
P
o
S
(
B
D
M
H
2
0
0
4
)
3
7
9

Present and future applications of galaxy clusters in
cosmology

Peter Schuecker∗†
MPE, Garching, Germany
E-mail: peters@mpe.mpg.de

A brief summary measurements using X-ray clusters of galaxies of the density of dark matter,

the normalization of the matter power spectrum, neutrino masses, and especially the equation of

state of the dark energy, the interaction between dark energy and ordinary matter, gravitational

holography, and the effects extra-dimensions of brane-world gravity is given.

Baryons in Dark Matter Halos
5-9 October 2004
Novigrad, Croatia

∗Speaker.
†A footnote may follow.

Published by SISSA http://pos.sissa.it/



P
o
S
(
B
D
M
H
2
0
0
4
)
3
7
9

Present and future applications of galaxy clusters in cosmology Peter Schuecker

1. Ordinary matter

The observed cosmic density fluctuations are very well summarized by a low matter den-
sity ΛCDM model. Therefore, many cosmological tests refer to this structure formation scenario.
In general, baryonic matter, Cold Dark Matter (CDM), primeval thermal remnants (electromag-
netic radiation, neutrinos), and an energy corresponding to the cosmological constant give the
total (normalized) density of the present Universe, Ωtot = Ωb +ΩCDM +Ωr +ΩΛ. The normalized
density of ordinary matter, Ωm, comprises the first three components. Recent CMB data suggest
Ωtot = 1.02±0.02 (Spergel et al. 2003), i.e., an effectively flat universe with a negligible spatial cur-
vature. The same data suggest a baryon density of Ωbh2 = 0.024±0.001 and h = 0.72±0.05. For
our purposes, the energy density of thermal remnants can be neglected, so that Ωm = Ωb +ΩCDM.

Cluster abundance measurements are a classical application of galaxy clusters in cosmology
to determine the present density of ordinary matter and the variance of the matter fluctuations in
spherical cells with radius R and Fourier transform W (kR): σ2(R) = 1

2π2

R ∞
0 dk k2 P(k) |W (kR)|2.

The specific value σ8 at R = 8h−1 Mpc characterizes the normalization of the matter power spec-
trum P(k). Consider the expected number of clusters observed at a certain redshift and flux limit,

dN(z, flim) = dV (z)
R ∞

Mlim(z, flim) dM dn(M,z,σ2(M))
dM . The cosmology-dependency of dN stems from

the comoving volume element dV , the mass limit Mlim at a certain redshift, and the shape of the
cosmic mass function dn/dM. The summation in the theoretical mass abundances is over cluster
mass whereas observations yield quantities like X-ray luminosity, gas temperature, richness etc.
The conversion of such observables into mass is the most crucial step where most of the systematic
errors can occure. The overall statistical effect is difficult to quantify, but systematic errors in the
cosmological parameters on the 20 percent level can be reached (Randall et al. 2002).

With the REFLEX sample (Böhringer et al. 2004), the classical Ωm-σ8 test was performed
with the Karhunen-Loewe eigenvector base (Schuecker et al. 2002, 2003a). The observed Gaus-
sianity of the matter field directly translates into a multi-variant Gaussian likelihood function, and
includes in a natural manner a weighting of the squared differences between KL-transformed ob-
served and modeled cluster counts with the variances of the transformed counts. For the test, further
cosmological parameters like the Hubble constant, the primordial slope of the power spectrum, the
baryon density, the biasing model, and the empirical mass/X-ray luminosity relation had fixed prior
values. The final result is obtained by marginalizing over these parameters and yields the 1σ cor-
ridors 0.28 ≤ Ωm ≤ 0.37 and 0.56 ≤ σ8 ≤ 0.80. The largest uncertainty in these estimates comes
from the empirical mass/X-ray luminosity relation obtained for REFLEX from ROSAT pointed
observations. Tests are in preparation with a four-times larger X-ray cluster sample (1 500 clus-
ters), and a more precise M/L-relation obtained over a larger mass range with the XMM-Newton
satellite. Errors below the 10-percent level are expected.

