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This paper is intended to describe twistors via the paravector model of Clifford algebras and to
relate such description to conformal maps in the Clifford algebra over

� 4 � 1 , besides pointing out
some applications of the pure spinor formalism. We construct twistors in Minkowski spacetime as
algebraic spinors associated with the Dirac-Clifford algebra ��� C � 1 � 3 using one lower spacetime
dimension than standard Clifford algebra formulations, since for this purpose the Clifford alge-
bra over

� 4 � 1 is also used to describe conformal maps, instead of
� 2 � 4 . It is possible to identify,

via the pure spinor formalism, the twistor fiber in four, six and eight dimensions, respectively,
with the coset spaces SO � 4 �
	�� SU � 2 �� U � 1 �
	�� 2 ������� 1 , SO � 6 �
	�� SU � 3 �� U � 1 �
	�� 2 ������ 3 and
SO � 8 �
	�� Spin � 6 �� Spin � 2 ��	�� 2 � . The last homogeneous space is closely related to the SO(8)
spinor decomposition preserving SO(8) symmetry in type IIB superstring theory. Indeed, aside
the IIB superstring theory, there is no SO(8) spinor decomposition preserving SO(8) symme-
try and, in this case, one can introduce distinct coordinates and conjugate momenta only if the
Spin(8) symmetry is broken by a Spin(6) � Spin(2) subgroup of Spin(8). Also, it is shown how
to generalize the Penrose flagpole, illustrating the use of the pure spinor formalism to construct a
flagpole that is more general than the Penrose one, which arises when a defined parameter goes to
zero. We investigate the relation between this flagpole and the SO(2n)/U(n) twistorial structure,
which emerges when one considers the action of a suitable classical group on the set Ξ of all
totally isotropic subspaces of � 2n , and an isomorphism from the set of pure spinors to Ξ. Finally
we point out some relation between twistors fibrations and the classification of compact homoge-
neous quaternionic-Kähler manifolds (the so-called Wolf spaces), and exceptional Lie structures.
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1. Introduction

Nowadays the search for any unified theory that describes the four fundamental interactions
demands a deep mathematical background and an interface between physics and mathematics. The
relation between superstring theory in twistor spaces [1, 2] and the pure spinor formalism [3, 4] has
been increasingly and widely investigated [5, 6]. With the motivation concerning the SO(8) spinor
decomposition that preserves SO(8) symmetry in type IIB superstring theory [7], among others, it
can be shown via the pure spinor formalism the well-known result asserting that a twistor in eight
dimensions is an element of the homogeneous space SO(8)/(Spin(6) � Spin(2)/ � 2 ��� SO(8)/U(4),
and, in n dimensions, an element of SO(2n)/U(n).

The main aim of this paper, besides pointing out some relation between twistors and pure
spinors, is to describe conformal maps in Minkowski spacetime as the twisted adjoint represen-
tation of $pin � (2,4) (to be precisely defined in Sec. 2) on paravectors1 [8, 9] of C  4 ! 1, and to
characterize twistors as algebraic spinors2 [4] in " 4 ! 1 . Although some papers have already de-
scribed twistors using the algebra #%$ C  1 ! 3 � C  4 ! 1 [10, 11, 12], the present formulation sheds
some new light on the use of the paravector model. This paper is presented as follows: in Sec. 2 we
describe conformal transformations using the twisted adjoint representation of the group SU(2,2)� $pin � (2,4) on paravectors of C  4 ! 1. In Sec. 3 twistors, the incidence relation between twistors
and the Robinson congruence, via multivectors and the paravector model of #&$ C  1 ! 3 � C  4 ! 1, are
introduced. We show explicitly how our results can be led to the well-established ones of Keller
[12], and consequently to the classical formulation introduced by Penrose [13, 14]. It is also de-
scribed how one can obtain twistors as elements of SO(2n)/U(n) via pure spinors. Finally in Sec. 4
we link twistor theory to Lie exceptional structures.

2. Conformal compactification and the paravector model

Given a vector space, endowed with a metric g of signature p ' q, and denoted by " p ! q , con-
sider the injective map [9] " p ! q ( x )*,+ x - g + x - x � - 1 �/. + x - λ - µ �10 " p � 1 ! q � 1 . The image of " p ! q under
this map is a subset of the Klein absolute x 2 x ' λµ . 0. This map induces an injective map from
the conformal compactification + Sp � Sq �43 � 2 of " p ! q to the projective space "65 p � 1 ! q � 1 .

