
On Solitons, Non-Linear Sigma-Models, and
Two-Dimensional Gravity

Floyd L. Williams ∗

Department of Mathematics and Statistics,Univ. Massachussets, Massachussets, USA
E-mail: williams@math.umass.edu

Some interesting inter-connections between solitons, non-linear sigma-models, and gravity (in

two and four dimensions) are discussed. Certain sigma-models and non-constant scalar curvature

metrics are constructed from generalized solitons. Speculation is presented whether such metrics

can be transformed ( by a suitable change of coordinates) to black hole metrics.

Fourth International Winter Conference on Mathematical Methods in Physics
09 - 13 August 2004
Centro Brasileiro de Pesquisas Fisicas (CBPF/MCT), Rio de Janeiro, Brazil

∗Speaker.

Published by SISSA http://pos.sissa.it/

mailto:williams@math.umass.edu�


On Solitons, Non-Linear Sigma-models, and Two-Dimensional Gravity Floyd L. Williams

1. Introduction

Various connections between non-linear sigma-models and gravity have been the subject of
discussion for some forty years or so; compare [1,2,3,8,10,11,12,13]. Recent discussions have in-
volved links between solitons and gravity [5,6,7,16,17]. We extend these discussions here, where
a link between solitons, sigma-models, and two-dimensional Jackiw-Teitelboim gravity is pre-
sented. Also presented is a construction of sigma-models (specifically maps of the plane to the
2-sphere), given solitons of a generalized type, and we construct corresponding metrics that we
propose should be of interest for more general theories of two-dimensional dilaton gravity. Some
background material on constant curvature metrics and sine-Gordon solitons is included before
generalized sine-Gordon equations are considered.

The author expresses his sincere gratitude to members of the Organizing Committee for the
opportunity to participate in this outstanding Winter School and to the dear people of CBPF for
their kind assistance in many matters.

2. Constant curvature metrics, sine-Gordon solitons, and two-dimensional gravity

The connection between constant curvature metrics and solutions of sine-Gordon equations is
reviewed here, with the introduction of some notation. For a pseudo Riemannian manifold(M,g)
with local expression

ds2 =
m=dimM

∑
i, j=1

gi j dxidxj (2.1)

of the metricg, we shall observe the following sign convention for the curvature tensorRl
i jk and the

scalar curvatureR= R(g) of g, whereg−1 = [gi j ]:

Rl
i jk =

∂Γl
jk

∂xi
− ∂Γl

ik

∂x j
+

m

∑
p=1

[Γl
ipΓp

jk−Γl
jpΓp

ik],

R =
m

∑
i, j=1

gi j Ri j . (2.2)

Here

Ri j =
m

∑
l=1

Rl
il j ,Γk

i j =
1
2

m

∑
l=1

glk[
∂gil

∂x j
+

∂g jl

∂xi
− ∂gi j

∂xl
] (2.3)

are the Ricci tensor and Christoffel symbols, respectively, ofg. The Gaussian curvatureK of g is
K = −R/2. We will have an interest in the particular case whenM is two-dimensional:m = 2.
In this case one always has the formulaRi j = (R/2)gi j . That is, the Einstein vacuum equations
Ri j − R

2gi j +Λgi j = 0 automatically holdfor a vanishing cosmological constantΛ. These equations
consequently are of less interest and one considers instead thenon-trivial Einstein equation (in two
dimensions)

R(g) = A(a constant), (2.4)
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due to Jackiw-Teitelboim (J-T) [9,15]. Equation (2.4) is derived from the J-T action integral

IJ-T(τ,g) =
1

2G

∫

M

√
|detg|dx1dx2(A−R(g))τ (2.5)

by variation of a scalar fieldτ(x1,x2)(called adilation). The example

τ(x, t) de f
=

√
1+v2sech[

m(x−vt)√
1+v2

] (2.6)

(with (x1,x2) = (x,τ)) appears in section 3 of [6].
GivenA , solutionsg of equation (2.4) can be obtained on the basis of a well-known observa-

tion, where we denote the coordinates(x1,x2) by (x,y): For a functionf (x,y), the metricg defined
by

ds2 = cos2( f (x,y))dx2 + sin2( f (x,y))dy2 (2.7)