White et al. (1993) pointed out that the matter content in rich clusters provides a fair sample
of the matter content of the Universe. The ratio of the baryonic to total mass in clusters should
thus give a good estimate of Ωb/Ωm. The combination with determinations of Ωb from cosmic
nucleosynthesis (constrained by the observed abundances of light elements at high z) can thus be
used to determine Ωm. At a certain distance from the center of the quite relaxed cooling core
clusters, it was found that the observed X-ray gas mass fraction tends to converge to a universal
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value. After further corrections, the results obtained by Allen et al. (2003) yields

Ωm = 0.29±0.04 . (1.1)

and σ8 = 0.70± 0.04. Other measurements show the Ωm-σ8 degeneracy more pronounced over
a larger range. When all measurements are evaluated at Ωm = 0.3, the values of σ8 appear quite
consistent at a comparatively low normalization of

σ8 = 0.76 ± 0.10 , (formal 1σ range) (1.2)

within the total range 0.5 < σ8 < 1.0 (data compiled in Henry 2004).
Recent neutrino experiments are based on atmospheric, solar, reactor, and accelerator neu-

trinos. All experiments suggest that neutrinos change flavour as they travel from the source to
the detector. These experiments give strong arguments for neutrino oscillations and thus nonzero
neutrino rest masses mν . Further information can be obtained from astronomical data on cos-
mological scales. The basic idea is measure the normalization of the matter CDM spectrum with
CMB anisotropies on several hundred Mpc scales. This normalization is transformed with structure
growth functions to 8h−1 Mpc at z = 0 assuming various neutrino contributions. This normalization
should match the σ8 normalization from cluster counts. Recent estimates are obtained by combin-
ing CMB-WMAP data with the 2dFGRS galaxy power spectrum, X-ray cluster gas mass fractions,
and X-ray cluster luminosity functions (Allen, Schmidt & Bridle 2003). For a flat universe and
three degenerate neutrino species, they measured the contribution of neutrinos to the energy den-
sity of the Universe, and a species-summed neutrino mass, and their respective 1σ errors,

Ων = 0.0059+0.0033
−0.0027 , ∑

i

mi = 0.56+0.30
−0.26 eV , (1.3)

which formally corresponds to mν ≈ 0.2 eV per neutrino. Estimates from neutrino oscillations
suggest mν ≈ 0.05 eV for at least one of two neutrino species.

2. Dark energy

The combination of recent measurements obtained with three different observational approaches
(galaxy clusters: Schuecker et al. 2003b; type-Ia SNe: Riess et al. 2004; CMB-WMAP: Spergel
et al. 2003) shows that the cosmic matter density is close to Ωm = 0.3, and that the normalized
cosmological constant is around ΩΛ = 0.7. This sums up to unit total cosmic energy density and
suggests a spatially flat universe. However, the density of ordinary matter growths with redshift
like (1 + z)3 whereas the density related to the cosmological constant is independent of z. The
ratio ΩΛ/Ωm today is close to unity and must thus be a finely-tuned infinitesimal constant set in
the very early Universe (cosmic coincidence problem). An alternative hypothesis is to consider a
time-evolving ‘dark energy’, where in Einstein’s field equations the time-independent energy den-
sity ρΛ of the cosmological constant is replaced by a time-dependent dark energy density ρx(t).
For a time-evolving inhomogeneous field (see recent review in Peebles & Ratra 2004) the aim is
to understand the coincidence in terms of dynamics. A central role in these studies is assumed by
the phenomenological ratio wx = px

ρxc2 (equation of state) between the pressure px of the unknown
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energy component and its rest energy density ρx. Note that wx = −1 for Einstein’s cosmological
constant.

The resulting phase space diagram of dark energy distinguishes different physical states of
the two-component cosmic substratum – separated by two energy conditions of general relativity
(Schuecker et al. 2003b). The strong energy condition (SEC): ρ+3p/c2 ≥ 0 and ρ+ p/c2 ≥ 0, de-
rived from the more general condition Rµνvµvν ≥ 0, where Rµν is the Ricci tensor for the geometry
and vµ a timelike vector. The SEC ensures that gravity is always attractive. Phenomenologically,
violation of SEC means wx < −1/3 for a single energy component with density ρx > 0. For
wx ≥ −1/3, SEC is not violated and we have a decelerated cosmic expansion. The null energy
condition (NEC): ρ+ p/c2 ≥ 0, derived from the more general condition Gµνkµkν ≥ 0, where Gµν