The conformal group Conf + p - q � is isomorphic to the quotient group O + p 7 1 - q 7 1 �43 � 2 [9],
and since the group O + p 7 1 - q 7 1 � has four components, then Conf + p - q � has two (if p or q
are even) or four components (otherwise) [9, 15]. Taking the case when p . 1 and q . 3, the
group Conf(1,3) has four components, and the component Conf � + 1 - 3 � connected to the identity
is the Möbius group3 of " 1 ! 3 . Besides, the orthochronous connected component is denoted by
SConf � (1,3). Consider a basis 8 εĂ 9 5

Ă : 0
of " 2 ! 4 and a basis 8 EA 9 4

A : 0 of " 4 ! 1 . This last basis can be
obtained from 8 εĂ 9 if the isomorphism EA )* εAε5 is defined.

Given φ an element of the Clifford algebra C  p ! q over " p ! q , the reversion of φ is defined and
denoted by φ̃ . +;' 1 �=< k > 2 ? φ ([k] expresses the integer part of k), while the graded involution acting

1A paravector of the Clifford algebra C @ p A q is an element of BDCEB p A q .
2Algebraic spinors are elements of a minimal lateral ideal of a Clifford algebra.
3All Möbius maps are composition of rotations, translations, dilations and inversions [16].
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on φ is defined by φ̂ . +;' 1 � kφ. The Clifford conjugation φ̄ of φ is given by the reversion composed
with the main automorphism.

If we take a vector α . αĂεĂ 0 " 2 ! 4 , a paravector F 0 "HGI" 4 ! 1 J * C  4 ! 1 can be obtained
as F . αε5 . αAEA 7 α5 K From the periodicity theorem4 [17] we have the isomorphism C  4 ! 1 �
C  1 ! 1 $ C  3 ! 0 � M + 2 -L# � $ C  3 ! 0 , where M + 2 -L# � denotes the group of 2 � 2 matrices with complex
entries. For i = 1,2,3 the isomorphism from C  4 ! 1 to C  3 ! 0 is given explicitly by Ei )* EiE0E4 : . ei,
where 8 ei 9 denotes a basis of " 3 . Defining E M : . 1

2 + E4 N E0 � , we can write F . α5 7O+ α0 7 α4 � E �P7+ α4 ' α0 � E QR7 αieiE4E0, and then it is possible, if we represent E � . S
0 0
1 0 T and E Q . S

0 1
0 0 T -

to write F .VU α5 W αiei α4 X α0

α0 W α4 α5 X αiei Y . The vector α 0 " 2 ! 4 is in the Klein absolute, and so α2 . 0.

Besides, we assert that F is in the Klein absolute if and only if α is. Indeed, denoting λ . α4 ' α0

and µ . α4 7 α0, if F ¯F . 0, the matrix element +;F ¯F � 11 is given by+;F ¯F � 11 . xx ' λµ . 0 - (2.1)

where x : . + α5 7 αiei �D0 "OGI" 3 J * C  3 ! 0. Choosing µ . 1 then λ . xx, and this choice is re-
sponsible for a projective description. Also, the paravector F 0 "ZGZ" 4 ! 1 can be rewritten asF . U x xx

1 x Y K From eq.(2.1) we obtain + α5 7 αiei � + α5 ' αiei �[. + α4 ' α0 � + α4 7 α0 � from where+ α5 � 2 7Z+ α0 � 2 'I+ α1 � 2 'I+ α2 � 2 'O+ α3 � 2 'I+ α4 � 2 . 0 - showing that α is indeed in the Klein absolute.
Now consider an element g 0 SU(2,2) � $pin � + 2 - 4 � : . 8 g 0 C  4 ! 1 \ gg . 1 9 . From the peri-

odicity theorem, it can be represented as g . U a c
b d Y , where a - b - c - d 0 C  3 ! 0.

