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Noncommutative (NC) theories have a long history [1]. More recently they were found in
a limit of string theory with D-branes in a constant NS-NS background B field[2]. In this limit
gravity decouples but still leaves a trace in the emerging NC gauge theory. If point splitting regu-
larization is used in the world-sheet then NC appears through the Moyal product which is defined
as

A(x)⋆B(x) = e
i
2θµν∂x

µ∂y
νA(x)B(y)|y→x, (1)

whereθµν is the NC parameter. If Pauli-Villars regularization is used instead then ordinary gauge
symmetry is preserved and NC appears in higher dimension operators. Since the S matrix must
be regularization independent these two descriptions are related by a space-time field redefinition
known as the Seiberg-Witten (SW) map [2].

From the space-time point of view these two descriptions have quite different properties. When
the Moyal product is used the ultraviolet structure of the theory is not modified [3] but new infrared
divergences appear and get mixed with the ultraviolet ones [4]. This mixingof divergences turns
the theory non-renormalizable except in some cases where supersymmetryis present [5]. An im-
portant property of NC theories induced by the Moyal product, which distinguishes them from the
conventional ones, is that translations in the NC directions are equivalentto gauge transformations
[6]. This can be seen even for the case of a scalar field which has the NCgauge transformation
δφ̂ = −i[φ̂, λ̂]⋆, where[A,B]⋆ = A⋆B−B⋆A is the Moyal commutator. Under a global translation
the scalar field transforms asδTφ = ξµ∂µφ̂. Derivatives of the field can be rewritten using the Moyal
commutator as∂µφ̂ = −iθ−1

µν [xν, φ̂]⋆ so thatδφ̂ = δT φ̂ with gauge parameter̂λ = −θ−1
µν ξµxν. The

only other field theory which has a similar property is general relativity where local translations are
gauge transformations associated to general coordinate transformations. This remarkable property
shows that, as in general relativity, there are no local gauge invariant observables in NC theories.

In the description obtained through the SW map the theory is presented as a series expansion
in θ. In this way a local field theory is obtained at the expense of introducing a large number
of non-renormalizable interactions [7]. At the classical level, on the otherside, it is possible to
understand very clearly the breakdown of Lorentz invariance inducedby the noncommutativity.
The dispersion relation for plane waves in a magnetic background gets modified so that photons
do not move with the velocity of light [8]. However, the connection between translations and
gauge transformations seems to be lost. A global translation on a commutative real scalar field
δTφ = ξµ∂µφ can no no longer be rewritten as a gauge transformation sinceδφ = 0. We will
discuss how other aspects concerning gravity emerges in the description which makes use of the
SW map. In this case NC field theories can be interpreted as ordinary theories immersed in a
gravitational background generated by the gauge field. We will show thatthe θ dependent terms
in the commutative action can be interpreted as a gravitational background which depends on the
gauge field. We then determine the metric which couples to real and complex scalar fields. We find
that the uncharged field coupling is twice that of the charged one. So we can interpret the gauge
coupling in NC theory as a particular gravitational coupling which depends on the charge of the
field. We also determine the geodesics followed by a massless particle in this background. We find
that its velocity differs from the velocity of light by an amount proportional toθ with the deviation
for the uncharged case being twice that of the charged one. For the uncharged case the deviation is
the same as that found for the the gauge theory in flat space-time [8, 9]. Asa final check we derive
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these same velocities in a field theoretic context.

The action for the NC Abelian gauge theory in flat space-time is

SA = −1
4

∫

d4x F̂µν ⋆ F̂µν, (2)

whereF̂µν = ∂µÂν − ∂νÂµ− i[Âµ, Âν]⋆. For a real scalar field in the adjoint representation ofU(1)

the flat space-time action is

Sϕ =
1
2

∫

d4x D̂µϕ̂⋆ D̂µϕ̂, (3)

whereD̂µϕ̂ = ∂µϕ̂− i[Âµ, ϕ̂]⋆. On the other side, for a complex scalar field in the fundamental
representation ofU(1) the action is

Sφ =
∫

d4x D̂µφ̂⋆ (D̂µφ̂)†, (4)

with D̂µφ̂ = ∂µφ̂− iÂµ ⋆ φ̂. The gauge transformations which leave the above actions invariant are
given by

δÂµ = D̂µλ̂, δϕ̂ = −i[ϕ̂, λ̂]⋆, δφ̂ = iλ̂⋆ φ̂, δφ̂† = −iφ̂† ⋆ λ̂. (5)

To first order inθ the SW map is [2, 10]

Âµ = Aµ−
1
2

θαβAα(∂βAµ+Fβµ),

ϕ̂ = ϕ−θαβAα∂βϕ,

φ̂ = φ− 1
2

θαβAα∂βφ, (6)

We can now expand the NC actions (2),(3) and (4) using (1) and apply themap (6) to get the
corresponding commutative actions.

For the real scalar field we find, always to first order inθ,

Sϕ =
1
2

∫

d4x

[

∂µϕ∂µϕ+2θµαFα
ν
(

−∂µϕ∂νϕ+
1
4

ηµν∂ρϕ∂ρϕ
)]

. (7)

It is worth to remark that the tensor inside the parenthesis is traceless. If wenow consider this same
field coupled to a gravitational background

Sg,ϕ =
1
2

∫

d4x
√−ggµν∂µϕ∂νϕ, (8)

and expand the metricgµν around the flat metricηµν,

gµν = ηµν +hµν +ηµνh, (9)

wherehµν is traceless, we get

Sg,ϕ =
1
2

∫

d4x
(

∂µϕ∂µϕ−hµν∂µϕ∂νϕ+h∂ρϕ∂ρϕ
)

, (10)

029 / 3



P
o
S
(
W
C
2
0
0
4
)
0
2
9

Victor O. Rivelles

where indices are raised and lowered with the flat metric. Since both actions,(7) and (10), have the
same structure we can identify a linearized background gravitational field

hµν = θµαFα
ν +θναFα

µ+
1
2

ηµνθαβFαβ,

h = 0. (11)

Then, the effect of noncommutativity on the commutative scalar field is similar to a field dependent
gravitational field [10].

