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1. Introduction

In this paper we consider a class of conformal deformations of Rindler-like spaces, whose
spatial sections have metric conformally related to the metric of hyperbolic spaces, and the spectral
properties of the Laplace operators acting on these spaces. The real hyperbolic spaces play impor-
tant role in supergravityl]], superstring theoryd, 3] and cosmology4, 5]. The finite temperature
effects for massive scalar fields in Rindler spaces, in its conformal connection to hyperbolic spaces,
have been considered i6][ Here we analize gauge theories based on abgligiorms and calcu-
late in the Rindler case (non-compact manifold) the spectral datas of Laplacians and the measure
density useful for the trace of tensor kernels. The spectral zeta functions of real compact hyperbolic
spaces are calculated explicitly using the Fried trace formula.

2. Spectral functions of space form$l = R+ x XN

Let M be aD = (N + 2)—dimensional space and I8t = goo(x) (dX°)? + gjj (x)dXdx) , x =
{x1} i,j=1,...,N+1. For the class of conformal deformations of the Riemannian mggrithe
following relation holds:

G (x) = Mgy (x), o(x) e C*(M). (2.1)

Let us consider static spaces admiting canonical horizons and having the topology of the form
R x Rt x XN, The metric reads

ds? = —b%dxg + dx2 + dQ3;, (2.2)

whereb is a constant factor, andZ, is the spatial metric related to tie—dimensional manifold

XN, If XN =RN, one has to deal with the Rindler spaceXlf = SV, b= (D —3)/(2Ry) andRy

is the Schwarzschild radius of a black hole, then one is dealing with a space which approximates,
near the horizon and in the large mass limiDadimensional black holeg]. In the Euclidean
sector the metrica.2) may be written in the conformally related form:

d& = dt? +x 2 (dxC+dQ§_4) (2.3)

whereo(x) = —(1/2)loggoo, dT = ibdx®, x 2 is the conformal factor. Associated to the conformally
deformed metricZ.3) we get the quantitiedV = x N~1dxd\k, and

eNVLO) — 252 4 (N — 2)xdy +x2eN9), (2.4)

whereg¢(N9) is the Laplace operator on the manifodll, d\ its invariant measurgo = (N—1)/2,
and the real constafitdepends on the scalar curvature.
Let us search for the spectral properties of the elliptic opetatbrl9).

Theorem 1. (A. A. Bytsenko, G. Cognolaand S. Zerb])[ For any suitable functior (L(N+1.9))
the following formulas hold:

TiF (L0 /O “E(Du(9)ds, 2.5)

(9 = 1O [ IKsOha) X (2.6)
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whereKs(y) are the Bessel functions of imaginary argument &hg} is the set of eigenvalues of
the operator.(N+1.0),

Here we derive a general expressionfiair) by making use of EqZ.6).

Proposition 1. Let % = exp(—tL(N+19)) be the heat kernel of the operatoN*+19), ;(L(N+1.9))
are the Seeley-De Witt coefficients in the kernel expansiong @éd horizon cutoff parameter in
integrating over the space coordinates in ER.€J. Then we have:

[

z

-1

el (N,9)
w(r) = [; Koo (Lp LIQJ_(réEIJrl—Zé) (4TE_2)(N_2€)/2+%_[Z(O!S(N’w)
x [(llogl(smm-,g))‘&o%—lIJ(ir) +(-ir) —2log ;) —T[(S(r)] , 2.7)
where
O(r,N+1) = p(r)Vol(1) (%T)N [ ke (xs8as, 2.8)

Vol (V1) is the volume of théN — 1) —dimensional spherd ’>1] is the integer part of the number
(N—1)/2, Y(2) is the logarithmic derivative of —function andd(r) is the Dirac delta function.
For oddN, Z(0|£MN-9)) is vanishing and so the last term in E&.7) disappears.

Proof. We can use the Mellin-Barnes representation for the Bessel function of imaginary argu-
ment [7] KZ(X\q) = (—16m) Y2 [ T (s+ir)(s—ir)F(s)[F(s+1/2)] "1 (x\«)~%ds and ob-
serve that, fofJs > N/2, the sum oven givesy 4 A% = (s £N9). Thus,

) F(s+ir)M(s—ir)r(s)q(sleN-19)
H (r) B 8\/jT/D$c>N/2 Sr(S—I- 1/2)823 ds (2'9)

To make the integral we consider the rectangular corfauf {0s=c,Os=a,0s= —c,0s= —a}

and observe that the two horizontal paffiss= +a give a vanishing contribution in the limgt— oo,

as well as the pathls= —c in the limit € — 0. Also the poles in the strip-c < Js< 0 give a
vanishing contribution as soon as- 0. Then we have to take into consideration only the poles of
the integrand in Eq/2.9) in the half-plandls > 0. Such a function has simple poles at the points
s=0,s=—n=ir ands= (N—n)/2(n>0). If D is even, that id is odd,s= 0 is a double pole.

It is clear that all poles withls > 0 give rise to divergences, the number of them dependiny,on
while the poles as= 0 ands = =ir give rise to finite contributions. Thus the residt4) follows
from Eq. 2.9). O

3. The trace formula

Let wp, §p be exterior differentiap—forms; then, the invariant inner product is defined by

(Wp,dp) def Jxnwp A x¢p. The following properties for operators and forms hatidt = &6 = 0,
&= (—NPHN+L o dx, **p, = (—1)PN-Plw,. The operatorsl andd are adjoint to each other
with respect to this inner product far—forms: (dwp, ¢p) = (wp,ddp). In quantum field theory
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the Lagrangian associated witly takes the formdw, A xdwyp (gauge field), andwp A x0wp (CO-

gauge field). These Lagrangians provide a possible representation of tensor fields or generalized
abelian gauge fields. The two representations of tensor fields are not completely independent,
because of the well-known duality property of exterior calculus which gives a connection between
star-conjugated gauge and co-gauge tensor fi8[dsThe gaugep—forms are mapped into the
co-gaugg N — p)—forms under the action of the Hodgeperator.

e The results2.4), (2.7) can easy be generalized for the case of the Lapladté'ﬁ%) acting
on p—forms.