(with g12 = g21 = 0) has scalar curvature

R(g) = 4( fxx− fyy)/sin2f . (2.8)

This follows by (2.3),(2.4), or more directly by the formula

R =
2

g11g22
R1212

i.e.=
2

g11g22
[
1
2

∂2g11

∂y2 +
1
2

∂2g22

∂x2 − 1
4g11

(
∂g11

∂y
)2

− 1
4g22

(
∂g22

∂x
)2− 1

4g11

∂g11

∂x
∂g22

∂x
− 1

4g22

∂g11

∂y
∂g22

∂y
] (2.9)

of Gauss (for any two-dimensional metric withg12 = g21 = 0) [14]. Equation (2.8) means thatg
in (2.7) is a solution of the Einstein equation (2.4)⇐⇒ f (x,y) is a solution of the sine-Gordon
equation

fxx− fyy =
A
4

sin2f . (2.10)

Examples of solutionsf (x,y) of equation (2.10) (besides the trivial constant solutionsnπ,n∈
Z= the ring of integers) are the soliton ( solid wave) solutions:

1. f (x,y) = 2arctan[exp(a(x−vy))] wherea = (1−v2)−1/2, A = 2-i.e.K =−1.

2. f (x,y) = 2arctan[sinh(avy)/vcosh(ax)] for a, A in example 1. This is asoliton-antisoliton(or
kink-antikink) soliton.

3. f (x,y) = 2arctan[asin(vy)/vcosh(ax)] wherea= (1−v2)1/2, A= 2. This is abreathersolution.

Of interest as well is a Euclidean version

∆u
de f
=

∂2u
∂x2 +

∂2u
∂t2 = m2sinu(x, t) (2.11)
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of the sine-Gordon equation. Here one considers the metric

ds2 = cos2(
u
2
(x, t))dx2− sin2(

u
2
(x, t))dt2 (2.12)

(with coordinates(x1,x2) = (x, t)), in contrast to the one in (2.7). Using the Gauss formula (2.9)
one has, similarly, thatR= 2∆/(sinu), and therefore this metric solves the Einstein equation (2.4)
R= 2m2 ⇐⇒ u satisfies (2.11). Herem is any positive real number. Forv > 0 define

a = a(v) = (1+v2)
1
2 , ρ(x, t) =

m(x−vt)
a(v)

, β(x, t) =
m(vx+ t)

a(v)
. (2.13)

Then the dilationτ(x, t) in (2.6) is expressed as

τ(x, t) = a(v)sechρ(x, t), (2.14)

and

u±(x, t)
de f
= 4arctan[exp(±ρ(x, t))] (2.15)

are the soliton solutions of (2.11) analogous to the solutionf (x,y) = 2arctan[expa(x−vy)] of
(2.10) in example 1. Moreover the functionsΦ± : R2 → S2 from the plane to the unit 2-sphere
given by

Φ± de f
= (cosβsinα±,sinβsinα±,cosα±) (2.16)

for α± de f
= u±/2 are non linearσ−models -i.e. they areharmonic mapsin the sense of J. Eells and

J. Sampson[4]; see section 3. One has that

sinα± de f
= sin

u±

2
= sechρ, cosα± =∓ tanhρ . (2.17)

Consequently we can also write

Φ± =
1

a(v)
(τcosβ,τsinβ,∓a(v) tanhρ). (2.18)

Equations (2.16), (2.18) connect solitonsu±, non-linearσ−modelsΦ±, and two-dimensional grav-
ity via the dilationτ, where moreover the metricg in (2.12) foru= u± satisfies the two-dimensional
Einstein-Jackiw-Teitelboim field equationR(g) = 2m2 (by the remark following (2.12)) and is
known to transform to the black hole metric

ds2 =−(m2r2−v2)dT2 +
dr2

(m2r2−v2)
(2.19)

by a suitable change of variables(x, t) → (T, r). The explicit transformationΘ(x, t) = (θ1(x, t),
θ2(x, t)) = (T, r) of the metric (2.12) to the metric (2.19) is given, in fact, by

θ1(x, t) =
−1
2mv

log[
a(v) tanhρ(x, t)+1
a(v) tanhρ(x, t)−1

]+
x
v
,

θ2(x, t) = τ(x, t)/m, (2.20)

which implements an observation of J. Gegenberg and G. Kunstatter [5,6], as discovered in [16,17].
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3. A generalization of the sigma-modelsΦ± in equation (2.16)

The main point of this section is to generalize the construction of the mapsΦ± : R2 → S2

in (2.16) in a way to produce new sigma-models. As theΦ± were constructed via the solitons
u± in (2.15), we shall seek first an appropriate replacement of these functions. We also consider
the metric in (2.12) whereu is not necessarily a solution of the sine-Gordon equation, and the
implication of such a metric for gravity.

