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1. Introduction

The Perspective Shape from Shading (PSFS in the sequel) probleattizased several au-
thors in the last few years. This attention is certainly due to the fact that tbidgmn is more
realistic with respect to the classical Shape from Shading (SFS in thelspop#em, mainly be-
cause we assume that the objective of the camera is close to the object ofdbeaty far away
(cfr. [13]). This assumption gives rise to a perspective deformatitimeodbject in the image which
must be included in the model.

Two models have been recently proposed by Courteille et alia [6] and&Faligeras [16] (see
also [15], [18] and [17]). In the first model the objective is close to thiect and the light source
is supposed to be far away so that the light rays are parallel, in the seumiel the objective and
the light source are located at the same point, close to the image. Both modéls dascribed
by a first order partial differential equation of Hamilton-Jacobi type altfiothe equations do not
coincide. In this paper we present an approximation scheme for the maxihaabs of the first
model equation, show that the corresponding fixed point problem haisjaeusolution and discuss
the effect of different types of boundary conditions on the numermaki®n. The general frame-
work of this work is the theory of viscosity solutions which can be found nlfithe last section
we present several tests on real and synthetic images.

2. The model problem and its discretization

Let us define our model problem adopting the same notation used in [6]pdihe(Xo, Yo)
is the principal point of the imageal andd’ are respectively the distance of the objective from
the perspective plane (the film) and the distance of the objective from #tek#ckground, and
I =9 are respectively the lenght of a segment in the perspective planenthe image) and
the length of the real segment corresponding to it (see Figure 1 andr[Gjdre details). The
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Figure 1: Diagram of the optical lens and of the perspective transébion

representation of the surface in terms of theY) coordinates of the points in the perspective
planell is given by three parametric equations

x=r(X)Y), y=s(X,Y), z=t(X,Y) (2.1)
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where (see [6])

{r(X,Y) = X01(X,Y) (2.2)

S(X,Y) = 150t (X,Y)

Then the problem amounts to compute the third companéitiis is the most difficult task sinde
is the solution of the following eikonal type equation

d 1? , 12 _
whereQ is the internal region bounded by the silhouette of the ob@eill denote its boundary)
which is embedded in a rectangular dom@in

F(X,Y) =t(X,Y)+ (X —Xo,Y — Yo) - Ot(X,Y), (2.4)
: _IXY)
I (X,Y) —_— W()(’Y), (2.5)

d4
(X =X0)2+ (Y = Yo)>+d?)?’
andlmaxis a constant depending on parameters of the problem. Tlg@\s@tis the background.
Defining

cod(a(X,Y)) = (2.6)

— 1 Ir%]ax
fXY) = 3 <W—1> 2.7)
we can write (2.3) as
IOt (X, Y)| = /FOX,Y) ‘t_(X,Y)‘. (2.8)

We want to write (2.8) in a fixed point form and construct an appoximatibarse for this equation.
To this end it is important to note thiahas a sign. In fact, the exterior normal to the original surface
in the pointP is given by

A(P) = N(P)/IN(P)| (2.9)

where

N(P) = (dtx(X,Y),dty (X,Y),—t(X,Y)) (2.10)

and since—t must be positive (according to the orientation of thaxis in Figure 1t must be
negative. This implies that (2.8) is in fact

|OtOGY) [+ FOGY)(E(XY) + (X —=Xo,Y —Yo) - Ot(X,Y)) =0 (2.11)
which can be written in short as
H((X,Y),t,00t) =0, in Q (2.12)

where the Hamiltoniai represents the left-hand side of (2.11).
Let us consider equation (2.11) complemented with the Dirichlet boundaitaan

t=g(X,Y) ondQ, where—d <g<O0 (2.13)
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The usual semi-Lagrangian scheme for (2.11)-(2.13) is

t(X,Y)=F[t}(X,Y) inQ (2.14)

where 1
V) =FIGY) = g ot {tbn(XYa)}  on, (2.15)
bn(X,Y,a) = (X,Y)+h (\/—? - (X,Y)) (X,Y) €Q, acB(0,1) (2.16)

andB(0, 1) is the unit ball inR?.
Let us examine the properties of tReoperator in order to guarantee convergence for the fixed
point iteration. First, let us introduce the following space:

W = {w: Q — R, such thatv|sq = g} (2.17)
Note thatW is a space of functions satisfying the Dirichlet boundary conditicag on 0Q.

