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1. Introduction

In this paper we consider a class of conformal deformations of Rindler-like spaces, whose
spatial sections have metric conformally related to the metric of hyperbolic spaces, and the spectral
properties of the Laplace operators acting on these spaces. The real hyperbolic spaces play impor-
tant role in supergravity [1], superstring theory [2, 3] and cosmology [4, 5]. The finite temperature
effects for massive scalar fields in Rindler spaces, in its conformal connection to hyperbolic spaces,
have been considered in [6]. Here we analize gauge theories based on abelianp−forms and calcu-
late in the Rindler case (non-compact manifold) the spectral datas of Laplacians and the measure
density useful for the trace of tensor kernels. The spectral zeta functions of real compact hyperbolic
spaces are calculated explicitly using the Fried trace formula.

2. Spectral functions of space formsM = R+×XN

Let M be aD = (N + 2)−dimensional space and letds2 = g00(x)(dx0)2 + gi j (x)dxidxj , x =
{x j} i, j = 1, ...,N+1 . For the class of conformal deformations of the Riemannian metricgµν the
following relation holds:

g̃µν(x) = e2σ(x)gµν(x) , σ(x) ∈C∞(M). (2.1)

Let us consider static spaces admiting canonical horizons and having the topology of the form
R×R+×XN. The metric reads

ds2 =−b2x2dx2
0 +dx2 +dΩ2

N, (2.2)

whereb is a constant factor, anddΩ2
N is the spatial metric related to theN−dimensional manifold

XN. If XN ≡ RN, one has to deal with the Rindler space. IfXN ≡ SN, b = (D−3)/(2RH) andRH

is the Schwarzschild radius of a black hole, then one is dealing with a space which approximates,
near the horizon and in the large mass limit, aD−dimensional black hole [6]. In the Euclidean
sector the metric (2.2) may be written in the conformally related form:

ds̃2 = dτ2 +x−2(
dx2 +dΩ2

N−1

)
, (2.3)

whereσ(x) =−(1/2)logg00, dτ = ibdx0, x−2 is the conformal factor. Associated to the conformally
deformed metric (2.3) we get the quantitiesdV = x−N−1dxdVN, and

L(N+1,g̃) = −L(N+1,g̃)−ρ2
0 +Cx2 ,

L(N+1,g̃) = −x2∂2
x +(N−2)x∂x +x2L(N,g), (2.4)

whereL(N,g) is the Laplace operator on the manifoldXN, dVN its invariant measure,ρ0 = (N−1)/2,
and the real constantC depends on the scalar curvature.

Let us search for the spectral properties of the elliptic operatorL(N+1,g̃).

Theorem 1. (A. A. Bytsenko, G. Cognola and S. Zerbini [6]) For any suitable functionF(L(N+1,g̃))
the following formulas hold:

TrF
(

L(N+1,g̃)
)

=
Z ∞

0
F(s2)µI (s)ds, (2.5)

µI (s) = µ(s)
Z ∞

0
∑
α
|Kis(xλα)|2x−1dx, (2.6)
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whereKis(y) are the Bessel functions of imaginary argument and{λα} is the set of eigenvalues of
the operatorL(N+1,g̃).

Here we derive a general expression forµI (r) by making use of Eq. (2.6).

Proposition 1. Let Kt = exp(−tL(N+1,g̃)) be the heat kernel of the operatorL(N+1,g̃), K`(L(N+1,g̃))
are the Seeley-De Witt coefficients in the kernel expansion, andε is a horizon cutoff parameter in
integrating over the space coordinates in Eq. (2.6). Then we have:

µI (r) =
[N−1

2 ]
∑̀
=0

K2`(L
(N,g̃)
p )Φ(r,N+1−2`)

N−2`
(4πε−2)(N−2`)/2 +

1
2π

ζ(0|L(N,g))

×
[

d
ds

logζ(s|L(N,g))|s=0 +ψ(ir )+ψ(−ir )−2log
( ε

2

)
−πδ(r)

]
, (2.7)

where

Φ(r,N+1) = µ(r)Vol(SN−1)
( x

2π

)N Z ∞

0
|Kir (xs)|2sN−1ds, (2.8)

Vol(SN−1) is the volume of the(N−1)−dimensional sphere,
[

N−1
2

]
is the integer part of the number

(N−1)/2, ψ(z) is the logarithmic derivative ofΓ−function andδ(r) is the Dirac delta function.
For oddN, ζ(0|L(N,g)) is vanishing and so the last term in Eq. (2.7) disappears.

