns statethie bulk to operators in the boundary.
Therefore the Hilbert space of string theory on Ad¢®n be summarized as

k—

3 1 . .
5{:@33_00[(/ dJQ)W®Q)W> (/ dj/ dad @ ,-Vg)] . (2.24)
1/2 -3+ "Jo ’ ’

This proposal for the spectrum was independently verifiethbycomputation of a modular invari-
ant partition function in [6, 7].

2We have been considering string theoryAmiS, but more generally we could take a backgrodmtis x A, with
A a compact internal manifold.
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3. Correlation functions on the sphere

The computation of correlation functions in this theoryather involved because the underly-
ing CFT is non-rational and very little is known about thiadkiof non-compact theories in general.

Nevertheless certain expectation values of primary fietd® Hbeen calculated using different
procedures. The path integral method was started in [8] ppliea to the computation of two and
three point amplitudes using the free field approximatiof®]n A generalization of the bootstrap
approach was designed by Teschner to deal with the non-aimpture of the hyperbolic space
Hy = SL(2,C)/SU(2) and some two, three and four point functions for this euelideodel were
given in [10]. The physical interpretation of these exastitts, as correlation functions of the dual
CFT,, was performed by Maldacena and Ooguri in [3]. Let us reviemes of these results.

The states iH;™ belong to representations wifh= —% +iA, A € R and they can be realized
in global coordinates by operators of the form

oo L+2]
q)J(XaXvZ?z) - T(

e 9/ 4 ly— X‘Ze(p/m) 2 (3.1)
and their current algebra descendants. Hexekeep track of theSL(2, C) quantum numbers and
can be identified as the location of the operator in the dudl @the boundary ofi;". We refer
the reader to references [10] for explicit expressions pketation values of these operators.

For string theory applications one has to consider realeghf j and consequently these
amplitudes have to be analytically continued. This analy&s performed in [3]. However not all
correlators that are necessary for string theory can bénaatdny analytic continuation of (3.1) and
expectation values of these fields. In order to consideestatthe spectral flow representations, it
is convenient to use fields with defini(2) weights. These are given by

cDJmn?(Zaz) = /dzx Xj+m)zj+n_1q)717j(x’x_;z’z)’ (32)

and operators of the spectral flow representations arengataicting on (3.2) with the spectral flow
operator defined as

F(22) = dVied+ted) (3.3)

Similarly the correlation functions can be converted torthkasis, then one performs the spectral
flow and finally transforms the result back to thdasis. This procedure was applied in [3] to
obtain three point functions in arbitrary winding sectors.

The results for the scattering amplitudesnef string states presented in [3] exhibit several
subtleties fom > 3. On the one hand, expectation values of states belongidgstoete repre-
sentations are only well defined if the sum of the isospgind the external operators satisfies
YilJi <k—3. Moreover the four point functions on the sphere do notofémt as expected into
a sum of products of three point functions with physical rimediate states unless the quantum
numbers of the external states verify+ j, < k;zg and j3+ ja < k;zg The interpretation of these
constraints was proposed in [3]: correlation functiondatiag these bounds do not represent well-
defined computations in the dual CFdescription of the theory. This explanation is similar te th
interpretation of the upper bound on the spin of the physitatesi(e. j < ";23) as the condition
that only local operators be considered in the boundary EleWwever in the latter case one has a
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clear understanding of the constraint from the representabfSL(2, R) which define the theory
in the bulk. Similarly one would like to better understands thnusual feature of the correlation
functions from the worldsheet viewpoint.

On the other hand, a curious aspect of this model is that palyamplitudes oh string states
may violate winding number conservation uprte- 2 units. Again, this fact is well understood
from the representation theory 81(2,R) [3]. But the computation of winding non-preserving
scattering amplitudes proposed in [3] involves, as meetioaibove, the insertion of spectral flow
operators in the correlators and this implies the calautatf expectation values of more vertex
operators than the original ones. This procedure has been applied to thred paictions, but
four point functions violating winding number conservatioy one or two units require the calcu-
lation of correlators with five or six operator insertionsthwthe consequent complications. These
amplitudes are needed to definitely settle the questiontabewnitarity of the theory through the
analysis of their factorization properties.

