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1. Introduction

The formulation of physical models for the fundamental interactions in theswsork of quan-
tum field theories for point-like objects is based on a number of principlespgnvbich Lorentz
covariance and invariance under suitable gauge symmetries. Howewatiammans for the break-
down of these symmetries have been proposed and discussed in viewrobamof phenomeno-
logical and experimental evidences [1, 2, 3, 4, 5]. Astrophysicamiasions indicate that Lorentz
symmetry may be slightly violated in order to account for anisotropies. Thenymay consider
a gauge theory where Lorentz symmetry breaking may be realized by miartsro in the ac-
tion. A Chern-Simons-type term may be considered that exhibits a constzkgriound four-vector
which maintains the gauge invariance but breaks down the Lorentz Spsesymmetry [1].

In the context of supersymmetry (SUSY), the issue of Lorentz violatiorbbas considered
in the literature in different formulations: in ref. [6], supersymmetry is enésd by introducing
a suitable modification in its algebra; in ref. [7, 8], one achievedNkel1—-SUSY version of the
Chern-Simons term by means of the conventional superspace-slapfenfiralism; in ref. [9], the
authors adopt the idea of Lorentz breaking operators. More parfigudansidering the importance
of extended supersymmetries in connection with gauge theories, we priopibgs work arN = 2
and anN = 4 extended supersymmetric generalization of the Lorentz-breaking Si@ons term
in a 4-dimensional Minkowski background. We start off with the Cheme®s term in(1+5)
and(1+9) space-time dimensions and adopt a particular dimensional reduction meteddp$
to obtain the bosonic sector iD = (1+ 3) of the N = 2 andN = 4 supersymmetric models,
respectively. This is possible becauseNin= 1,D = 6- andN = 1,D = 10-supersymmetries, the
bosonic sector has the same number of degrees of freedom as theelsestor of arlN =2,D =4
andN = 4,D =4, respectively [11]. Once the bosonic sectors are identified, weaddp=1,D =
4-superfield formulation to write down the gauge potential and the Lordalatwg background
supermultiplets to finally set up their coupling in termsNE 2 andN = 4 actions realized in
N = 1-superspace. The result is projected out in component fields anddugpevith the complete
actions that realize the extended supersymmetric version of the Abelian-Shmons Lorentz-
violating term.

2. N=2-Lorentz-violating term

TheN = 2 supersymmetric generalization of the Abelian Chern-Simons Lorentzibggakm
can be built up using superfield formalism inldr= 1 superspace background, having coordinates
(xH, 02 éa) [10]. Using the fact that the bosonic sector kb= 2 in D = 6 and make the dimensional
reduction forD = 4. TheD = 4 Chern-Simons term proposed originally by [1] is

L = VA QAT (2.1)

We propose foD = 6 the Chern-Simons term in the form
Loy = eRAOAGAT, 2.2)
whereli= [, 4,5. The gauge field has 6 components, then we redefined as(Ay; ¢1;¢2). The

background tensoTxﬁa has 20 components, but we can redefine 'TX% = (Rog; Sho: 0uv; 0pu).
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The fieldsR,; andS,; has 6 components each one, and the other 8 components are redefined as
vectors that we write as a gradient of the scalars fielasdu. Then, the number of components is
reduced to 14. The dimensional reduction is done considering that tieenetadependence of the

parts, the reduced Lagrangian as follows:

1 1 1
Ly = _ZSWKAFWAKOAVJF ZSWKAFW%RKA“L Z‘C‘WKAFW‘I’ZSKA (2.3)
1 1
+§¢15v¢2avu - §¢25v¢1aVU-

In order to make the supersymmetrization of the Lagrangian (2.3) usingpleesmpace formalism,
we have to define some complex fields that can be found in superfieldsefille these bosonic
fields as

pr = Slv*isuv,

Hy = Ry — iRy
b = d1+id2, (2.4)
r=t+iu,
S = W+Hiv,

Notice that we have introduced the new real scalar fiekdww that are bosonic fields that do
not appear in the bosonic Lagrangian (2.3). These fields will be reyeissthe supersymmetric
version to maintain the same number of degree of freedom between bordrferaionic sector
due the scalar superfields are defined with complex scalar fields. Ear fexid, R, andS,y,
appears as the real part of the complex tensor field whose imaginanapadiven in terms of their
dual fields, as we see in (2.4) and can be found in [14]. The vecterSeidV that accommodates
A, in the WZ-gauge is written as:

V = 80"6A,, + 626) + 626\ + 6%6°D, (2.5)

which fulfills the reality constrainly = V. The scalar superfield that accommodaliemnd$* is
written as 1 )
o UR — i —
® = ¢ +i00"80,p — ZBZGZch +V20p + 7 8%0,pc"0 + 6°f, (2.6)
and this complex conjuga’@. These superfields obey the chiral conditi@® = DP = 0. The
scalar superfields that accommodsteandr and their respective complex conjugate fields are:

S=s+i60"80,5— % 6%6°s+ /268 + \szezauzoué +6°%h, (2.7)
R=r+i60"00,r — %19252@ +/207 + ﬁezapzoué + 69, (2.8)

and their complex conjugate superfie@and R which satisfy the chiral conditionDS = DS =
DR = DR = 0. The spinor superfields that contd®),, S, and their corresponding dual fields are
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written as

Sa = Ta+ 0°(epap + OheByy) + 82Fa +160+00,T4 (2.9)

+i80"88°9,(Epap + OBy ) — %ezezmra,

Qa = Xa+6°(epa@+ OhuHw) + 6°Ga +160"80,Xa (2.10)
+i80"88°9,(epa®+ OhaHu) — %ezézmx(a,

and their complex conjugate superfielsand Q that are also chiralD;%, = DpZa = DyQa =
DpQa = 0. We can notice that we have to introduce two extra background complex fielda, p
andg@, to match the bosonic and fermionic degrees of freedom.

Now, we are interested in building up the supersymmetric action. For that, wéntakcon-
sideration the canonical (mass) dimensions of the superfields; baseekerdimensionalities, and
by analyzing the bosonic Lagrangian (2.3), we propose the followingrsympmetric actiong,,:

Sor = / d4xd29d2§[%1wa(DaV)S+ %vva(ﬁéws? L'—la(é)wa(qu D),
—Llles(e)vva(qa o) 4 %6(§)Wa(¢ —0)Q, (2.11)
—ia(e)vva(qa —0)Q* + %cbq_)(m R)],

We therefore observe that the action (2.11) is manifestly invariant iNeet-supersymmetry.
The component-field content of the= 2-supersymmetry is accommodated infthe: 1-superfields).
Indeed, the action (2.11) displays a larger supersymmbstey, 2, realized in terms of atl = 1
-superspace formulation.

This Lagrangian in its component-field version reads as below:

Ou(s— S )EHNEHA, — %(er S )FWFW +D%(s+5")

i
Lbr—"‘é

—%is)\ouapX— %is*}_\(?”a“)\ LI VT SR v 3

2V2 2V2
1 1

+ZAAN 4+ AN — —AED — —=AED
4" g N e

EuVK)\F v(d+09)(B K}\+B’|;>\)+iéFW(pr—Bﬁv)(q)‘Fq)*)
\/_T_O“"HJFW-F 1r0“6p)\(¢+¢ )

iv2 iv2

1 § T
—ZT_(I”(?“)\@) +60")+ TquW BuwA + Tqﬁ“Bw)\

1
16
iv2

|
—g O™ Ry —

—ED(¢+¢ )FH‘ED (6+9%)p

+%Amp—%mp*—¥wr+¥wﬁ 2.12)
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+2 m——f*m+ (¢+¢ )AF—'—(¢+¢)

—1—6sw“Fw<¢—¢*><HKA+H:A>+§F“( o~ H)(O—47)
_QXO-UVHJFW_‘_\Q_

8 X" PRy — —)(Guap)\((b ¢*)

+XTM0— ") + Y20 - Y2Ga N

-bl—

2D~ 4")0+ 3D (6~ 0")g

iww £X¢¢ - £DLIJx - ?D*wx
+ifxx+ A+ (¢ ")\ G—%(q)_q)*))\é
1

+§¢6u¢*6“(r —rf)— §¢*au¢a“(r —r)
+%6“¢au¢*(r+r*)—%¢¢*D(r+r*)—iwo“aqu(wrr*)
1 * * . 1 *
+erf (r+r )_—L'—quo“anur |
—7000"0,5 — 20" 403, — 740 ("
1., 1., 1., 1 -
+Z¢f g‘f‘zfq) g _Zf UJZ—ZWJZ-