Proof. We can use the Mellin-Barnes representation for the Bessel function of imaginary argu-
ment [7] K2

ir (xλα) = (−16π)−1/2 R
ℜs>1 Γ(s+ ir )Γ(s− ir )Γ(s)[Γ(s+ 1/2)]−1(xλα)−2sds, and ob-

serve that, forℜs> N/2, the sum overα gives∑α λ−2s
α = ζ(s|L(N,g)). Thus,

µI (r) =
µ(r)

8
√−π

Z

ℜs=c>N/2

Γ(s+ ir )Γ(s− ir )Γ(s)ζ(s|L(N−1,g))
sΓ(s+1/2)ε2s ds. (2.9)

To make the integral we consider the rectangular contourC := {ℜs= c,ℑs= a,ℜs=−c,ℑs=−a}
and observe that the two horizontal pathsℑs=±a give a vanishing contribution in the limita→∞,
as well as the pathℜs= −c in the limit ε → 0. Also the poles in the strip−c < ℜs< 0 give a
vanishing contribution as soon asε→ 0. Then we have to take into consideration only the poles of
the integrand in Eq. (2.9) in the half-planeℜs≥ 0. Such a function has simple poles at the points
s= 0, s=−n± ir ands= (N−n)/2 (n≥ 0). If D is even, that isN is odd,s= 0 is a double pole.
It is clear that all poles withℜs> 0 give rise to divergences, the number of them depending onN,
while the poles ats= 0 ands= ±ir give rise to finite contributions. Thus the result (2.7) follows
from Eq. (2.9). ¤

3. The trace formula

Let ωp, ϕp be exterior differentialp−forms; then, the invariant inner product is defined by

(ωp,ϕp)
de f
=

R
XN ωp∧∗ϕp. The following properties for operators and forms hold:dd = δδ = 0,

δ = (−1)Np+N+1 ∗ d∗, ** ωp = (−1)p(N−p)ωp. The operatorsd andδ are adjoint to each other
with respect to this inner product forp−forms: (δωp,ϕp) = (ωp,dϕp). In quantum field theory
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the Lagrangian associated withωp takes the form:dωp∧∗dωp (gauge field) , andδωp∧∗δωp (co-
gauge field). These Lagrangians provide a possible representation of tensor fields or generalized
abelian gauge fields. The two representations of tensor fields are not completely independent,
because of the well-known duality property of exterior calculus which gives a connection between
star-conjugated gauge and co-gauge tensor fields [8]. The gaugep−forms are mapped into the
co-gauge(N− p)−forms under the action of the Hodge∗ operator.

• The results (2.4), (2.7) can easy be generalized for the case of the LaplaciansL
(N,g)
p acting

on p−forms.

LetXΓ = XN be aN−dimensional real compact hyperbolic space with universal coveringY and
fundamental groupΓ. Then we can representY as the symmetric spaceG/K, whereG= SO1(N,1)
andK = SO(N) is a maximal compact subgroup ofG. We regardΓ as a discrete subgroup ofG
acting isometrically onY, and we takeXΓ to be the quotient space by that action:XΓ = Γ\Y =
Γ\G/K. Let τ be an irreducible representation ofK on a complex vector spaceVτ, and form
the induced homogeneous vector bundleG×K Vτ (the fiber product ofG with Vτ overK) overY.
Restricting theG action toΓ we obtain the quotient bundleEτ = Γ\(G×K Vτ)→ XΓ. The natural
Riemannian structure onY (therefore onXΓ) induced by the Killing form( , ) of G gives rise
to a connection LaplacianL(N,g)

p on Eτ. Let σp be the natural representation ofSO(2k− 1) on
ΛpC2k−1, andµσp(r) be the corresponding Harish-Chandra-Plancherel density (given for a suitable
normalization of the Haar measuredxonG). Let Vol(Γ\G) will denote the integral of the constant
function1 on Γ\G with respect to theG−invariant measure onΓ\G induced bydx. We can apply
the version of the trace formula:

Theorem 2. (D. Fried [9]) For 0≤ p≤ N−1 the trace formula applied to kernelKt = e−tL(N,g)
p

holds:
Tr

(
e−tL(N,g)

p

)
= I (p)

Γ (Kt)+ I (p−1)
Γ (Kt)+H(p)

Γ (Kt)+H(p−1)
Γ (Kt), (3.1)

whereI (p)
Γ (Kt), H(p)

Γ (Kt) are the identity and hyperbolic orbital integrals respectively. In the above
formula

I (p)
Γ (Kt)

de f
=

χ(1)Vol(Γ\G)
4π

Z

R
µσp(r)e

−t(r2+b(p)+(ρ0−p)2)dr, (3.2)

H(p)
Γ (Kt)

de f
=

1√
4πt

∑
γ∈CΓ−{1}

χ(γ)
j(γ)

tγC(γ)χσp(mγ)e−t(b(p)+(ρ0−p)2)−t2
γ /4t . (3.3)

In Eq. (3.3) CΓ ⊂ Γ is a complete set of representations inΓ of its conjugacy classes,C(γ) is a
well defined function onΓ−{1} (for more details see [10, 6, 11, 12]), b(p) are real constants, and
χσ(m) = trace(σ(m)) is the characterσ for m∈ SO(2k−1).