Lemma 2.1. Under the above assumptions, the following properties hold true:
a) F is a contraction mapping in’t(Q);

b) F is monotone, i.e. s t implies Hs| < Ft];

c)LetV={weW:—-d <w(X,Y)<0},thenF:V —V;

Proof
a) Let us take two functiond,ands. For everyt = (X,Y), we have

v o = Lt pleon(G39)) i, (e ) -
) BT )

<
— 1+h

|
=
>

wherea* is the direction where the infimum faris attained. Replacing the role bfands one
obtains the reverse inequality and proves

IF[t] = F 8]l [t =] (2.19)

< -
~1+h

b) The monotonicity with respect tbis a direct consequence of the definition Fofsince the
coefficient in front of thenf is strictly positive.

c) Itis a direct consequence bj and of

F[0]=0, F[-d]= >—d. (2.20)
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Now let us examine the algorithm. Lemma 2.1 assures that, starting from any iniisdt8which
satisfies the boundary conditions, the fixed point iteration

1 = F [t (2.21)

converges to the unique solution(fixed point).

We note that a direct consequence of the above Lemma is that one canabiytairotone increas-
ing convergence just starting from a sub-solutiem, choosing® = —d’ in the internal nodes and
imposing the Dirichlet boundary conditidf = g(X,Y) on dQ. Moreover, the property b) guar-
antees that < 0 for all (X,Y) € Q at every iterationso the equation associated to the problem is
always (2.11).

It is well known that the classical SFS problem (corresponding to thegottal projection) ex-
hibits a convex/concave ambiguity which corresponds to the fact that sheiated eikonal equa-
tion has more than one solution (even if we assume regularity). This has tedt@aanumber of
contributions (cfr. [19], [14], see also the survey paper [9]) wignobpose different methods to se-
lect a single solution of the equation. Typical recipes to select a solutipheréo fix the heights
at points where the light intensity is maximal or to compute the so-called maximal sofiugicthe
viscosity solution which is bigger than all the others). It has been shova@Oirttat the analogous
scheme for the SFS problem converges to the maximal solution of the equafames the space
discretization stefpx andh satisfy the compatibility condition

Ch

Ax <
whereC is the maximum norm of the vectorfiellg] (see also [11] and [4] for a different scheme). It
is worth to note that a similar ambiguity also appears in the PSFS problem, butthieicexample
for uniqueness is more complicated to describe.

1 (2.22)

3. Creation of avirtual perspectiveimage and computation

In this section we will describe how we construct a virtual image to test th&R&forithm
described in the previous section. We developed this procedure togeradme synthetic images
that will be used as benchmarks for our algorithm in the last section.

The starting point is the choice of a surface u(x,y). Note that all figures refer to the example of
atent (u(x,y) =1—1x|, (x,y) € [~1,1]?) but the procedure is valid for every (graph) surface.

Pre-processing
Givenu = u(x,y), we compute (analitically or numerically) the unit normal veaigP) at every
point and we compute the light function

(x,y) = &-A(P)
where is the direction of the source light. In our tests we fixee: (0,0, 1) so we have
1

xy) = ———
oy \/1+ U2+ u
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J

Figure 2: Initial surfaceu(x,y) (left) and computed light functioh(i’, j) (right)
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We consider a rectangular< n grid G’ = {(xy,yj)} wherei’ =1,...,nandj’ = 1,...,non
which we compute two matricési’, j') andu(i’, j’), i’,j’=1,...,n(see figure 2).

Let us define parameters of the experim¥pt Yo, d, d', I, I’ = %’I, (see figure 1 and [6]) and
then we proceed to "take a photograph” of the surface. Every discoetelinatedi’, j’) corre-
spond to a pointx,y, u(x,y)) belonging to the surface and every pdirty, u(x,y)) is associated to
a pair(X,Y) on the perspective plane by the transformation

X—Xo _ X
d “u
(3.1)
Y—Yo _y
d “u
Varyingi’, j’ in {1,...,n}, we obtain the set
{(mqur)}i,J,zl 77777 ) (3.2)

which is the (discrete) domain of the perpective image (see Figure 3).

