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1. Introduction

The Perspective Shape from Shading (PSFS in the sequel) problem hasattracted several au-
thors in the last few years. This attention is certainly due to the fact that this problem is more
realistic with respect to the classical Shape from Shading (SFS in the sequel) problem, mainly be-
cause we assume that the objective of the camera is close to the object insteadof being far away
(cfr. [13]). This assumption gives rise to a perspective deformation ofthe object in the image which
must be included in the model.
Two models have been recently proposed by Courteille et alia [6] and Prados-Faugeras [16] (see
also [15], [18] and [17]). In the first model the objective is close to the object and the light source
is supposed to be far away so that the light rays are parallel, in the secondmodel the objective and
the light source are located at the same point, close to the image. Both models canbe described
by a first order partial differential equation of Hamilton-Jacobi type although the equations do not
coincide. In this paper we present an approximation scheme for the maximal solution of the first
model equation, show that the corresponding fixed point problem has a unique solution and discuss
the effect of different types of boundary conditions on the numerical solution. The general frame-
work of this work is the theory of viscosity solutions which can be found in [1]. In the last section
we present several tests on real and synthetic images.

2. The model problem and its discretization

Let us define our model problem adopting the same notation used in [6]. Thepoint (X0,Y0)

is the principal point of the image,d andd′ are respectively the distance of the objective from
the perspective plane (the film) and the distance of the objective from the (flat) background,l and
l ′ = d′

d l are respectively the lenght of a segment in the perspective plane (i.e. in the image) and
the length of the real segment corresponding to it (see Figure 1 and [6] for more details). The

Figure 1: Diagram of the optical lens and of the perspective transformation

representation of the surface in terms of the(X,Y) coordinates of the points in the perspective
planeΠ is given by three parametric equations

x = r(X,Y), y = s(X,Y), z= t(X,Y) (2.1)
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where (see [6])
{

r(X,Y) = X−X0
d t(X,Y)

s(X,Y) = Y−Y0
d t(X,Y)

. (2.2)

Then the problem amounts to compute the third componentt. This is the most difficult task sincet
is the solution of the following eikonal type equation

[

d
t(X,Y)

]2

|∇t(X,Y)|2 =
I2
max

I ′(X,Y)2 −1 in Ω (2.3)

whereΩ is the internal region bounded by the silhouette of the object (∂Ω will denote its boundary)
which is embedded in a rectangular domainQ,

t(X,Y) = t(X,Y)+(X−X0,Y−Y0) ·∇t(X,Y), (2.4)

I ′(X,Y) =
I(X,Y)

cos4α(X,Y)
, (2.5)

cos4(α(X,Y)) =
d4

((X−X0)2 +(Y−Y0)2 +d2)2 , (2.6)

andImax is a constant depending on parameters of the problem. The setQ\Ω is the background.
Defining

f (X,Y) ≡ 1
d2

(

I2
max

I ′(X,Y)2 −1

)

(2.7)

we can write (2.3) as

|∇t(X,Y)| =
√

f (X,Y)
∣

∣

∣
t̄(X,Y)

∣

∣

∣
. (2.8)

We want to write (2.8) in a fixed point form and construct an appoximation scheme for this equation.
To this end it is important to note thatt̄ has a sign. In fact, the exterior normal to the original surface
in the pointP is given by

n̂(P) = N(P)/|N(P)| (2.9)

where

N(P) ≡ (dtX(X,Y),dtY(X,Y),−t̄(X,Y)) (2.10)

and since−t̄ must be positive (according to the orientation of thez axis in Figure 1,̄t must be
negative. This implies that (2.8) is in fact

|∇t(X,Y)|+
√

f (X,Y)(t(X,Y)+(X−X0,Y−Y0) ·∇t(X,Y)) = 0 (2.11)

which can be written in short as

H((X,Y), t,∇t) = 0, in Ω (2.12)

where the HamiltonianH represents the left-hand side of (2.11).
Let us consider equation (2.11) complemented with the Dirichlet boundary condition

t = g(X,Y) on ∂Ω, where−d′ ≤ g≤ 0 (2.13)
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The usual semi-Lagrangian scheme for (2.11)-(2.13) is

t(X,Y) = F [t](X,Y) in Ω (2.14)

where
t(X,Y) = F [t](X,Y) ≡ 1

1+h
inf

a∈B(0,1)
{t (bh(X,Y,a))} on Ω , (2.15)

bh(X,Y,a) = (X,Y)+h

(−a√
f
− (X,Y)

)

(X,Y) ∈ Ω, a∈ B(0,1) (2.16)

andB(0,1) is the unit ball inIR2.
Let us examine the properties of theF operator in order to guarantee convergence for the fixed
point iteration. First, let us introduce the following space:

W = {w : Ω → IR, such thatw|∂Ω = g} (2.17)

Note thatW is a space of functions satisfying the Dirichlet boundary conditionw = g on ∂Ω.