LetXr = XN be aN—dimensional real compact hyperbolic space with universal coviramg
fundamental group. Then we can represeYitas the symmetric spa&/K, whereG = SO (N, 1)
andK = SQ(N) is a maximal compact subgroup 6f We regard™ as a discrete subgroup 6f
acting isometrically orY, and we takeXr to be the quotient space by that actiok: =T\Y =
MNG/K. Lett be an irreducible representation kéfon a complex vector spadg, and form
the induced homogeneous vector bun@le  V; (the fiber product of5 with V; overK) overY.
Restricting theG action tol" we obtain the quotient bundig = IN'\ (G xk Vy) — Xr. The natural
Riemannian structure ovi (therefore onXr) induced by the Killing form( , ) of G gives rise
to a connection Laplaciaﬁl(o'\"g> on E;. Leto, be the natural representation 802k — 1) on
APCZ-1, andy,r) be the corresponding Harish-Chandra-Plancherel density (given for a suitable
normalization of the Haar measut&on G). Let Vol(I"'\G) will denote the integral of the constant
function1 on "'\ G with respect to th&—invariant measure oh\G induced bydx. We can apply
the version of the trace formula:

Theorem 2. (D. Fried [9]) For 0 < p < N — 1 the trace formula applied to kernéf = e‘ts(pN’g)

holds:
Te (e 25) = 1P (36) + 1P 50) + HE (50) + HP (), @D

Wherel§p) (%), H#p) (%) are the identity and hyperbolic orbital integrals respectively. In the above
formula

1 (%) < X(l)VZ;T(r\G) | pay(r)ete 7o p (3.2)

(P) gy def 1 X(y) —t(BP)+ (po—p)?) 12/t
0 E a3 G R )y, (3:3)

In Eq. 3.9 Cr C I is a complete set of representationd iof its conjugacy classe€(y) is a
well defined function o — {1} (for more details se€lD, 6,11, 12]), b(P are real constants, and
Xa(m) = tracgo(m)) is the charactes for me SQ2k —1).

The spectral zeta function related to the Laplace operﬁ%P) can be represented by the
inverse Mellin transform of the heat kern&]. Using the Fried formula, we can write the zeta
function as a sum of contributions:

noy L7 (P-D) (P (P-1) s
U129 = g (100 +1P7 (0)+ H )+ 1P () ) 1 P

=M p+Msp-1+ s P+ (s p-1). (3.4)
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Proposition 2. The identity and hyperbolic components of the spectral zeta function can be pre-
sented in the form:

(P) k-1

VrC m | TE+M(s—€-1) & Enl(s+n)
(* (s p) = T + . (35)
| ( ) r(S) ganZ,Zk a%s_zz_z n; a%erzn
(P
2k+1 VFC k @ Ct(r20 42
Z|( (sp) = r 2;1; a(zg,)zml/o t° 1dt/]Re o) 2 gy
V clp)
] 2"”; )yl (E+1/2)T (50— 1/2) a2+, (3.6)
(s p) = X(Y) yzsC(v)xop(my) K s1(apty) 57)
yeCr—{1} \/ﬁr (S) J (V) (Zatv> s-1/2
whereVr = x(1)Vol (I'\G) /4m, and we have definel% :=b(P) + (pg— p)?,
def (_1 +1 1— 272672n71
En = )nl (2(£+2n+2) Bar+2nt2- (3.8)
Proof. For the identity component we get
N (g py = I [Tis-14 (2 ad) g 3.9
{ (s,p)_r(s) 0t tRpope pdr. (3.9)

For o, the natural representation 802k — 1) on APC%~1, we have the corresponding Harish-
Chandra-Plancherel density given — for a suitable normalization of the Haar melkxsomes —

by

2k—1
Hop(r) = 24k4[]IT'(k)]2 ( 0 ) Pcp(r)rtant'(nr) , (3.10)

for0< p<k-—1, where

p+1

3 2 1 2
Pop(r):J_L r2+<k—£+2) 2+<k—€+2>

is an even polynomial of degréi — 2. We have thaPs, (1) = Ps,_, (1) andps, (r) = Hoy ;o (r)

for k < p < 2k—1. Define the Miatello coefficientd [, 14] aéﬁ) for G=S01(2k+1,1) by Ps,(r) =
z';;éaé?)r%, 0 < p < 2k—1. Replacing the Harish-Chandra-Plancherel measure, we obtain two
representations fo&l(N)(s p), which holds for the cases of odd and even dimension. Using the
identitiestanh(tr) = 1—2(1+ &™)~ and [y (1+€™) " 1r2-1dr = (—1)"~1(1—-21-2)(4¢) 1By,
whereB; is the/—th Bernoulli number, we get Eqs3.6) and 3.6). Finally using the following
representation for the Bessel functiath K, (z) = (1/2)(z/2)" 5’ et itV 1dt (Jargz| < /2 and

02 > 0) we get formula8.7). O

k
(3.11)

{=p+2
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