Figure 3: In white: domain of the perpective image on XY plane. In bldzkckground
Remark 3.1. The transformation (3.1) is not injective. In particular, a poii,Y) associated to
a point(x y, (x y)) belonging to the background can coincide with a pgitY) associated to a

Thls 5 due to the fact that distance camera-object is finite which implies themogésof some
areas in full shade (see Figure 5).
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Figure4: Discrete domain of the perspective image. CROSS: pointregifinom the background, SQUARE:
point coming from the object (there are two overlappingaag)

camera

object

shiadliowe shadow

Figure5: areas in full shade

We want to stress that - as a result of transformation (3.1) - the set (33 tbe initial ordering in
the sense that two adjacent poifXg, Y1), (X2,Y2) in the perspectivY-plane are not necessarily
coming from two adjacent poin{i, y1, U(x1,¥1)), (X2,Y2,u(X2,¥2)). Then, the resulting ordering
does not coincide with that of a structured grid.

In order to overcome this difficulty and to have an easy implementation of thetalgo we dis-
cretized again the perspective image usingearectangulamn x n grid G indexed byi =1...,n
andj =1...,n. This provides an easy correspondence betwgepl) and(x,y) and betweelri, j)
and(X,Y).

By means of anot straightforward process we can find the relationship betweghand (i’, j’).
Roughly speaking, we associate a gairY) to every nod€i, j) and then we find the four closest
points to(X,Y) in the set (3.2). These four points are associated to four nodes in th&'guia
which the original light functiont and the original surfaceare defined. Given this correlation, we
easily obtain the matrix representatil, j) of the functionl (X,Y), that is the perspective image
in the XY-plane simply applying an interpolation rule (typically linear interpolation). Mues,
we can compute, in the same way, the functiot,Y), that is the solution to our problem.

Note that in the case of the tent the computatioh(&f Y) is trivial becausé(x,y) is constant. See
Figure 6.

Boundary conditions and Computation

The assignment of boundary conditions is very easy and consists in tatiopuoft(X,Y) (as
showed above) only in the required nodes. As mentioned before, vasetfo= —d’ in internal
nodes (that is insid®). Moreover, it is strongly raccomended initializing external nodes (that is
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-25

Figure 6: gray level of the photograph (left) and the solutigX,Y) of equation (right)

Figure 7: approximate solutioir, s,t) of the problem given in parametric form

outsideQ, where no computation is needed) with the vaflie: 0 which is the greatest valuean
attain. This choice avoid the risk that the scheme uses some values comintpé ackground,
because the evaluation of the infimum will automatically reject them.

Now we are ready to compute the solution using the scheme (2.14) and thedixedechnique.

Post-processing
Once we computed the approximate soluti@q,Y), we can easily computegX,Y) ands(X,Y)
as in (2.2) and then we can draw the surface

{(r(X,Y),s(X,Y),t(X,Y)), (X,Y)eQ}

given in parametric form to be compared with the exact solution in termsafll (see Figure 7).

Finally we note that, due to Remark 3.1, the computed surface with its backboamhave
some "holes” in its domain in correspondence with areas in full shade. br @tbrds, in the
process we may lose some informations about the initial surface (see Figune 8). In Figure
8-right black areas correspond to points not visible by the objective.
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Figure8: Initial domain of the object (left), perspective domainted photograph (center) and reconstructed
domain of the object (right)

4. Other boundary conditions and their effects

Beside the difficulty related to the concave/convex ambiguity which is behinaathenique-
ness of viscosity solutions there is another difficulty which arises in the RipEbach. It is well
known that in this approach one has to complement the equation with someappwodiditions
to select a unique solution and to run the algorithm. This is a limitation with respect toizan
tion algorithms where such boundary conditions are not needed andatteh $er the solution is
done via a gradient method or a line search algorithm. Naturally the solutionutechpy those
algorithms will, in general, be different from the exact solution. Howeawepyactical applications
boundary conditions on the surface are seldom known, so it usefulalgse in more detail the
effect of different types of boundary conditions on the solution in otdelefine a minimal set of
conditions which will allow to compute the exact solution.