Lemma 2.1. Under the above assumptions, the following properties hold true:
a) F is a contraction mapping in L∞(Ω);
b) F is monotone, i.e. s≤ t implies F[s] ≤ F [t];
c) Let V= {w∈W : −d′ ≤ w(X,Y) ≤ 0}, then F: V →V;

Proof
a) Let us take two functions,t ands. For everyξ = (X,Y), we have

F [t](ξ)−F[s](ξ) ≤ 1
1+h

[

inf
a∈B(0,1)

{

t

(

ξ+h

(−a√
f
−ξ

))}

− inf
a∈B(0,1)

{

s

(

ξ+h

(−a√
f
−ξ

))}]

≤

≤ 1
1+h

[

t

(

ξ+h

(−a∗√
f
−ξ

))

−s

(

ξ+h

(−a∗√
f
−ξ

))]

≤ (2.18)

≤ 1
1+h

‖t −s‖∞

wherea∗ is the direction where the infimum fors is attained. Replacing the role oft ands one
obtains the reverse inequality and proves

‖F [t]−F[s]‖∞ ≤ 1
1+h

‖t −s‖∞. (2.19)

b) The monotonicity with respect tot is a direct consequence of the definition ofF since the
coefficient in front of theinf is strictly positive.

c) It is a direct consequence ofb) and of

F [0] = 0, F [−d′] =
−d′

1+h
> −d′. (2.20)
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Now let us examine the algorithm. Lemma 2.1 assures that, starting from any initial guesst0 which
satisfies the boundary conditions, the fixed point iteration

tn+1 = F [tn] (2.21)

converges to the unique solutiont∗ (fixed point).
We note that a direct consequence of the above Lemma is that one can obtaina monotone increas-
ing convergence just starting from a sub-solution,e.g.choosingt0 = −d′ in the internal nodes and
imposing the Dirichlet boundary conditiont0 = g(X,Y) on ∂Ω. Moreover, the property b) guar-
antees that̄t < 0 for all (X,Y) ∈ Ω at every iteration, so the equation associated to the problem is
always (2.11).

It is well known that the classical SFS problem (corresponding to the orthogonal projection) ex-
hibits a convex/concave ambiguity which corresponds to the fact that the associated eikonal equa-
tion has more than one solution (even if we assume regularity). This has motivated a number of
contributions (cfr. [19], [14], see also the survey paper [9]) whichpropose different methods to se-
lect a single solution of the equation. Typical recipes to select a solution are, f.e., to fix the heights
at points where the light intensity is maximal or to compute the so-called maximal solution (i.e. the
viscosity solution which is bigger than all the others). It has been shown in [20] that the analogous
scheme for the SFS problem converges to the maximal solution of the equation as far as the space
discretization step∆x andh satisfy the compatibility condition

Ch
∆x

≤ 1 (2.22)

whereC is the maximum norm of the vectorfieldbh (see also [11] and [4] for a different scheme). It
is worth to note that a similar ambiguity also appears in the PSFS problem, but the counter example
for uniqueness is more complicated to describe.

3. Creation of a virtual perspective image and computation

In this section we will describe how we construct a virtual image to test the PSFS algorithm
described in the previous section. We developed this procedure to produce some synthetic images
that will be used as benchmarks for our algorithm in the last section.
The starting point is the choice of a surfaceu= u(x,y). Note that all figures refer to the example of
a tent (u(x,y) = 1−|x|, (x,y) ∈ [−1,1]2) but the procedure is valid for every (graph) surface.

Pre-processing
Given u = u(x,y), we compute (analitically or numerically) the unit normal vector ˆn(P) at every
point and we compute the light function

I(x,y) =~ω · n̂(P)

where~ω is the direction of the source light. In our tests we fixed~ω ≡ (0,0,1) so we have

I(x,y) =
1

√

1+u2
x +u2

y
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Figure 2: Initial surfaceu(x,y) (left) and computed light functionI(i′, j ′) (right)

We consider a rectangularn×n grid G′ ≡ {(xi′ ,y j ′)} wherei′ = 1, . . . ,n and j ′ = 1, . . . ,n on
which we compute two matricesI(i′, j ′) andu(i′, j ′), i′, j ′ = 1, . . . ,n (see figure 2).