In order to perform a rotation of the paravector F , we can use the twisted adjoint representation
σ̂ : $pin � + 2 - 4 � * SO � + 2 - 4 � , defined by its action on paravectors by σ̂ + g � +;F �/. g F ĝ Q 1 . g F g̃. In
terms of matrix representations (with entries in C  3 ! 0), the group $pin � (2,4) acts on paravectors F as

g F g̃ . U a c
b d Y U x λ

µ x Y U d c
b a Y . Fixing µ . 1, F is mapped on U a c

b d Y U x xx
1 x Y U d c

b a Y . ∆ U x ] x ] x ]
1 x ] Y -

where x ^ . + ax 7 c � + bx 7 d � Q 1 0 "_GO" 3 and ∆ . + bx 7 d � + bx 7 d �`0 " K In this sense the space-
time conformal maps are rotations in "IGO" 4 ! 1 , performed by the twisted adjoint representation,
just given above. All the spacetime conformal maps are expressed respectively by the following
matrices [9, 16, 18]:

Conformal Map Explicit Map Matrix of $pin � + 2 - 4 �
Translation x )* x 7 h - h 0 "aGb" 3 c 1 h

0 1 d
Dilation x )* ρx - ρ 0 " cfe ρ 0

0 1 g e ρ d
Rotation x )*ih xˆh Q 1 -jh 0 $pin � + 1 - 3 � clk 0

0 ˆk d
Inversion x )*m' x c 0 X 1

1 0 d
Transvection x )* x 7 x + hx 7 1 � Q 1 - h 0 "nGb" 3 c 1 0

h 1 d
4The periodicity theorem of Clifford algebras asserts that C @ p o 1 A q o 1 p C @ 1 A 1 q C @ p A q.
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This index-free algebraic formulation allows to trivially generalize the conformal maps of " 1 ! 3
to the ones of " p ! q , if the periodicity theorem of Clifford algebras is used. The homomorphisms
$pin � + 2 - 4 �/� SU(2,2) 2 Q 1'* SO � + 2 - 4 � 2 Q 1'r* SConf � + 1 - 3 � are explicitly constructed in [19].

The generators of Conf(1,3) are expressed, using a basis 8 γµ 9 0 C  1 ! 3 and denoting the volume
element of " 1 ! 3 by γ5 . γ0γ1γ2γ3, as Pµ . 1

2 + γµ 7 iγµγ5 � - Kµ . ' 1
2 + γµ ' iγµγ5 � - D . 1

2 iγ5 - and
Mµν . 1

2 + γν s γµ � K They satisfy the commuting relationst
Pµ - Pν uv. 0 - t

Kµ - Kν uw. 0 - t
Mµν - D uj. 0 -t

Mµν - Pλ uv. 'x+ gµλPν ' gνλPµ � - t
Mµν - Kλ uj. '&+ gµλKν ' gνλKµ � -y

Mµν - Mσρ z{. gµρMνσ 7 gνσMµρ ' gµσMνρ ' gνρMµσ -t
Pµ - Kν uv. 2 + gµνD ' Mµν � - t

Pµ - D uw. Pµ - t
Kµ - D uw. ' Kµ - (2.2)

which are invariant under Pµ )*|' Kµ, Kµ )*m' Pµ and D )*|' D.

3. Twistors as geometric multivectorial elements

In this section we present and discuss the construction of twistors as algebraic spinors of C  4 ! 1,
using the paravector model, and as elements of SO(2n)/U(n), via the pure spinor formalism.

3.1 Twistors as algebraic spinors using the paravector model

The reference twistor ηx is defined [12], given x 0 " 1 ! 3 and a dotted covariant Weyl spinor5

(DCWS) Π . 1
2 + 1 ' iγ5 � ψ . + 0 - ξ � t , as the multivector

ηx . + 1 7 γ5x � Π K (3.1)

The above expression is an index-free geometric algebra version of Penrose twistor in " 1 ! 3 , since
if a suitable representation6 of #}$ C  1 ! 3 is used, we have

ηx . + 1 7 γ5x � Π .V~ S i2 0
0 i2 T 7 S ' i2 0

0 i2 T S
0 �x�xc 0 T�� U 0

ξ Y . U i �xξ
ξ Y - (3.2)

where �x . U x0 W x3 x1 W ix2

x1 X ix2 x0 X x3 Y . The symbol �xc denotes the � -conjugation of x and i2 : . i12 � 2.