In this section, we will briefly analyse the effect of Dirichlet, Neumann datésonstraints bound-
ary conditions on subsets of the boundary. Let us note first that lasyrdnditions should be
imposed in a weak sense. The typical condition which defines a viscosgglstibnu for (2.12)
requires that for any test functigne C1(Q) andx € 9Q local maximum point fou — ¢

min{H (x,u(x),D¢(x)),B(x,u,Dp(x))} <0 (4.2)

where the functiorB is the operator describing the boundary conditiohs, Bx,u,Du) =u—g
for the Dirichlet condition. Similarly, the boundary condition for supersohgicequires that for
any test functionp € C*(Q) andx € aQ local minimum point foru — ¢

max{H (x, u(x),D¢(x)),B(x,u,Dd(x))} > 0. (4.2)

The effect of the Dirichlet condition is to impose a valueweccording to the above conditions, in
particular the value(x) = g(x) is set at every point whete (X, u(x), D$(x)) > O (for subsolutions)
andH (x,u(x),D¢(x)) < 0 (for supersolutions).

Neumann boundary conditions correspond to the opeBtou, Du) = du/dn(x) —m(x) where
n(-) represents the outward normal to the dom@inA typical use of it is when we know (or we
presume) that the level curves of the surface are orthogonal to timelagQ or to a subset of it
where we simply choos&(x) = 0.

The state constraints boundary condition is different from the aboweitomms since we do
not impose neither a value fornor a value for its normal derivativdu/on(x) (cfr. [3]). In this
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respect it has been interpreted as a "no boundary condition" choicrghhhis interpretation is
rather sloppy. In fact, a real functianbounded and uniformly continuous is said to betate
constraintsviscosity solution if and only if it is a subsolution (in the viscosity senseiand a
supersolution iQ (i.e. up to the boundary). It can be also stated as a Dirichlet boundary canditio
simply setting

g = Cy = constant provided Cy > r)g%xu(x)

(note that in our problem, by Lemma 2.1, an easy choice satisfying the abog#ion isCy = 0).
By this choice (4.1) is trivially satisfied, whereas (4.2) requires (strictly)

H (x, u(x),D¢(x)) > 0. (4.3)

In our algorithm, the fixed point operatbrlooks for a minimum on neighbouring poirig(X,Y,a)

so we can obtain the same result if we define the solution ouistddet = C > 0 so that searching
for a minimum all directions € B(0, 1) will be excluded. The effect of state constraints boundary
condition is to look for the minimum insida.

It is interesting to note that if we adopt state constraints boundary condaihsve start from
t0 = C = constant the scheme will produce the sequemte- (14 h)~"C which converges to 0
everywhere inQ. Clearly,t = 0 is not a meaningful solution. However, if we fix the value at
even a single point* € Q the solution will have a minimum a¢* and we will haveu(x) > u(x*)

for everyx € Q. So the effect of the state constraints boundary conditions is to prodidesas
which increase rapidly whexgets close to the boundad® (seee.g.the tests in [17] where these
conditions have been extensively applied).

5. Numerical tests

In this section we present some numerical tests on synthetic images, onmamegagrspec-
tive image with an artificial perspective deformation and finally on a realqgnaph with visible
perspective deformation.

5.1 Synthetic images

For tests on synthetic images we have chosen in all cases the following parsime
X=0, Yo=0 d=1 d =4 1=075 1I'=3

The computational procedure follows the steps described in the prewdotisrs. BothG andG’

are 121x 121 grids and the number of controls for the discretization of the unit83all1) is 16

(all placed on the boundaBB(0,1)). The iterative algorithm stops whé™* —t"||., < €.