We point out the pieces corresponding to the bosonic action (2.3) in theleengpmponent-field
action above:

i 1
1 * * 1
168“"KAF (0 +07) (B +Bp) = ZSWKAFuvq’lRKA’
* * 1
B leuvK}\ Fuv (¢ - ¢ )(HK)\ + HK)\) - ZSWKAFHVq)ZSK)\’

1 1 1 1
§¢au¢*a“(r —r)— §¢*au¢a”(" —rt) = §¢1av¢zavu - §¢25v¢1avu-

We can notice that this Lagrangian describes the bosonic sector (2.¥sauperpartners. We
find here theN = 1 supersymmetrization of the Chern-Simons term presented in [7], where the
first term is the same as proposed by [1], considering the constantr\actihie gradient of a
scalar. Since the gradient vector is a constant, we havesthatt 4- B+x,. We see in the La-
grangian the presence of the bosonic real scalar fields+s* andu=r +r*, and the complex
scalar fieldsp and, that do not appear in the bosonic Lagrangian (2.3). These scalardjglds
pear in the supersymmetric generalization in order to keep the bosonicramdriec degrees of
freedom in equal number. We point out that the bosonic fi€lds*, f, f* h h*,g andg* play

all the role of auxiliary fields. The bosonic fieldss*, Ry, S, p, P, @ ¢",r,r* and the fermionic
fields&,&,1,1,F, F_,x,)f, G,(S,Z,Z work as background fields also responsible for the breaking the
Lorentz invariance.
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3. N =4-Lorentz-violating term

In a very close analogy to the procedure adopted in the previous segd@ucceed in writing
down theN = 4 model by means of a reduction from 10 to 4 dimensions. We propo$2$0i0
the Chern-Simons term in the form

L’br = AﬁaéTByAua\)AK )\po'é'[By (3'1)

The background tenS(T%fI has 120 components, and we can redefine it as

5= Rpo,auv 6uu ),

wherefdi= 1,4,5,6,7,8,9 is the space-time index ahd) = 1,2,3,4,5,6 is an internal index. We
consider that there is no dependence of the fields orxth@,x8,x’,x8,x% coordinates. Then,
we have 6 anti-symmetric tensor fieI%a with 6 components each one and 15 vectors written
as gradients of 15 scalars represented by the anti-symmetric indiekherefore, the number of
independent components is reduced to 52.

Next, we need to redefine the gauge fielddass (Asd', | = 1,2,3,4,5,6) whered' is real
scalar fields. Observing that‘VKAPG&BVAHAKa = 0, we obtain, integrating by parts, the
Lagrangian as follows:

)\poéTBy

1 1 1
Lpr = *ZEWKAFWAKGAWL ZSWKAFW(I)I R+ §¢Iav¢JaVUIJ- (3.2)

This is the bosonic sector of the action term to be supersymmetrized. In thjssvagcessary
to define new fields to be partners inside the superfields. They are similag psdbedure of the
previous section, but now there are internal index. In terms of sujuksfiee have two sectors:

Gauge Sector  {V,®'}
Background Sector. {z.,7¥ SSRY,RY1,

and, in components these two sectors encompass the fields cast below:

Bosonic gauge Sector {A,,¢',¢*'}

Fermionic gauge Sectar {\, Ay, @'}
Bosonic background Sector {s,s",R,,,p',p" '’ r*}
Fermionic background Sector {,&,7', T F'.F',2Y,7"1.