Let us define parameters of the experimentX0, Y0, d, d′, l , l ′ = d′
d l , (see figure 1 and [6]) and

then we proceed to ”take a photograph” of the surface. Every discretecoordinates(i′, j ′) corre-
spond to a point(x,y,u(x,y)) belonging to the surface and every point(x,y,u(x,y)) is associated to
a pair(X,Y) on the perspective plane by the transformation











X−X0
d = x

u

Y−Y0
d = y

u

(3.1)

Varying i′, j ′ in {1, . . . ,n}, we obtain the set
{

(Xi′ j ′ ,Yi′ j ′)
}

i′, j ′=1,...,n
(3.2)

which is the (discrete) domain of the perpective image (see Figure 3).

Figure 3: In white: domain of the perpective image on XY plane. In black: background

Remark 3.1. The transformation (3.1) is not injective. In particular, a point(X,Y) associated to
a point(x,y,u(x,y)) belonging to the background can coincide with a point(X̃,Ỹ) associated to a
point (x̃, ỹ, ũ(x̃, ỹ)) belonging to the surface. This the case of the tent as shown in Figure 4.

This is due to the fact that distance camera-object is finite which implies the existence of some
areas in full shade (see Figure 5).
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Figure 4: Discrete domain of the perspective image. CROSS: point coming from the background, SQUARE:
point coming from the object (there are two overlapping regions)

Figure 5: areas in full shade

We want to stress that - as a result of transformation (3.1) - the set (3.2) loses the initial ordering in
the sense that two adjacent points(X1,Y1), (X2,Y2) in the perspectiveXY-plane are not necessarily
coming from two adjacent points(x1,y1,u(x1,y1)), (x2,y2,u(x2,y2)). Then, the resulting ordering
does not coincide with that of a structured grid.
In order to overcome this difficulty and to have an easy implementation of the algorithm, we dis-
cretized again the perspective image using anewrectangularn×n grid G indexed byi = 1. . . ,n
and j = 1. . . ,n. This provides an easy correspondence between(i′, j ′) and(x,y) and between(i, j)
and(X,Y).
By means of anot straightforward process we can find the relationship between(i, j) and(i′, j ′).
Roughly speaking, we associate a pair(X,Y) to every node(i, j) and then we find the four closest
points to(X,Y) in the set (3.2). These four points are associated to four nodes in the gridG′ on
which the original light functionI and the original surfaceu are defined. Given this correlation, we
easily obtain the matrix representationI(i, j) of the functionI(X,Y), that is the perspective image
in the XY-plane simply applying an interpolation rule (typically linear interpolation). Moreover,
we can compute, in the same way, the functiont(X,Y), that is the solution to our problem.
Note that in the case of the tent the computation ofI(X,Y) is trivial becauseI(x,y) is constant. See
Figure 6.

Boundary conditions and Computation
The assignment of boundary conditions is very easy and consists in computation of t(X,Y) (as
showed above) only in the required nodes. As mentioned before, we chooset0 ≡ −d′ in internal
nodes (that is insideΩ). Moreover, it is strongly raccomended initializing external nodes (that is
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Figure 6: gray level of the photograph (left) and the solutiont(X,Y) of equation (right)

Figure 7: approximate solution(r,s, t) of the problem given in parametric form

outsideΩ, where no computation is needed) with the valuet0 = 0 which is the greatest valuet can
attain. This choice avoid the risk that the scheme uses some values coming fromthe background,
because the evaluation of the infimum will automatically reject them.
Now we are ready to compute the solution using the scheme (2.14) and the fixedpoint technique.