is the geometry-dependent Einstein tensor and kµ a null vector (energy-momentum tensors as for
SEC). Violations of this condition are recently studied theoretically in the context of macroscopic
traversable wormholes and the holographic principle. The breaking of this criterion in a finite local
region would have subtle consequences like the possibility for the creation of “time machines”.
Violating the energy condition in the cosmological case is not as dangerous (no threat to causality,
no need to involve chronology protection, etc.), since one cannot isolate a chunk of the energy to
power such exotic objects. Nevertheless, violation of NEC on cosmological scales could excite
phenomena like super-acceleration of the cosmic scale factor (Caldwell 2002). Phenomenologi-
cally, violation of NEC means wx < −1 for a single energy component with ρx > 0. The sort of
energy related to this state of a Friedmann-Robertson-Walker (FRW) spacetime is dubbed phantom
energy and is described by super-quintessence models. For wx ≥ −1 NEC is not violated, and is
described by quintessence or super-quintessence models. Assuming a spatially flat FRW geometry,
Ωm + Ωx = 1, and Ωm ≥ 0, the formal conditions for this two-component cosmic fluid translates
into wx ≥ −1/3(1 −Ωm) for SEC, and wx ≥ −1/(1 −Ωm) for NEC (Schuecker et al. 2003b).
These energy conditions, characterizing the possible phases of the dark energy, thus rely on the
precise knowledge of Ωm and wx. Unfortunately, the effects of wx are not very large. However,
a variety of complementary observational approaches and their combination helps to reduce the
measurement errors significantly.

The most direct (geometric) effect of wx is to change cosmological distances. For example,
for a spatially flat universe, comoving distances in dimensionless form where a less negative wx

increases the Hubble parameter and thus reduces all cosmic distances. Structure growth via grav-
itational instability provides a further probe of wx. Dark energy, not in form of a cosmological
constant or vacuum energy density, is inhomogenously distributed - a smoothly distributed, time-
varying component is unphysical because it would not react to local inhomogeneities of the other
cosmic fluid and would thus violate the equivalence principle. An evolving scalar field with wx < 0
(e.g. quintessence) automatically satisfies these conditions. The field is so light that it behaves rel-
ativistically on small scales and non-relativistically on large scales. The field may develop density
perturbations on Gpc scales where sound speeds c2

s < 0, but does not clump on scales smaller than
galaxy clusters. In the linear regime, and when dark energy is modeled as a dynamical scalar field,
the rate of growth of linear density perturbations in the CDM is damped by the Hubble parameter.
The evolution equation can be solved approximately (Caldwell, Dave & Steinhardt 1999). It is
seen that dark energy delays structure growth. To reach the same fluctuations in the CDM field,
structures must have formed at higher z compared to the standard CDM model. The sensitivity of
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CMB anisotropies to wx is limited to the integrated Sachs-Wolfe effect because Ωx dominates only
at late z. In the nonlinear regime, the effects of dark energy are not very large (Lahav et al. 1991
for a discussion of the effects of the cosmological constant). However, dark energy delays structure
growth so that dark matter haloes are formed at higher z with higher core densities so that they
appear more concentrated in wx 6= −1 models compared to the cosmological constant. The first
semi-analytic computations of a spherical collapse in a fluid with dark energy with −1 ≤ wx < 0
were performed by Wang & Steinhardt (1998). Schuecker et al. (2003b) enlarged the range to
−5 < wx < 0, whereas Mota & van de Bruck (2004) discussed the spherical collapse for specific
potentials of scalar fields including also a redshift-dependent wx(z).

The abundance of clusters at redshifts z > 0.5 is very important for future planned cluster
surveys (e.g. DUO Griffiths et al. 2004) where in the wide (northern) survey about 8 000 clusters
will be detected over 10 000 square degrees on top of the SDSS cap up to z = 1, and where in
the deep (southern) survey about 1 800 clusters will be detected over 176 square degrees up to
z = 2 (if they exists at such high redshifts). REFLEX has most clusters below z = 0.3 and are thus
not very sensitive to wx. However, the resulting likelihood contours of SNe and galaxy clusters
appear almost orthogonal to each other in the high-wx range. Their combination thus gives a
quite strong constraint on both wx and Ωm. This is a typical example of cosmic complementarity
which stems from the fact that SNe probe the homogeneous Universe whereas galaxy clusters
test the inhomogeneous Universe as well. The final result of the combination of different SNe
samples and REFLEX clusters yields the 1σ constraints wX =−0.95±0.32 and Ωm = 0.29±0.10
(Schuecker et al. 2003b). Averaging all results obtained with REFLEX and various SN-sample
yields wx = −1.00±0.20. The measurements suggest a cosmic fluid that violates SEC and fulfills
NEC. In fact, the measurements are quite consistent with the cosmological constant and leave not
much room for any exotic types of dark energy. The violation of the SEC gives a further argument
that we live in a Universe in a phase of accelerated cosmic expansion. A formal average of the
most accurate wx measurements (Schuecker et al. 2003b, Spergel et al. 2003, Rapetti et al. 2004,
and Riess et al. 2004), and their 1σ standard deviation is

wx = −1.00±0.04 . (2.1)

It is save to conclude that all recent measurements are consistent with a cosmological constant, and
that the most precise estimates suggest that wx is very close to −1. This points toward a model
where dark energy behaves very similar to a cosmological constant, i.e., that the time-dependency
of the dark energy cannot be very large.