For the sake of completeness, we define a harmonic map (or non-linear sigma-model)Φ :
(M,g)→ (N,h) of pseudo Riemannian manifolds. We proceed locally although a global, coordi-
nate - independent definition is also available [4]. Let(U,φ = (x1, . . . ,xm)), (V,ψ = (y1, . . . ,yn))
be local coordinate systems onM,N with U ⊂Φ−1(V) so that one can consider thej th coordinate

functionsΦ j de f
= y j ◦Φ◦φ−1(1≤ j ≤ n) relative to these systems. We assume thatΦ is a smooth

map. Write∂ j = ∂
∂x j

and let∆g denote the Laplace-Beltrami operator ofg:

∆g
de f
=

1√
|detg|

m

∑
i, j=1

∂i [
√
|detg|gi j ∂ j ] (3.1)

onU . If Γk
i j are the Christoffel symbols ofh (see (2.3), withg there replaced byh) then thenon-

linear Laplacians∆̃s(1≤ s≤ n) are defined to act onΦ by

(∆̃sΦ)(p)
de f
=

m

∑
i, j=1

(gi j ◦φ−1)
n

∑
k,r=1

∂iΦk∂ jΦr |φ(p)Γs
kr(Φ(p))+∆gΦs|φ(p) (3.2)

for p∈U . Φ is harmonicif it satisfies the system of equations

(∆̃sΦs) = 0,(1≤ s≤ n = dimN). (3.3)

The field equation (3.3) can be derived by a variational principle where theenergy integral
of Φ is made stationary with respect toΦ. For a Bosonic string, for example, this integral is the
Polyakov integral and the equations (3.3) coincide with the equation of the motion of the string
- say forM= its two-dimensional world sheet andN = R26, 26 being the critical dimension. If
M ⊂ R1 is some interval, thenΦ is simply a smooth curve inN and the equations (3.3) are the
familiar conditions thatΦ should be a geodesic. IfN is a flat space with vanishing Christoffel
symbolsΓk

i j then the conditions (3.3) reduce to the standard conditions for harmonicity. In the case
of M = R2, N = S2 with their standard Riemannian metrics, one has the following result. Given
smooth functionsα,β : R2 → R, the functionΦ = Φα,β : R2 → S2 defined by

Φα,β = (cosβsinα,sinβsinα,cosα) (3.4)

is harmonic (-i.e. it satisfies conditions (3.3)) ifα,β satisfy the conditions

∆α de f
=

∂2α
∂x2 +

∂2α
∂t2 = [(

∂β
∂x

)2 +(
∂β
∂t

)2]sinαcosα,

(sinα)∆β+2[
∂α
∂x

∂β
∂x

+
∂α
∂t

∂β
∂t

]cosα = 0. (3.5)
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For example,α± de f
= u±/2 andβ in (2.13) satisfy the system (3.5), since we have noted thatu±

satisfy the Euclidean sine-Gordon equation (2.11). Hence one can conclude thatΦ± = Φα±,β in
(2.16) are harmonic maps, as asserted in section 2.