Post-processing
Once we computed the approximate solutiont(X,Y), we can easily computer(X,Y) ands(X,Y)

as in (2.2) and then we can draw the surface

{(r(X,Y),s(X,Y), t(X,Y)), (X,Y) ∈ Ω}

given in parametric form to be compared with the exact solution in terms ofu andI (see Figure 7).
Finally we note that, due to Remark 3.1, the computed surface with its background can have

some ”holes” in its domain in correspondence with areas in full shade. In other words, in the
process we may lose some informations about the initial surface (see Figure7 and 8). In Figure
8-right black areas correspond to points not visible by the objective.
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Figure 8: Initial domain of the object (left), perspective domain of the photograph (center) and reconstructed
domain of the object (right)

4. Other boundary conditions and their effects

Beside the difficulty related to the concave/convex ambiguity which is behind thenon unique-
ness of viscosity solutions there is another difficulty which arises in the PDE approach. It is well
known that in this approach one has to complement the equation with some boundary conditions
to select a unique solution and to run the algorithm. This is a limitation with respect to minimiza-
tion algorithms where such boundary conditions are not needed and the search for the solution is
done via a gradient method or a line search algorithm. Naturally the solution computed by those
algorithms will, in general, be different from the exact solution. However,in practical applications
boundary conditions on the surface are seldom known, so it useful to analyse in more detail the
effect of different types of boundary conditions on the solution in order to define a minimal set of
conditions which will allow to compute the exact solution.
In this section, we will briefly analyse the effect of Dirichlet, Neumann and state constraints bound-
ary conditions on subsets of the boundary. Let us note first that boundary conditions should be
imposed in a weak sense. The typical condition which defines a viscosity subsolutionu for (2.12)
requires that for any test functionϕ ∈C1(Ω) andx∈ ∂Ω local maximum point foru−ϕ

min{H(x,u(x),Dϕ(x)),B(x,u,Dϕ(x))} ≤ 0 (4.1)

where the functionB is the operator describing the boundary conditions,f.e. B(x,u,Du) = u−g
for the Dirichlet condition. Similarly, the boundary condition for supersolutions requires that for
any test functionϕ ∈C1(Ω) andx∈ ∂Ω local minimum point foru−ϕ

max{H(x,u(x),Dϕ(x)),B(x,u,Dϕ(x))} ≥ 0. (4.2)

The effect of the Dirichlet condition is to impose a value onu according to the above conditions, in
particular the valueu(x) = g(x) is set at every point whereH(x,u(x),Dϕ(x))≥ 0 (for subsolutions)
andH(x,u(x),Dϕ(x)) ≤ 0 (for supersolutions).

Neumann boundary conditions correspond to the operatorB(x,u,Du)= ∂u/∂n(x)−m(x) where
n(·) represents the outward normal to the domainΩ. A typical use of it is when we know (or we
presume) that the level curves of the surface are orthogonal to the boundary∂Ω or to a subset of it
where we simply choosem(x) = 0.

The state constraints boundary condition is different from the above conditions since we do
not impose neither a value foru nor a value for its normal derivative∂u/∂n(x) (cfr. [3]). In this
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respect it has been interpreted as a "no boundary condition" choice although this interpretation is
rather sloppy. In fact, a real functionu bounded and uniformly continuous is said to be astate
constraintsviscosity solution if and only if it is a subsolution (in the viscosity sense) inΩ and a
supersolution in̄Ω (i.e. up to the boundary). It can be also stated as a Dirichlet boundary condition
simply setting

g = Cg = constant provided Cg > max
x∈Ω

u(x)

(note that in our problem, by Lemma 2.1, an easy choice satisfying the above condition isCg = 0).
By this choice (4.1) is trivially satisfied, whereas (4.2) requires (strictly)

H(x,u(x),Dϕ(x)) ≥ 0. (4.3)

In our algorithm, the fixed point operatorF looks for a minimum on neighbouring pointsbh(X,Y,a)

so we can obtain the same result if we define the solution outsideΩ to bet =C≥ 0 so that searching
for a minimum all directionsa∈ B(0,1) will be excluded. The effect of state constraints boundary
condition is to look for the minimum insideΩ.
It is interesting to note that if we adopt state constraints boundary conditionsand we start from
t0 ≡ C = constant, the scheme will produce the sequencetn = (1+ h)−nC which converges to 0
everywhere inΩ. Clearly, t = 0 is not a meaningful solution. However, if we fix the value at
even a single pointx∗ ∈ Ω the solution will have a minimum atx∗ and we will haveu(x) > u(x∗)
for everyx∈ Ω. So the effect of the state constraints boundary conditions is to produce solutions
which increase rapidly whenx gets close to the boundary∂Ω (seee.g. the tests in [17] where these
conditions have been extensively applied).

5. Numerical tests

In this section we present some numerical tests on synthetic images, on a realnon perspec-
tive image with an artificial perspective deformation and finally on a real photograph with visible
perspective deformation.