In order to develop techniques that simplify these comparatand allow to perform others
that would clarify the full structure of the model, the freeldi description of the theory appears
as a powerful tool. This approximation was initially applie [4] to derive the spacetime CFT
and establish the conjectured AdS/CFT correspondencesfiated work see [11]). Even though
this approach is expected to give a good picture of the thenly near the boundary of AdS
the computation of two and three point amplitudes of stritages in the world-sheet theory using
the Coulomb gas formalism has produced results in complgteement with the exact ones in
the bosonic theory [12] and sensible results were also rddain the supersymmetric case [13].
Furthermore the analysis of unitarity in this approximatghould give important information on
the consistency of the complete theory. Thus we now disdwssxtension of this formalism to
higher point functions and to higher Riemann surfaces.

The Coulomb gas formalism developed by Dotsenko and Falééahd by Feigin and Fuchs
[15] for conformal minimal models is a more practical way torgpute the conformal blocks than
the bootstrap programme of Belavin, Polyakov and Zamolikdeh However the generalization
of this method to other models with extended conformal algelis incomplete in most cases.
Indeed, even in the simpler compact SU(2) WZW CFT, the naigal@nb gas construction of
[16] fails to reproduce the well-known fusion rules of theraskible representations. Actually the
correct fusion rules and characters were derived in [17]revbiee structure of zero modes and the
embedding of the SU(2) parafermion (PF) modules in the bésmk space was found to play a
crucial role.

The extension of this procedure to the non-ratidBBa]2, R) CFT however is not straightfor-
ward [18] since it has an infinite continuous set of fieRiRational CFTs (RCFT) instead contain
a finite number of representations of the modular group. HEreyot necessarily minimal but all
the primary fields (possibly infinite) can be organized inf;mae number of blocks corresponding
to an extended symmetry algebra linearly transforming @#ch other under the modular group.
The simplest example beyond the miningak 1 models is the = 1 bosonic theory compactified
on a circle with rational square radius. Similarly in thetiémeduciblezy parafermion CFTs which

SAlternative procedures leading to the correct resultstieradmissible representations were followed in [19] and
[20] where it is shown that the four point functions obey sing symmetry and monodromy invariance. However the
unitary representations relevant for string theory do mbbhg to this class.
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describe the cos&L(2,R)/U (1) [21] there is a subset of models with rational central chérge
fractional levelsk) where all the Virasoro primaries appear as descendantgilfinite number
of) PF highest weight modules. Many physically interestiages correspond to fractional levels
k, for example critical bosonic string theory on the coS&t2,R) /U (1) demandsk = % and in
applications to superstring theory the lekdk the number of NS5-branes. The finitely reducible
PF models correspond to the continuous and discrete uméprgsentations &L(2, R).

Actually there is a tight link between the spectrum of strihgory on Adg and that of the
coset. The states in the coset are thosBlg2, R) that are annihilated b2 andJ3 with n> 0, and
have zero mode eigenvalues given by the non-compact panaféc chargesn= (n—wk)/2 and
m= —(n+wk)/2,n € Z. Itis then possible to reconstrusL(2,R) starting from the coset much
like in the compacBU(2) case.

The construction in [18] is based on the Wakimoto free fiefst@sentation of th&L(2, R)y
current algebra which can be expressed in terms of three fiétth propagators

(P(2p(0) = (X1 (2XH(0))=~Inz , (X*(2X°(0))=Inz (3.4)

J%“V§W°’Jizé¢gﬂﬁvg;m%$@wﬂh (3.5)

and the stress tensor is

as

_ 1.0
71 (x0)

Lop?- Lo (3.6)

2_1 1
2 o4

~ (ox)?