A fifth example, which nicely connects non-linear sigma-models and gravity ( this time four-
dimensional gravity) is obtained by takingM = R2, N = R× (R−{0})×R×R,

g(x, t) =

[
1 0
0 −1

]
, h(y1,y2,y3,y4) =




−ey1 0 0 ey1

0 ey1 0 0
0 0 ey1sh2y2 0

ey1 0 0 0


 (3.6)

wheresh denotes the hyperbolic sine.cth similarly will denote the hyperbolic cotangent. The
conditions (3.3) here ( wheres= 4) reduce to the following, where we writeΦ = (Φ1,Φ2,Φ3,Φ4),
∆g = ∂

∂x2 − ∂
∂t2 (= the Laplace- Beltrami operator ofg):

[
Φ1

x

]2− [
Φ1

t

]2
+∆gΦ1 (i)

= 0,

Φ1
xΦ2

x−Φ1
t Φ2

t −
1
2

[
(Φ3

x)
2− (Φ3

t )
2]sh2Φ2 +∆gΦ2 (ii)

= 0,

Φ1
xΦ3

x−Φ1
t Φ3

t +2
[
Φ2

xΦ3
x−Φ2

t Φ3
t

]
cthΦ2 +∆gΦ3 (iii )

= 0,

1
2

[
(Φ1

x)
2− (Φ1

t )
2]− 1

2

[
(Φ2

x)
2− (Φ2

t )
2]− 1

2

[
(Φ3

x)
2− (Φ3

t )
2]sh2Φ2 +∆gΦ4 (iv)

= 0. (3.7)

These equations follow by a direct computation of the Christoffel symbols ofh in (3.6); see Ap-
pendix 1. On the other hand, the conditions(i),(ii),(iii ),(iv) (for Φ : M →N to be a sigma-model)
areexactlythe Einstein gravitational equations for a 4-dimensionalplane-symmetricspace-time.
Thus one has another beautiful connection between non-linear sigma-models and gravitation. This
latter one is due to S.Chervon and A. Muslimov [1]; also see [2,3,13].

The key to generalizing the functionsu± in (2.15), and hence the functionsΦ±, is the following
very simple observation: The pair(ρ,β) in (2.13) satisfies the Cauchy-Riemann (C-R) equations:
ρx = m

a = βt ,ρt = −mv
a =−βx. Thusρ andβ are harmonic conjugates. This observation motivates

us now to chooseρ to beanyharmonic function on the planeR2: ∆ρ = ∂2ρ
∂x2 + ∂2ρ

∂t2 = 0. SinceR2

is simply connected we now chooseβ to be a harmonic conjugate ofρ: ρ +
√−1β is an analytic

function. Motivated by (2.15) and the definitionα± = u±/2, we define

u(x, t)
de f
= 4arctan(expρ) , α de f

=
u
2
. (3.8)

One has (compare (2.17))

sinα = sechρ , cosα =− tanhρ ,

αx =
1
2

ux = ρxsechρ , αt =
1
2

ut = ρtsechρ ,

∆u = 2(∆ρ)sechρ − 2(sechρ tanhρ)(ρ2
x +ρ2

t ) (3.9)
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where∆ρ = 0, by hypothesis. Therefore∆α = (sinαcosα)(ρ2
x + ρ2

t ) = (sinαcosα)(β2
t + β2

x) (by
the C-R equations), which is the first equation in (3.5). The second equation there also holds since

∆β = 0 ( by definition ofβ), and sinceαxβx +αtβt
de f
= 1

2(ρxβx +ρtβt) = 1
2 [ρx(−ρt)+ρtρx] (again

by the C-R equations)= 0. In summary we have therefore shown the following.

Theorem 1.Let ρ(x, t) be any harmonic function onR2 : ∆ρ = ρxx + ρtt = 0. Let β(x, t) be a
harmonic conjugate ofρ(x, t). Defineu andα by (3.8). Theα andβ are solutions of the system
of equations in (3.5), and hence the functionΦαβ : R2 → S2 defined in (3.4) is non-linear sigma-
model - i.e. Φαβ satisfies the system of equations (3.3). Alsou satisfies the generalized type of
sine-Gordon equation

∆u = (ρ2
x +ρ2

t )sinu (3.10)

(by (3.9)), which contrasts equation (2.11).