In each subsection we present a) the original surface, b) its lightium@n thexy-plane), c) the
light function in the perspectivEY-plane (that is the photograph) and d) the reconstructed surface.
Finally, we compute the error estimatelifi-norm comparing the solutian(computed during the
preprocessing step) with the approximate solution of the equation (2.116 .t what we name
"solutiont” was actually computed by an interpolation so this is not a comparison with thexea
act solutiort. Nevertheless, this is a very reasonable way to calculate the accurheyalfjorithm
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because computation starts from the functi@inj) which was computed by the same interpolation
too.

Remark:we choose a variable step discretizattom (2.15) depending oiX,Y anda in such a
way that

h(X,Y,a) (\/T (X, Y)) =Ax forall X,Y,a

whereAx is the space step discretization. This trick reduces the number of iteratiedsdéo
reach convergence. Finally, we defimg, := )r(n\}n h(X,Y,a).
’ 7a

Tent (I discontinuous)
This test is a slight modification of the tent used in Section 3. The main differeare is that
is discontinuous (whereas in the previous exanpk&as constant). The solutidris non regular
but the boundary conditions are very simple, 0 on every side of theesq@are can see that the
algorithm is accurate around the kinks and that the error in the max norrous A@\x (see Table
1).
—ly) xe[-1,1], ye[-1,—3|x 3]
u(xy) =19 2(1-ly)) xe [-1,1], ye[31x+3,1)
—|x|  otherwise

o
“‘“ \\\\\\\;\\\\\\\\\\ K“\
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\\\\\\\\\\\\\m N
\\\\‘\‘\\\\\\\ “‘}\‘&“\“\\‘g}}}}}}"‘\}\ b,
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‘\\“\\\\\ ““\“\\\\\\\\\\\\\ \\‘\\“““‘ﬁ}}%‘n\w‘\““
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i
\\\\\\\\

c)

Figure 5.1. a) the original surface, b) its light function in thg-plane, c) light function in the
perspectiveXY-plane, d) the approximate surface.
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| number ofiterations hmn | Ax | & [L™error|
| 52 | 0.0046| 0.00625| 107 | 0.064 |

Table 1: L® error.

Very regular surface (I continuous)

This test has been created to check the accuracy on a regular suHatehas a line of singular
points (wherd (X,Y) = 1). This line is truncated in the real computation and substituted by the
value 09999. The boundary conditions are not homogeneous: they are O twitthed right hand
sides of the square, amdx,y) = 1 — x? on the top and bottom sides of the square. The algorithm
stops after 1613 iteration withta,, = 8.8- 10~°. It is interesting to note that also in this case the
error is 1@x.

c)

Figure 5.2: a) the original surface, b) its light function in thg-plane, c) light function in the
perspectiveXY-plane, d) the approximate surface.

| number of iterations hmn | Ax | & | L”error|
| 1613 | 8.8:107° | 0.00625| 10~ | 0.0418 |

Table2: L® error.
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Synthetic book image (I continuous)

The last test is a tentative to reconstruct a synthetic surface as closesisl@ to the shape of a
single page of a book. Againandu are regular. The boundary conditions are not homogeneous:
0 on the left hand side of the square, a positive constant on the rightdide and a polynomial
functiong(X,Y) on the top and bottom sides of the square. Notehhat= 1.428- 10~ and that

the approximate solution after 260 iterations has an error of the order 10

u(x,y) = 1—;0(b(223x\)3+c(22ax\)2+d 225

where

b=109-10"°, c¢=-6.21-10% d=0.883

c)

Figure 5.3: a) the original surface, b) its light function in thg-plane, c) light function in the
perspectiveXY-plane, d) the approximate surface.

| number of iterations  hnn | Ax | & [L™error|
| 260 | 1.428.10* | 0.00625| 107 | 0.0536 |

Table 3: L® error.
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5.2 Real image with synthetic per spective

In this test we used eeal photograph of a vase with a negligible perspective deformation, so
we modified it by an artificial perspective deformation as in the previous tests
For this image the parameters valuesdre 1,1’ =2,d' =4, = gl’ = 0.5, Ax = 0.0042 and

Imax= 1.
Figure 9 shows the photograph and the reconstructed surface conysirigdirichlet boundary

Figure 9: photograph, 12% 121 pixels (left) and reconstructed surface with Dirichdetindary condition
(right)

conditionsu = g, whereg is the real height of the vase 0Q.