5.1 Synthetic images

For tests on synthetic images we have chosen in all cases the following parameters:

X0 = 0, Y0 = 0, d = 1, d′ = 4, l = 0.75, l ′ = 3.

The computational procedure follows the steps described in the previous sections. BothG andG′

are 121×121 grids and the number of controls for the discretization of the unit ballB(0,1) is 16
(all placed on the boundary∂B(0,1)). The iterative algorithm stops when||tn+1− tn||∞ ≤ ε.
In each subsection we present a) the original surface, b) its light function (in thexy-plane), c) the
light function in the perspectiveXY-plane (that is the photograph) and d) the reconstructed surface.
Finally, we compute the error estimate inL∞-norm comparing the solutiont (computed during the
preprocessing step) with the approximate solution of the equation (2.11). Note that what we name
”solution t” was actually computed by an interpolation so this is not a comparison with the real ex-
act solutiont. Nevertheless, this is a very reasonable way to calculate the accuracy ofthe algorithm
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because computation starts from the functionI(i, j) which was computed by the same interpolation
too.

Remark:we choose a variable step discretizationh in (2.15) depending onX,Y anda in such a
way that

h(X,Y,a)

(−a√
f
− (X,Y)

)

= ∆x for all X,Y,a

where∆x is the space step discretization. This trick reduces the number of iterations needed to
reach convergence. Finally, we definehmin := min

X,Y,a
h(X,Y,a).

Tent (I discontinuous)
This test is a slight modification of the tent used in Section 3. The main difference here is thatI
is discontinuous (whereas in the previous exampleI was constant). The solutiont is non regular
but the boundary conditions are very simple, 0 on every side of the square. One can see that the
algorithm is accurate around the kinks and that the error in the max norm is about 10∆x (see Table
1).

u(x,y) =











2(1−|y|) x∈ [−1,1], y∈ [−1,−1
2|x|− 1

2]

2(1−|y|) x∈ [−1,1], y∈ [1
2|x|+ 1

2,1])

1−|x| otherwise
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Figure 5.1: a) the original surface, b) its light function in thexy-plane, c) light function in the
perspectiveXY-plane, d) the approximate surface.
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number of iterations hmin ∆x ε L∞ error

52 0.0046 0.00625 10−7 0.064

Table 1: L∞ error.

Very regular surface (I continuous)
This test has been created to check the accuracy on a regular surfacewhich has a line of singular
points (whereI(X,Y) = 1). This line is truncated in the real computation and substituted by the
value 0.9999. The boundary conditions are not homogeneous: they are 0 on theleft and right hand
sides of the square, andb(x,y) = 1−x2 on the top and bottom sides of the square. The algorithm
stops after 1613 iteration with ahmin = 8.8 ·10−5. It is interesting to note that also in this case the
error is 10∆x.

u(x,y) = 1−x2, (x,y) ∈ [−1,1]2

a)
−2

−1
0

1
2

−2

−1

0

1

2
0

0.2

0.4

0.6

0.8

1

b)

c) d)

Figure 5.2: a) the original surface, b) its light function in thexy-plane, c) light function in the
perspectiveXY-plane, d) the approximate surface.

number of iterations hmin ∆x ε L∞ error

1613 8.8·10−5 0.00625 10−7 0.0418

Table 2: L∞ error.
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Synthetic book image (I continuous)
The last test is a tentative to reconstruct a synthetic surface as close as possible to the shape of a
single page of a book. AgainI andu are regular. The boundary conditions are not homogeneous:
0 on the left hand side of the square, a positive constant on the right-hand side and a polynomial
functiong(X,Y) on the top and bottom sides of the square. Note thathmin = 1.428·10−4 and that
the approximate solution after 260 iterations has an error of the order 10∆x.

u(x,y) =
1

120

(

b(225|x|)3 +c(225|x|)2 +d 225|x|
)

where

b = 1.09·10−5, c = −6.21·10−3, d = 0.883
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Figure 5.3: a) the original surface, b) its light function in thexy-plane, c) light function in the
perspectiveXY-plane, d) the approximate surface.

number of iterations hmin ∆x ε L∞ error

260 1.428·10−4 0.00625 10−7 0.0536

Table 3: L∞ error.
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5.2 Real image with synthetic perspective