Based on dimensional analysis arguments for the bosonic sector, asdieérmsione for the
N = 2 case, and noticing that some superfields now have internal symmetry inel@xopose the
following N = 4 supersymmetric action:

/ d*xd26d26> wa(DaV)s+ iwa(DaV)s+ L'lé(e)wa(qa' +@)z! (3.3)

‘za<e>wa<q>'+q>>za'+ JOPR R,
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We can observe that the action (3.3) is invariant urdler 1-supersymmetry and there is a
larger symmetry, th&l = 4-supersymmetry as well.
ThisN = 4 Lagrangian in its component-field version reads as follows:

i 1
Lor = +g0u(s— S )EHMVEGA, — g(s+S)RuFY + D?(s+s")

—%isAo“duX— %is*)_\c_r“ap)\ — L AOVRLE L S AVFWE

2V/2 2V2
1 1— 1 1
+=AAh+ -AAh* — —AED — —=AED
4 4 \/QE fE
l * * >k *
T R0+ 0") (Bl + Bl + P (Bl ~ BR)(G' +6")

O P + lr "M (0! + o)

'\f W o, A+£w PGB\

‘%T'G‘“w'ﬁw V25 g

S CR AR
— 5D +¢™)p +—D*<¢'+¢*'>p*

'\f w'p' — '\f P'p* 'fom'T'+¥D*q‘J'f‘ (3.4)
+Zf AT —Zf*')\r +Z(¢ + o )AF! —Lll(<|>'+q>*')XFj
%cb’”a 9104 %)
a“¢ 0™ (r — ) — ¢¢*~’D( —r) - 4L|J aHo,gr(r —r't)

i -
+Zf f*J(r _r*IJ)+ZqJ O’ullJ aur*lJ

_}_}(I)Ia q)*Jau(rlJ + r*IJ) _

i —y = i =i
_Zq)l ZIJO-uauLIJJ + Zq)*JqJI O.uauzlJ + ZLIJI GuzlJauq)*J
1

1oican 1
+40 170

1 1,45
I gsdyild L exd 1710 L el 73710

We can ascertain the presence of the bosonic sector (3.2) by meansearftisdelow:

i 1

éau(s— S*)SHK)\VFK)\A\; = —ZSWK}\FuvAKa)M
1 1
T6E" R (0! +0™)(Bl +B) = ;e Fud' Ry,

1 1 1

éq)lauq)*Jau(rlJ + r*IJ) o éq)*.]auq)lap(rl.l + r*IJ) — z((I)Iavq)‘] + BI aVBJ)avulJ.
We can notice that this Lagrangian fairly accommodates\the 4 bosonic sector (3.2). We re-
obtain here th&l = 1 andN = 2 supersymmetrization of the Chern-Simons term presented in ref.[7]
and in (2.12), respectively. We notice thdit= 4 Lagrangian is similar ttN = 2 but now existing
an internal index in same fields. The fielgst, u” and p", that do not appear in the bosonic

Lagrangian (3.2), were introduced in order to keep the bosonic amideic degrees of freedom in
equal number. We can see that the bosonic fiBld3", f', f*', h, h*,g" andg*" works as auxiliary
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fields. The bosonic fields s*, R}, p',p*',r™,r*" and the fermionic field&, &, ¢, T ,F' F 79,7V
work as background fields breaking the Lorentz invariance.

4. Concluding remarksand comments

In the important context of studying the gauge invariant Lorentz-violating fermulated
as a Chern-Simons action term , we propose herd its2 andN = 4 supersymmetric versions.
This program can be carry out in a simple way with the help of a dimensiodattien method:;
here, we have chosen the method a la Scherk, but it would also be intgrastiontemplate
other possibilities, such as the procedures a la Legendre or a la Kaleira-With our reduction
scheme, we could treat the extended supersymmetric version in terms of Bim@dlesuperspace to
supersymmetrize the Chern-Simons like term, as proposed by Jackiw, writtgmimof a constant
background vector here parametrized as the gradient of the scatdiofua + B,x*, wherea and
" are constants.

Another interesting point we should consider is the possibility, once we mawehe full set
of SUSY partners of the Lorentz-breaking vector, to express theataftarges of the extended
models whenever topologically non-trivial configurations are taken irtowat. This would allow
us to impose bounds on the central charges in terms of the phenomenotmyisahints already
imposed on the vector responsible for the Lorentz covariance breakdow
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