The last effect of wx discussed here is related to a possible non-gravitational interaction be-
tween dark energy and ordinary matter (e.g. Amendola 2000). The most obvious candidate for
dark energy is presently the cosmological constant with all its catastrophic problems. However, a
very small redshift-dependency of the dark energy density can presently not be completely ruled
out. The next simplest possibility is a light scalar (quintessential) field φ where the self-interaction
potential V (φ) can drive the observed accelerated expansion similar as in the de-Sitter phase of in-
flationary scenarios. In general, φ should interact beyond the gravitational coupling to baryons and
CDM with a strength comparable to gravity unless some special symmetry prevents or suppresses
the interaction. The following discussion is restricted to a possible interaction between dark energy
and dark matter. The general covariance of the energy momentum tensor requires the sum of dark
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matter (m) and dark energy (φ) to be locally conserved so that we can allow for a coupling of the
two substrata, e.g., in a simple linear form but more complicated choices are, however, possible.
For a given potential V (φ), the corresponding equation of motion of φ can be solved. Amen-
dola (2000) discussed exponential potentials which yield a present accelerating phase. Their model
leads to a further suppression of structure growth and thus to smaller σ8 compared to noninteracting
quintessence models. The present observations appear quite stringent. The stronger constraint on
σ8 = 0.76±0.10 obtained in Sect. 1 suggests a clear detection of a nonminimal coupling between
dark energy and dark matter:

β = 0.10 ± 0.01 . (2.2)

This would provide an argument that dark energy cannot be the cosmological constant because Λ
cannot couple non-gravitationally to any type of matter. In this case, the quite narrow experimental
corridor found for wx would be responsible for the nonminimal coupling.

3. The Cosmological Constant Problem

To illustrate the cosmological constant problem (Weinberg 1989), separate the effectively ob-
served dark energy density into a gravitational and non-gravitational part, ρeff

Λ = ρGRT
Λ + ρVAC

Λ =

6 ·10−27 kgm−3, for ΩΛ = 0.7. The non-gravitational part represents the physical vacuum. A free
scalar field offers a convinient way to get an estimate of a plausible vacuum energy density and
yields ρVAC

Λ = 1
c5 h̄3

R 2πEp/ h̄c
0

4πk2dk
(2π)3

1
2

√

k2 +(mc/ h̄)2 ≈ 6 ·10+97 kgm−3 (for m = 0). The cosmologi-
cal constant problem is the extra-ordinary fine-tuning which is necessary to combine the effectively
measured dark energy density with the physical vacuum. The answer is probably related to the fact
that for the estimation of the physical vacuum, gravitational effects are completely ignored.

A hint how inclusion of gravity could effectively work, comes from black hole thermodynam-
ics. Analyzing quantized particle fields in curved but not quantized spacetimes, it became clear that
the information necessary to fully describe the physics inside a certain region and characterized by
its entropy, increases with the surface of the region. This is in clear conflict to standard non-
gravitational theories where entropy as an extensive variable always increases with volume. Non-
gravitational theories would thus vastly overcount the amount of entropy and thus the number of
modes and degrees of freedom when quantum effects of gravity become important. ‘t Hooft (1993)
and Susskind (1995) elevated the entropy bound as the Holographic Principle to a new fundamental
hypothesis of physics. Later studies made the exclusion of states inside their Schwarzschild radii
more explict which further strengthen the entropy bound so that a new estimate of the physical is
ρHOL

Λ = c2

8πG
1

R2
EH

≈ 3 · 10−27 kgm−3, where REH is the present event horizon of the Universe. This
is, however, not a solution of the cosmological constant problem because gravity and the exclu-
sion of microscopic black hole states were put in by hand and not in a self-consistent manner by a
theory of quantum gravity. Nevertheless, the similarity of the results might be taken as a hint that
gravitational hologpraphy could be relevant to find a more complete theory of physics.