Consider the metric in (2.12) where we now takeu there to be the function in (3.8) forρ
in Theorem 1. Denote this metric bygρ, which is a generalized type of soliton metric, given
equation (3.10). By the remark following (2.12) it scalar curvature is given by2∆u/(sinu), which
by equation (3.10) equals2(ρ2

x +ρ2
t ) : R(gρ) = 2(ρ2

x +ρ2
t ), which generally is non -constant -i.e.gρ

generally will not solve equation (2.4). One can determine all harmonic conjugate pairs(ρ,β) for

which R(gρ) is a constant. Such pairs are given byρ(x, t)
(i)
= ax−bt + c,β(x, t)

(ii)
= bx+at +d for

suitable real numbersa,b,c,d (which is consistent with the pair(ρ,β) given in (2.31)). To see
this, let f = ρ+ iβ be the corresponding analytic function. Thenf ′ = ρx + iβx = ρx− iρt , by C-R,
⇒ R(gρ) = 2| f ′|2. In particular ifR(gρ) is a constant then| f ′| is a constant, and sincef ′(z) is also
analytic one may conclude thatf ′(z) is a constant:ρx+ iβx = a+ ib⇒ ρ(x, t) = ax+c(t),β(x, t) =
bx+ d(t), where by C-R,a = ρx = βt = d′(t), c′(t) = ρt = −βx = −b⇒ d(t) = at + d, c(t) =
−bt+c, which proves (i) and (ii).

Given the metricgρ, an obvious and very interesting question arises: Can one construct a
transformation of variablesΘρ :R2→R2,(x, t)→ (T, r), under whichgρ goes (perhaps) to a black
hole metricGρ (as we did in (2.20) in the constant curvature set-upR= 2m2)? One would likeGρ

to assume the form

ds2 = A(r)dT2− dr2

A(r)
, (3.11)

for example; compare (2.19). The latter metric has scalar curvature−A′′(r)(by(2.9)). In this more
general setting we replace the J-T action integral given in (2.5) by

I(g,τ) =
1

2G

∫

M

√
|detg|dx1dx2[V ◦ τ−R(g)τ] (3.12)

with equations of motion

R(g) =
dV
dx2

◦ τ (varyingτ),

∆gτ+V ◦ τ = 0 (varyingg), (3.13)
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whereV is a function ofx2 only and∆g is given by (3.1); see [7]. Hopefully, future work will
lead to a construction ofΘρ. We note in fact that for the coordinates(x1,x2) = (T, r), the metric

Gρ in (3.11) and the dilationτ(T, r)
de f
= r do provide a solution of the field equations (3.13), for

A′(r) = V(r). This follows from (3.1) which forg = Gρ gives

∆Gρ =
1

A(r)
∂2

∂T2 −A(r)
∂2

∂r2 −A′(r)
∂
∂r

. (3.14)

Thus indeedV ′(τ(T, r)) = A′′(r) = −R(Gρ)(T, r) (as noted in the line following (3.11)), which is
the first equation in (3.13), and(∆Gρτ)(T, r)+V(τ(T, r)) =−A′(r)+A′(r) = 0, which is the second
equation in (3.13).

Note also that the function

u2(x, t) = 4arctan

[
v√

1+v2
(sinh

√
1+v2mx)secvmt

]
(3.15)

is a solution of the Euclidean sine-Gordon equationuxx+utt = m2sinu in (2.11). This can be veri-
fied, for example, by a simple Maple program.

Given the solution (3.15), we can form the corresponding soliton metricgu2 in (2.12) which , in
contrast togρ, has constant curvatureR = 2m2 (again by the formulaR = 2∆/(sinu) following
(2.12)). Similar to the question posed for the metricgρ, it is meaningful to inquire whether one
can construct a transformationΦu2 (as was done in (2.20) for the solitons in (2.15)) that realizes
gu2 as a black hole metric. This is a question that my student, Miss S. Beheshti, is considering.
The solutionu2(x, t) is also called a kink-antikink solution. It describes a collision between a kink
soliton and an antikink soliton.

Appendix 1

For the sake of completeness of the discussion in Sec. 3, we list the values of all the Christoffel
symbols of the metrich in (3.6). Fory = (y1,y2,y3,y4) ∈ R× (R−{0})×R×R, Γ1

11(y) = 1,
Γ2

12(y) = 1
2, Γ2

33(y) = (−sinhy2) ·coshy2, Γ3
13(y) = 1

2, Γ3
23(y) = coshy2

sinhy2
, Γ4

11(y) = 1
2 , Γ4

22(y) =−1
2,

Γ4
33(y) = −(sinhy2)2

2 . All other symbols are zero ; of course one has the symmetryΓk
i j = Γk

ji .
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