The adjoint Dirac spinor is defined as ψ̊ . ψ†γ0 . + ψ̄1 - ψ̄2 - ψ̄3 - ψ̄4 � and the transposed twistor
as η̊x . ψ̊ 1

2 + 1 7 iγ5 � + 1 7 γ5x̄ ��. Π̊ + 1 7 γ5x̄ � K The scalar product η̊xηx represents the expected value
of γ5x with respect to the spinor Π, since η̊xηx . Π̊Π 7 2Π̊γ5xΠ 7 x2Π̊Π . 2Π̊γ5xΠ K The tensor
product ηxΠ̊ . + 1 7 γ5x � ΠΠ̊ . + 1 7 γ5x � q, where q . ΠΠ̊ is the chiral positive projection of the
timelike vector Q . ψψ̊, is also presented [12]. It allows to interpret the relation between a twistor,
a timelike vector q and the flagpole γ5xq, given by the following multivector:

ζx : . ηxΠ̊ . + 1 7 γ5x � q . q 7 γ5xq . + 1 ' ix � q 0 C  4 ! 1 K (3.3)

5A Weyl spinor can always be written as 1
2 � 1 � iγ5 � ψ, where ψ is a Dirac spinor.

6As Keller [12], we choose to use a representation that differs from the Weyl representation by a sign on the matrices
representing γ1 � γ2 and γ3.
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The incidence relation, that determines a point in spacetime from the intersection of two twistors
is defined, leading to the Penrose description [13, 14], as

Jxx : . ηxηx . Π̊γ5 + x ' x � Π . 0 K (3.4)

The product Jxx is invariant if ηx is multiplied by a complex number. Then eight dimensions are
reduced to six, which leads to the classical interpretation of a twistor related to the space #[5 3 �
SO(6)/(SU(3) � U(1)/ � 2) [6, 13, 14, 20].

Keller presents another inner product [12], corresponding to the same twistor, but relating
distinct points in spacetime, as Jxx � . ηxηx � . Π̊γ5 + x ' x ^ � Π K This product is null if and only if
x . x ^ . The Robinson congruence [13] is defined if we fix x and let x ^ vary.

Let f be a primitive idempotent (PI) of #&$ C  1 ! 3 � C  4 ! 1 and f M : . 1
2 + 1 7 e3 � be PIs of C  3 ! 0.

Since the Dirac spinor ψ is an element of the ideal +�#I$ C  1 ! 3 � f � C  �1 ! 3 � C  3 ! 0 � C  3 ! 0 f � G
C  3 ! 0 f Q , ψ indeed consists, as well-known, of the direct sum of two Weyl spinors7 .

Given a paravector x . x0 7 xAEA 0 "}Gb" 4 ! 1 J * C  4 ! 1 define χ . xE4 0�� 2
k : 0 Λk +�" 4 ! 1 � .

Now we define the twistor as an algebraic spinor χ 1
2 + 1 ' iγ5 � U f 0 +�#�$ C  1 ! 3 � f � C  3 ! 0,

where U is a Clifford multivector and so U f is a Dirac spinor. The term8 Π : . 1
2 + 1 ' iγ5 � U f .� 0

ξ � 0 1
2 + 1 ' iγ5 � +�#a$ C  1 ! 3 � is a DCWS. If we take again a basis 8 EA 9 of C  4 ! 1 and a basis 8 γµ 9 of

C  1 ! 3, the isomorphism C  4 ! 1 � #n$ C  1 ! 3 explicitly given by E0 . iγ0 - E1 . γ10 - E2 . γ20 - E3 .
γ30 and E4 . γ5γ0 . ' γ123 is useful to prove the correspondence of this alternative formulation
with eq.(3.2), and so, with a geometric algebra index-free version of the Penrose classical twistor
formalism, by eq.(3.2). Indeed,

χΠ . + x0E4 7 α0E0E4 7 x1E1E4 7 x2E2E4 7 x3E3E4 7 α4 � Π. x0 +;' iγ0Π � 7 xk + γkγ0 � +;' iγ0Π � 7 α0 + iγ0 � +;' iγ0Π � 7 α4Π. + 1 7 γ5x � Π . U i �xξ
ξ Y K (3.5)

The incidence relation determines a spacetime manifold point if we take Jχ̄χ : . xE4UxE4U .' UE4xxE4U . 0 - since the paravector x 0 "}Gb" 4 ! 1 is in the Klein absolute (xx . 0).