It is easy to verify that the numerical solution does not match the boundaditions on the top
and on the bottom of the vase (the error is high particularly on the top).

Numerical tests show that in this simple case the valu¢&Xafy) inside the domain depend only
on its values on the left and right boundaries of the image. Thereforeawsubstitute Dirichlet
boundary condition by state constraints on the top and bottom part of thmelaguwithout any
change in the solution. Figure 10-left shows the approximate solution in thés @&s expected,
the approximate solution is very good even if we do not impose Dirichlet anyrmbndition on
the whole boundary. We want to emphasize that the knowledge of the satibnt on 9Q can
be considered in general a completabnrealistic assumption (because the height of the surface
is exactly what we want to know) but in this simple case we are able to computgadbesolution
also under realistic assumptions.

Finally, we computed the solution with Dirichlet boundary condition on the rightlaft side and
Neumann boundary condition elsewhere. This is "realistic” boundargition because we can
assume that vase is flat on the top and on the bottom. Figure 10-right sreovestfit.

The average error (with respect to the exact solution) of the three te&®43. In all cases, the
iterative procedure converges in 65 iterations, wita 1077,

5.3 Real image

In this test we used a real photograph where the effect of perspéstinsible.
The surface is a sheet of paper with the shape of a roof tile. For this imagatheeter values
are:| = 6.91mm d = 5.8mm I’ = 200mm d’ = ['d = 167.87mm Ax = 0.05mm We note that we
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Figure 10: reconstructed surface with Dirichlet and state constsdiatundary condition (left) and recon-
structed surface with Dirichlet and Neumann boundary dgrd{right)

performed the light correction (2.5) in the preprocessing step, so wassamednax = 1 during
computation. Figure 11 shows the photograph (£288 pixels) and the surface reconstructed

Figure 11: photographs, 128 x 128 pixels (left) and reconstructedsenivith Dirichlet and state constraints
boundary condition (right)

using Dirichlet boundary condition only on the left and right sides of thendary and state con-
straints elsewhere (top and bottom sides). We can see that the solution igapdteonsidering
the fact that light source (flash camera) is not far from the object atdittection of light source
is not perfectly vertical as the mathematical model would have required.

We also tried to reconstruct the surface with two more practical boundeugittons. In the first
case, we fixed a Dirichlet conditiaf only on a vertical line in the center of the image (column 64)
and then we turned over the computed surface with respect to thetfa(see Figure 12-right).
Note that the solution is not very sensitive with respect to véfluso a rough knowledge of the
behaviour of the surface can be sufficient. We can see that the solutjoitesgood. We have a
large maximum norm error on the boundary (17.7mm, 41% of the maximum héitite tle), but
not inside. In fact, assuming that the reconstructed surface in Figurighitlis the exact solution,
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the average error on all nodes for Figure 12-left is about 1.2mm.

In the second case, we fixed a Dirichlet conditiBonly on the poini64,64) (at the center of the
image) and then we turned over the computed surface as before. Natettiiatcase the solution
has a shape very different from the expected solution since it has al ghaglximum at the central
point (64,64).

-100 -100

Figure 12: reconstructed surface with Dirichlet boundary conditiontbe center line (left) and recon-
structed surface with Dirichlet boundary condition on op@p(right, different scale)

In these three tests the iterative procedure converges respectevély,ih8b and 190 iterations,
with € = 10°°,

6. Summary and Conclusions

The above experiments show that the scheme proposed in this papes abvaserges to an
approximate solution. The scheme is accurate also for non regular esifagvided a correct
boundary condition is imposed, this means that either we know the value ofetbkt for we
know its behaviour at some part of the boundaries (where we impose Mewnatate constraints
boundary conditions). The use of state constraints on the whole bguisdasky in this model
since it produces nice results for particular surfaces where the optaci@iriield is pointing strictly
inward the domain of computation, but in general this boundary condition wfilpive a correct
solution.
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