In this test we used areal photograph of a vase with a negligible perspective deformation, so
we modified it by an artificial perspective deformation as in the previous tests.
For this image the parameters values ared = 1, l ′ = 2, d′ = 4, l = d

d′ l ′ = 0.5, ∆x = 0.0042 and
Imax= 1.
Figure 9 shows the photograph and the reconstructed surface computedusing Dirichlet boundary
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Figure 9: photograph, 121×121 pixels (left) and reconstructed surface with Dirichletboundary condition
(right)

conditionsu = g, whereg is the real height of the vase on∂Ω.
It is easy to verify that the numerical solution does not match the boundary conditions on the top
and on the bottom of the vase (the error is high particularly on the top).
Numerical tests show that in this simple case the values oft(X,Y) inside the domain depend only
on its values on the left and right boundaries of the image. Therefore we can substitute Dirichlet
boundary condition by state constraints on the top and bottom part of the boundary without any
change in the solution. Figure 10-left shows the approximate solution in this case. As expected,
the approximate solution is very good even if we do not impose Dirichlet boundary condition on
the whole boundary. We want to emphasize that the knowledge of the exactsolutiont on ∂Ω can
be considered in general a completelynon-realistic assumption (because the height of the surface
is exactly what we want to know) but in this simple case we are able to compute theexact solution
also under realistic assumptions.
Finally, we computed the solution with Dirichlet boundary condition on the right and left side and
Neumann boundary condition elsewhere. This is ”realistic” boundary condition because we can
assume that vase is flat on the top and on the bottom. Figure 10-right shows the result.
The average error (with respect to the exact solution) of the three tests is0.043. In all cases, the
iterative procedure converges in 65 iterations, withε = 10−7.

5.3 Real image

In this test we used a real photograph where the effect of perspective is visible.
The surface is a sheet of paper with the shape of a roof tile. For this image theparameter values
are: l = 6.91mm, d = 5.8mm, l ′ = 200mm, d′ = l ′

l d = 167.87mm, ∆x = 0.05mm. We note that we
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Figure 10: reconstructed surface with Dirichlet and state constraints boundary condition (left) and recon-
structed surface with Dirichlet and Neumann boundary condition (right)

performed the light correction (2.5) in the preprocessing step, so we canassumeImax = 1 during
computation. Figure 11 shows the photograph (128× 128 pixels) and the surface reconstructed
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Figure 11: photographs, 128 x 128 pixels (left) and reconstructed surface with Dirichlet and state constraints
boundary condition (right)

using Dirichlet boundary condition only on the left and right sides of the boundary and state con-
straints elsewhere (top and bottom sides). We can see that the solution is quitegood considering
the fact that light source (flash camera) is not far from the object and that direction of light source
is not perfectly vertical as the mathematical model would have required.
We also tried to reconstruct the surface with two more practical boundary conditions. In the first
case, we fixed a Dirichlet conditiont0 only on a vertical line in the center of the image (column 64)
and then we turned over the computed surface with respect to the valuet0 (see Figure 12-right).
Note that the solution is not very sensitive with respect to valuet0, so a rough knowledge of the
behaviour of the surface can be sufficient. We can see that the solution isquite good. We have a
large maximum norm error on the boundary (17.7mm, 41% of the maximum height of the tile), but
not inside. In fact, assuming that the reconstructed surface in Figure 11-right is the exact solution,
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the average error on all nodes for Figure 12-left is about 1.2mm.
In the second case, we fixed a Dirichlet conditiont0 only on the point(64,64) (at the center of the
image) and then we turned over the computed surface as before. Note thatin this case the solution
has a shape very different from the expected solution since it has a global maximum at the central
point (64,64).

−100

−50

0

50

100

−100

−80

−60

−40

−20

0

20

40

60

80

100

0

20

40

−100

−50

0

50

100

−100

−50

0

50

100
−10

−5

0

5

10

15

20

Figure 12: reconstructed surface with Dirichlet boundary condition on the center line (left) and recon-
structed surface with Dirichlet boundary condition on one point (right, different scale)

In these three tests the iterative procedure converges respectevely in 167, 185 and 190 iterations,
with ε = 10−6.

6. Summary and Conclusions

The above experiments show that the scheme proposed in this paper always converges to an
approximate solution. The scheme is accurate also for non regular surfaces provided a correct
boundary condition is imposed, this means that either we know the value of the height or we
know its behaviour at some part of the boundaries (where we impose Neumann or state constraints
boundary conditions). The use of state constraints on the whole boundary is risky in this model
since it produces nice results for particular surfaces where the optimal vectorfield is pointing strictly
inward the domain of computation, but in general this boundary condition will not give a correct
solution.
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