Gravitational holography is based on the validity of the Null Energy Condition (NEC) which
offers a way to check for consistency of the principle. However, in contrast to the NEC as discussed
in Sec. 2 for the total cosmic fluid, Kaloper & Linde (1999) could show that for the covariance
entropy bound each individual component of the cosmic substratum must obey −1 ≤ w i ≤ +1.
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The most problematic component is the equation of state of the dark energy. The observed values
suggest wx = −1.00± 0.04. CDM and baryons have w = 0, and the primeval thermal remnants
have w = 1/3. The observed bounds are thus consistent with holography.

t’Hooft (1993) and Susskind (1995) have argued very convincingly that M-theory should sat-
isfy the holographic principle. There is a large class of general models based on higher dimen-
sions which follow the holographic principle. Brane-worlds emerging from the model of Horava
& Witten are phenomenological realizations of M-theory ideas. Recent theoretical investigations
concentrate on the Randall & Sundrum models where gravity is used in an elegant manner to com-
pactify the extra dimensions. These models also follow the holographic principle. The visible
Universe is located on a (1 + 3)-dimensional brane. Non-gravitational forces, described by open
strings, are confined to the brane. Gravity, described by closed strings, can propagate also into the
(1+4)-dimensional bulk and thus ‘dilutes’ differently than Newton or Einstein gravity. Table-top
experiments of classical gravity and BBN already confines the size of the extra dimension to values
smaller than about 0.2 mm. Rhodes et al. (2003) discussed the effects of extra dimensions on CMB
anisotropies and large scale structure formation showing that P(k) gets flatter on scales around
300h−1 Mpc with increasing size of the extra dimension. A careful statistical analysis shows that
more than 30 000 galaxy clusters are needed to clearly detect the presence of an extra dimension
on scales below 0.2 mm.

4. Summary and conclusions

X-ray clusters of galaxies are used – partially in combination with other measurements – to get
the observational constraints on the matter density Ωm = 0.29±0.04, the normalization of the mat-
ter power spectrum σ8 = 0.76±0.10, the neutrino energy density Ων = 0.006±0.003, the equation
of state of the dark energy wx = −1.00± 0.04, and the interaction β = 0.10± 0.01 between dark
energy and dark matter. Future observations will include precise determinations of the normalized
cosmological constant ΩΛ and the redshift-dependency of wx. Unfortunately, this set of observa-
tions does not provide a consistent picture. The problem is related to the comparatively low σ8

value. This normalization leads to an overestimate of the neutrino mass compared to laboratory ex-
periments. The low normalization also suggests a significant interaction between dark energy and
dark matter. Such a high interaction is not consistent with a dark energy with wx = −1.00± 0.04
because the latter suggests that dark energy behaves quite similar to a cosmological constant which
cannot exchange energy beyond gravity. A more convincing explanation is that σ8 = 0.76 should
be regarded as a lower limit. Systematic underestimates of σ8 by 20-30 percent are not unexpected
in the light of recent hydrodynamical simulations. A higher σ8 would immediately lead to a con-
sistent neutrino mass, and dark energy in form of a cosmological constant without nonminimal
couplings. Present data do not allow such definite conclusions. It is, however, seen that the inclu-
sion of neutrino mass and interaction parameters significantly improves our abilities for internal
tests. A further problem is related to the measurement wx = −1.00± 0.04. Many published pro-
posals for wx measurements expect errors on the 5-percent level within the next five years. Is this
expected accuracy really enough to detect deviations from the cosmological constant?

Another aim of the present paper was to point out that a precise measurement of wx corre-
sponds to tests of general relativitistic energy conditions. They form the bases of many phenomena

379 / 7



P
o
S
(
B
D
M
H
2
0
0
4
)
3
7
9

Present and future applications of galaxy clusters in cosmology Peter Schuecker

related to gravitation and are also important for tests of gravitational holography as a new emerg-
ing principle of physics which is expected to provide a new guideline towards a more complete
theory of physics. M-theory should also come holographic as well as brane-world gravity as a
phenomenological realization of M-theory ideas. Tests of the resulting cosmologies will in the end
confront alternative theories of gravity. Observational tests of gravity on cosmological scales as
illustrated by the effects of an extra-dimension on the cluster power spectrum probably need the
ultimate cluster survey, i.e. a census of possibly all 106 galaxy clusters which might exist down to
redshifts of z = 2 in the visible Universe.
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