Thus the current algebra can be realized in terms of two fosersX?, X and a Liouville fieldp
with background charg® = \/g (which roughly correspond to the global coordinates of AdS
[22]) in full agreement with the commutation relations @.1Actually it can be verified that these
currents satisfy the OPEs

(23 (2) ~ (Z_k - Z;i(z) , (3.7)
B(23*(2) ~ i‘];_(zz’,) , (3.8)
B(23(2) ~ —% . (3.9)
In terms ofZy PF currents of the cos&L(2,R) /U (1), J* can be rewritten as
I =VkwieVEX® | T = Vkwre VEX® (3.10)
These currents are defined through the OPEs

Wi (W (0) =z |14 %ZZT(O)—F... ,

T(2W] (0) = 272 [A W] (0) +20W] (0) +...] (3.11)
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and new currents can be generated through

Wi (W5 (0) = 22+t leays 1 (0) +... (3.12)
In general there are infinil\#g but the requirement of finite reducibility selects a sub$ehodels
with a finite number.
The vertex operators creating string states are given $rpdsiametrization by
O =\, WS/ FXC) H WSV EXOD) _ gi P gV EIX 2 gV EmEEWX@) o (3.13)

jim Jjmm

with m—me Z. The fieldsV;qm belong to the non-compacth discrete and continuous sthas
are Virasoro primaries carrying no charge with resped®d®. The conformal dimension an]é’
eigenvalue otD‘J(me are given by (2.19) and (2.20) respectively.

These fields have both left and right dimensions non-zergs their correlators will not be
holomorphic or antiholomorphic in their arguments. Butity &FT, if there is a finite number of
primary fields with respect to a holomorphic symmetry gralpn-point functions are the sum of
a finite number of terms, with each term the product of a holpinic and an anti-holomorphic
function.

Expectation values are computed in the Coulomb gas formaliserting screening operators
to balance the background charge. In the bosonized theerg tire three screening operators,

namely
N2 =e 2PeVEX | gz =oaxle &P, (3.14)

Their positions have to be integrated and the contour chademilable correspond to different
conformal blocks. Unlike the minimal conformal models hgteare dimension one fermions and
their charge conjugates are given by the following dimemgiero fermions

() —e 7 PeFVEX (3.15)

In fact, (n*,&*) are members of two non-commuting fermion ghost systems edititral charge
¢ = —2 which are embedded in the boson Fock space. The lack of ctatiorumeans that states
cannot in general be simultaneously diagonalized in terfrioth systems. Th&J(1) currents
are j*(2) = —n*&* and the operatorgs count the fermion charge g§ [Vjm] = j £ M. Vertex
operators with integer or non-negatiyé charge are local with respect to thg*,&*) system or
independent of the zero m06§ respectively.

All the PF/Virasoro highest weight states correspond taamirepresentations @L(2,R)
and the vertex operators creating them are given by (3.18weder the descendants of the dis-
crete series are constructed with the screening chargfeqﬂaﬁjfgﬂi(jf%fp) (zg withp=1,2,....
This embedding of the non-compact PF in the boson Fock spagtdostantially different from the
compact case where all the unitary highest weight repragens are independent of both fermion
zero modeig. This structure plays a crucial role in closing the operatgebra onto unitary states
in the compact case. Moreover there are no null stat8&(2 R). These are extremely significant
in the minimal models since they determine the differerg@liations to be satisfied by the corre-
lators and, in the cases where there are a finite number of figldy allow a complete solution of
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the theory. Feigin and Fuchs showed that the null states edmuitt acting with screening opera-
tors on the vertex operators with shifted charges. Thesefaserting them in the correlators they
determine the non-vanishing expectation values in the@wohbilgas formalism and thus the fusion
rules.

It would be interesting to include the spectral flow représgéons in this formulation. Actually
the spectral flow operator has a current algebra null veeod through the Sugawara relation
(2.11) a conformal-current null vector), name1y1|'§,'§‘ >= 0. Thus the winding sectors might
mimic the role of the null states to determine the fusiongukectually it is not possible to construct
a modular invariant partition function unless the spedtml representations are considered (see

below).