The spectral zeta function related to the Laplace operatorL
(N,g)
p can be represented by the

inverse Mellin transform of the heat kernelKt . Using the Fried formula, we can write the zeta
function as a sum of contributions:

ζ(s|L(N,g)
p ) =

1
Γ(s)

Z ∞

0

(
I (p)
Γ (Kt)+ I (p−1)

Γ (Kt)+H(p)
Γ (Kt)+H(p−1)

Γ (Kt)
)

ts−1dt

≡ ζ(N)
I (s, p)+ζ(N)

I (s, p−1)+ζ(N)
H (s, p)+ζ(N)

H (s, p−1). (3.4)
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Proposition 2. The identity and hyperbolic components of the spectral zeta function can be pre-
sented in the form:

ζ(2k)
I (s, p) =

VΓC(p)
2k

Γ(s)

k−1

∑̀
=0

a(p)
2`,2k

[
Γ(`+1)Γ(s− `−1)

α2s−2`−2
p

+
∞

∑
n=0

ξn`Γ(s+n)
α2s+2n

p

]
, (3.5)

ζ(2k+1)
I (s, p) =

VΓC(p)
2k+1

Γ(s)

k

∑̀
=0

a(p)
2`,2k+1

Z ∞

0
ts−1dt

Z

R
e−t(r2+α2

p)r2`dr

=
VΓC(p)

2k+1

Γ(s)

k

∑̀
=0

a(p)
2`,2k+1Γ(`+1/2)Γ(s− `−1/2)α−2s+2`+1

p , (3.6)

ζ(N)
H (s, p) = ∑

γ∈CΓ−{1}

χ(γ)t2s
γ C(γ)χσp(mγ)√
πΓ(s) j(γ)

K−s+ 1
2
(αptγ)

(2αtγ)s−1/2
, (3.7)

whereVΓ = χ(1)Vol (Γ\G)/4π, and we have definedα2
p := b(p) +(ρ0− p)2 ,

ξn`
de f
=

(−1)`+1
(
1−2−2`−2n−1

)

n!(2`+2n+2)
B2`+2n+2. (3.8)

Proof. For the identity component we get

ζ(N)
I (s, p) =

VΓ

Γ(s)

Z ∞

0
ts−1dt

Z

R
µσpe

−t(r2+α2
p)dr. (3.9)

For σp the natural representation ofSO(2k−1) on ΛpC2k−1, we have the corresponding Harish-
Chandra-Plancherel density given – for a suitable normalization of the Haar measuredx on G –
by

µσp(r) =
π

24k−4[Γ(k)]2

(
2k−1

p

)
Pσp(r)r tanh(πr) , (3.10)

for 0≤ p≤ k−1, where

Pσp(r) =
p+1

∏̀
=2

[
r2 +

(
k− `+

3
2

)2
]

k

∏
`=p+2

[
r2 +

(
k− `+

1
2

)2
]

(3.11)

is an even polynomial of degree2k−2. We have thatPσp(r) = Pσ2k−1−p(r) andµσp(r) = µσ2k−1−p(r)

for k≤ p≤ 2k−1. Define the Miatello coefficients [13, 14] a(p)
2` for G= SO1(2k+1,1) by Pσp(r) =

∑k−1
`=0 a(p)

2` r2`, 0≤ p≤ 2k− 1. Replacing the Harish-Chandra-Plancherel measure, we obtain two

representations forζ(N)
I (s, p), which holds for the cases of odd and even dimension. Using the

identitiestanh(πr)= 1−2(1+e2πr)−1, and
R ∞

0 (1+e2πr)−1r2`−1dr =(−1)`−1(1−21−2`)(4`)−1B2`,

whereB` is the`−th Bernoulli number, we get Eqs. (3.5) and (3.6). Finally using the following

representation for the Bessel function [7] Kν(z) = (1/2)(z/2)ν R ∞
0 e−t− z2

4t t−ν−1dt (|argz|< π/2 and
ℜz2 > 0) we get formula (3.7). ¤
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