The same procedure can be repeated for the complex scalar field [10]. We find the linearized
metric

hµν =
1
2

(θµαFα
ν +θναFα

µ)+
1
4

ηµνθαβFαβ,

h = 0. (12)

Then charged fields feel a gravitational background which is half of that felt by the uncharged
ones. Therefore, the gravity coupling is now dependent on the chargeof the field, being stronger
for uncharged fields.

Notice that the gauge field has now a dual role, it couples minimally to the charged field and
also as a gravitational background. As it is well known the SW map gives rise to the following
action

SA = −1
4

∫

d4x

[

FµνFµν +2θµρFρ
ν
(

Fµ
σFσν +

1
4

ηµνFαβFαβ

)]

. (13)

Again, the tensor inside the parenthesis is traceless. At this point we could be tempted to consider
this action as some gravitational action build up from the metric (11) or (12). Since the field strength
always appears multiplied byθ inside the metric, all invariants constructed with it will be of order
θ. Hence, they can not give rise to (13), unless they appear in combinations involving the inverse
of θ. If we insist in having an action which is polynomial inθ the best we can do is to regard the
gauge field as having a double role again and couple it to gravitation as in the previous case. We
then find thathµν is given by (12). Since the NC gauge field resembles a non-Abelian gaugefield
we expect that its commutative counterpart couple to the same gravitational field as the charged
one. It should also be remarked that in this case the gravitational field can not be interpreted just as
a fixed background since it depends on the dynamical gauge field.

Having determined the field dependent background metric we can now studyits properties. A
detailed analysis shows that it describes a plane gravitational wave [10].

We can now turn our attention to the behavior of a massless particle in this background. Its
geodesics is described by

ds2 =

(

1+
1
4

θαβFαβ

)

dxµdxµ+θµαFα
νdxµdxν = 0. (14)

If we consider the case where there is no noncommutativity between space and time, that isθ0i = 0,
and callingθi j = εi jkθk, F i0 = Ei , andF i j = εi jkBk, we find to first order inθ that

(1−~v2)(1−2~θ ·~B)−~θ · (~v×~E)+~v2~θ ·~B− (~B·~v)(~θ ·~v) = 0, (15)
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where~v is the particle velocity. Then to zeroth order, the velocity~v0 satisfies~v2
0 = 1 as it should.

We can now decompose all vectors into their transversal and longitudinal components with respect
to~v0, ~E = ~ET +~v0EL, ~B = ~BT +~v0BL and~θ =~θT +~v0θL. We then find that the velocity is

~v2 = 1+~θT · (~BT −~v0×~ET). (16)

Hence, a charged massless particle has its velocity changed with respect tothe velocity of light by
an amount which depends onθ. For an uncharged massless particle

~v2 = 1+2~θT · (~BT −~v0×~ET), (17)

and the correction due to the noncommutativity is twice that of a charged particle.
We can now check the consistency of these results by going back to the original action (7)

and computing the group velocity for planes waves. Upon quantization they give the velocity of
the particle associated to the respective field. For the uncharged scalar field we get the equation of
motion

(

1− 1
2

θµνFµν

)

�ϕ−2θµαFα
ν∂µ∂νϕ = 0. (18)

If the field strength is constant we can find a plane wave solution with the following dispersion
relation

(

1− 1
2

θµνFµν

)

k2−2θµαFα
νkµkν = 0, (19)

and using the same conventions for vectors as before, it results in

~k2

ω2 = 1−2~θT · (~BT −
~k
ω
×~ET), (20)

wherekµ = (ω,~k). We then find that the phase and group velocities coincide and are given by (17)
as expected. For the charged scalar field we have to turn off the gauge coupling in order to get a
plane wave solution. In this case the equation of motion is

(

1− 1
4

θµνFµν

)

�φ−θµαFα
ν∂µ∂νφ = 0. (21)

In a constant field strength background the dispersion relation for a plane wave reads as in (19) with
θ replaced byθ/2. Then we must perform the same replacement in the phase and group velocities
and we get (16). Therefore, in both pictures, noncommutative and gravitational, we get the same
results.

For the gauge field the situation is more subtle because of its double role. There is no clear
way to split the action (13). What can be done is to break up the gauge field into a background plus
a plane wave as in [8]. We then get the following dispersion relation

k2−2θµαFα
νkµkν = 0, (22)

whereFα
ν is now the constant background. This leads to (20), that is, the dispersion relation for

the uncharged scalar field. It also reproduces the result in [8, 9] when the background is purely
magnetic. This shows the dual role of the gauge field, since it couples to gravitation as a charged
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field but its dispersion relation is that of an uncharged field. It should be remarked that it is possible
to derive the dispersion relation for the general case, including the interesting situation whenθ0i 6=
0. A detailed analysis will be presented in [11].

We have seen that it is possible to regard noncommutative theories as conventional theories
embedded in a gravitational background produced by the gauge field. This brings a new connection
between noncommutativity and gravitation. We could imagine that this is a peculiarityof the first
order term in theθ expansion of the SW map but an analysis to all orders inθ was performed in
[12].

I would like to thank the organizers for the kind invitation to deliver this talk. Thiswork was
partially supported by FAPESP, CNPq and PRONEX under contract CNPq66.2002/1998-99.
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