4. Thepartition function

The one loop partition function for bosonic strings on that®dS; —i.e. H /Z, which is
equivalent to the euclidean black hole backgroundvas computed in [6] using path integral
methods previously introduced by Gawedski [8]. More relgert modular invariant partition
function reproducing the spectrum discussed in Section  feand in [7]. Here the starting
point is the vacuum amplitude for the cost(2,R)/U (1) computed in [23] and the result for
SL(2,R) is reconstructed by coupling the coset to a free time-likeonacorresponding td* (and
J_3). Actually it was shown in [7] that one can write the modulavdriant partition function for
SL(2,R) as aZ orbifold of the produclsﬁ xU(1) sz, namely

AIm(s11-52)2

Z(t,1) =41 k—23/2/ d?s dztez—
W+s —ty W+t
k —k 4.1
X mgw%’wi Mt S—t (k)¢ M+t (—k) (4.1)

wheres € [0,1) are part of the holonomy parameters &&?) refer to theU (1) characters of a
boson compactified at radid&(imaginary for a time-like boson).
MoreoverZ(t,T) can be expressed in terms of the following light-cone moment

p* —ii\/gw p- —Li\/EW 4.2)
LR ™ \/j( 27 LR ™ \/j( 2 + .
corresponding to two compact light-cone bosifs= 3 (X + X°) as*

2n
Z — 4 k-2 3/2/ 2 e

SL(2R) VT2 (k=2) d’s ot N
x 3 o /S (P +PE)s+ (P +PR) (- 22)) o

nfw.e Z

« (R +VEE-20) (R+VEs) b (Fi-VEe-20) (R-vEa) g5

(Im(s171—5,)?

2%

“Herem,mf have been Poisson resummed and tradeoiby: n+n’ andwy = w+w.
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The spectrum extracted from this partition function cqooegls to the discrete and continuous
representations @L(2,R) as discussed in Section 2, consistently with the vertexatpes (3.13)
written in light-cone coordinates [24] with quantum numbgn+m= —k(w—t;) andmi— m=n,
namely

[ 2 . 2Tk oo (o K Ny koo (= K\
exp{ meJrl\/;[ZWX +(m—ZW>X +ZX +(m—ZW>X ]} (4.4)

Itis interesting to discuss the possibility of expressih@) as a modular invariant combination
of SL(2,R) characters. The characters of the coset were computed]ifr¢b8 the embedding of
the PF modules in the boson Fock space. Dendatithe holomorphic subspace of states in the
boson Fock space arfdyc4 the subspace which contains states that are relativeliMotarespect
to the(n*,&*) systems, theD;" (D;") PF modules are it} ., (#,,.,) Which is the restriction of
states in*ocq to those independent of the zero moﬂgs(zg). Thus one obtains the characters of
the discrete and continuous series with charge [+ pandm= a + p respectively as

00

Xip = N0 Aee 5 gk (45)
r=
Xfp = () ~*ghere (4.6)
wherej p = — % + @ It was shown in [25] that a modular invariant partition ftino can

be obtained from these characters, but the expression d¢echjpu[8] performing the path integral
has contributions from states which do not fit in the discestd continuous representations. The
equivalent analysis foBL(2, R) has not been performed yet.

5. Conclusions

The unitarity constraints for string theory on Ag&e well understood at the free level, both
for the bulk and boundary theories. However, several exirstraints are necessary to render the
theory unitary when interactions are considered. The pnégation of these conditions is clear
from the BCFT viewpoint but not from the perspective of thedty in the bulk of AdS.

| have argued that the free field formulation of the theoryhhiglow a better understanding
of the worldsheet theory and discussed some speculatigs methe possibility of using methods
of RCFT in this non-rational CFT. In particular the Coulomdisgormalism reproduces the exact
results for two and three point functions and the partitionction reflects this free field content.
However further work is necessary in order to determine tiséoh rules and their relation to the
modular transformation properties of the characters, aigfonon-compact version of Verlinde
theorem.

As conclusion | try to motivate suggestions for further stu@ihe computation of four point
functions in the free field formalism is an interesting peshlin itself and it could moreover give
information about the factorization properties of the modmportant information could be ob-
tained also from the two point functions on the torus. Analgzheir modular invariance in the
factorization limit could illuminate the worldsheet origof the unitarity constraints.
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