3.2 Flagpoles and twistors from pure pinors and spinors

A generalized flagpole is given by the 2-form G . 1
2 + i � ˜�E' i � C ˜� C � [24], where � C is the charge

conjugation of the pure spinor � . Given a real vector p .}� i ��� C � 1, corresponding (modulo a real
scalar) to a family of coplanar vectors determining the generalized flagpole, let ω be an element of
a maximal totally isotropic subspace of V such that ω � C . � , ω � . 0 and 8 ω - ω � 9 . 0. It can be
shown that G . exp + iθ � pω 7 exp +;' iθ � pω

�
and F : . G �� θ : 0 . p + ω 7 ω

� �. Re + i � ˜� � is the Penrose
flagpole [14, 24].

7The four types (dotted covariant, undotted covariant, dotted contravariant and undotted contravariant) of algebraic
Weyl spinors are indeed elements of the respective minimal lateral ideals C @ 3 A 0 f � , f o C @ 3 A 0, f � C @ 3 A 0 and C @ 3 A 0 f o of the
Pauli algebra C @ 3 A 0 [21, 22, 23].

8In order to get a clear correspondence between our formalism and the Keller index-free formulation of twistors, by
abuse of notation we adopt the same symbols to describe the DCWS.
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Now, from the well-known correspondence between pure pinors and the group O(2n)/U(n)
[20], it is possible to adapt the proof of this correspondence, in order to establish the natural corre-
spondence between pure spinors, twistors and the group SO(2n)/U(n).

By definition, a spinor � is said to be pure [3, 4] if the set Ξ � : . 8 α 0 # 2n : α +�� �l. 0 9 has
complex dimension n. Besides, the natural map from a pure spinor � to Ξ � induces an equivariant
isomorphism from the algebra of pure spinors (mod # � ) to the set Ξ � of all n dimensional totally
null subspaces of # 2n . Now the well-known result proved in [20], asserting that Ξ � � O + 2n �43 U + n � ,
permits to link the pure spinors formulation to twistors. Indeed, the product of pure spinors is
directly related to n-dimensional complex planes [6], which are invariant (mod U(1)) under U(n)
actions. Thus it is possible, at least in even dimensions, to identify (via projective pure spinors) a
twistor with an element of the group SO(2n)/U(n). In particular, twistors in four and six dimensions
are respectively elements of SO + 4 �43 U + 2 �1� #/5 1 and SO + 6 ��3 U + 3 ��� #[5 3 . The investigation about
an analogous mathematical structure and the physical implications of identifying twistors with
elements of SO(2n)/U(n) is presented in [6].

4. Twistors and exceptional structures

It is well-known that it is possible, at least in three, four, six and ten dimensions, to con-
struct a null vector from spinors. In string twistor formulations some manifolds can be identified
with the set of all spinors corresponding to the same null vector, where in a particular case the
homogeneous space SO(9)/G2 arises [25]. Twistors are also an useful tool for the investigation
of harmonic maps, as from the Calabi-Penrose twistor fibration #[5 3 * S4 [26]. The deep re-
lation between twistors and exceptional structures is illustrated in the classification of compact
homogeneous quaternionic-Kähler manifolds, the so-called Wolf spaces [27, 28]. The Wolf spaces
associated with exceptional Lie algebras are E6/SU(6) � Sp(1), E7/Spin(12) � Sp(1), E8/E7 � Sp(1),
F4/Sp(3) � Sp(1) and G2/SO(4). More comments concerning such structures are beyond the scope
of the present paper (see [27, 28, 29]).

5. Concluding remarks

We presented twistors in Minkowski spacetime as algebraic spinors associated to #n$ C  1 ! 3 ,
using the paravector model, which was also used to describe all the conformal maps as the action of
twisted adjoint representations on paravectors of the Clifford algebra over " 4 ! 1 . The identification
of the twistor identified with SO(2n)/U(n) is obtained, from the complex structure based on pure
spinors formalism. As particular cases, twistors in four dimensions are elements of SO(4) modulo
the double covering of electroweak group SU(2) � U(1), and in six dimensions twistors are elements
of SO(6) modulo the double covering of the group SU(3) � U(1).
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