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1. Preliminars and Notation

Let SC R" be closed. We denote, farc R",

ds(x) = min{|ly—X||: y€ S} (the distance ok from §)
Ts(X) = {y€ S: |ly—x| =ds(X)} (the projections ok ontoS)
B(Sp) = {yeR":ds(y) <p}

Supposef : R" — RU {4} is lower semicontinuous, anepi(f) := {(x,§) : & > f(x)} and
dom(f) = {x € R": f(x) < 4o} are its epigraph and (effective) domain, respectively. >tet
dom(f). A vectorZ € R" belongs to the@roximal superdifferentiadf f atx (notated by € 97 f (x)
if there existo, n > 0 such that

f(y) < f(x)+(,y—x) +olly—x|> forallyeB(xn). (1.1)

The proximal superdifferential of the distance functiiyis always nonempty at al¢ S.

We consider the control system= f(y,u), u € U wherel is a compact convex subsetRf", S
is a closed subset &" called the target sef, is Lipschitz continuous ix in R"\ S uniformly in
u. In particular, we refer to thaffinecase, iff takes the special form:

f(x,u) = go(X) + _iuigi (%),

whereuy, .., Un € [—1,1] anddp, g3, -..,gm are vector fields oR" with some smoothness.

We denote byF the family of vector fields associatedye= f(y,u), i.e. for everyx € R", we have
F(x):={f(x,u):ue U}.

We denote by*!(t) the solution of the system starting from poxtdbtained using the contral-).
For fixedx ¢ S, theminimal timeT (x) to reachSfrom x is defined by

T(x) :=inf{T >0 : Ju(-) such thay*"(T) € S}.
When the set of controlg(-) steeringx to Sis empty, therT (x) = +. Forr > 0, let

R={xeR": T(x) <4}, Rs=(R\SNB(S?)

2. Sufficient conditions for controllability

Consider the control syster= f(x,u), u € U set of controls with a smooth targg&tAssume

that there exist positive constaidtgt > 0 such that for alk € B(S,9) \ Swe have:

mig(Dds(x), f(x,u)) < —p (Petrov condition).

ue
Then the system is controllable B(S,d). From a geometrical point of view, the condition states
that at every point there exists an admissible control such that the corresponding trajectory points
toward the target together with uniformity in the angle between the field and the gradient of the
distance which prevents vanishing of the scalar product. This is a very strong condition and it can
be proved that it is equivalent to Lipschitz continuity of the minimal time funclioisee alsa3],
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and [7].

In the case of linear systenxs= Ax+ Bu, A € Math«n(R), B € Mathxm(R), u € [-1,1]™, with
targetS= {0} the Kalman rank condition gives sufficient condition for controllability and imply
Holder continuity ofT. Let j be the minimum positive integer such that the matrix:

(BAB...AIB)

has full rank. Ther is (1}“. )-Holder continuous.

This is related to some properties of the Lie algebra generated by the family of vector fields asso-
ciated to the system (se@]]. There are also some nonlinear version of this result concerning the
linearization of the system near an equilibrium point (sggWhere the target is the equilibrium
point.

In [1] there is a condition for Holder continuity df in the case of nonlinear symmetric systems

x =S uigi(x) for a smooth target. The condition requires that if at a peiatdS Petrov condition

does not hold, there exists a vector fi€ltk) generated by bracket operations from the vector fields

of the family 7 := {f(-,u) : ue U} associated to the system such that:

(F(x),v(x)) <0

wherev(x) is the normal unit vector to the targéatx.

This condition can be viewed as a Petrov condition of higher order, and in fact it leads to Holder
continuity of T and no longer to Lipschitz continuity, where the exponent of the modulus of conti-
nuity depends from the number of Lie brackets which are involved.

Example: In R® consider the systeti= Xg + U1 X1 + UxXo, Where

1
X0 = 35(-¥%:%.0), X1 = (xzyz0), X2=(0,0.1)

and define as target set the cylin@ae= {(x,y,z) € R®: x> +y? < 1}. The vector fields ar€” in
R3. We have for everx ¢ S

and
(Dds, Xo + UpX1 + UpX2) (X, Y, Z) = UrZy/32 + y2.

So Petrov condition fails in the plaree= 0. The system is not symmetric since we have a non-
trivial drift Xo, but [X1,X2](X,Y,2) = (x,y,0). This case will be covered by Theoré&®, since the
trajectory given by Lemma.2 approaches uniformly to the target.

3. The main result

In order to obtain estimates for the minimum time function in terms of the distance from
the targetS, we will use a sort of expansion of distance along the trajectories of the system in a
neighborhood of the considered point. These expansion will be crucial for our analysis. Indeed, if
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the target is sufficiently smooth (e @), we may consider the derivativesdy, but, in general, we

can consider weaker assumption $for example condition ensuring the semiconcavitydgj.

The smoother is the target, the finer will be the estimates. Now, in the following two lemmas, we
consider two particular cases of affine systems with drift, and we write the expansion of particular
trajectories generated by using some switchings of the control.

Using theexponential notationintroduced by A. Agrachev and R. Gamkrelidze (for further details
we refer to #] and references therein), we will denote X8 the pointy(t) = exp(tX)(x) where
exp(tX)(x) is the solution at timé of the following Cauchy problem:

y=X(y), y(0) =xe Q.

Lemma 3.1. Let f,g beC” vector fields oR", x € R", Vi be an open bounded neighborhood of
X, and letu € R. For everyx € V, set:

@ (t) = xe(frug e(f-ug

Then it holds: @x(t) = X+ 2tf (X) + % (DF () f (X) + u[f,g] (X)) + o(t2), where|o(t?)| < Lt3, with
L > 0 positive constant which does not dependanVy.

Proof. Follows by direct computations. O

Lemma 3.2. Let f,g1,02 beC*™ vector fields oR", x € R", Vi be an open bounded neighborhood
of x. For everyx € V, set:

() = x(Tra) (T +82) g (T=01) e (f—02) g (~01) gl (T=02) g (+91) g (T+G2)

Then it holds: @,(t) = xeftf+2°01.%] 1 o(t2) where|o(t?)| < Lt3, with L > 0 a positive constant
which does not depend ore Vx.

Proof. See ). O

The following theorem provides a sufficient local condition to have continuity and some regularity
estimates for the minimum timg(-) for a non linear systerk= f(x,u), u € U. Assume that the
target seSis of classC2. We are interested in the expansion of the composiligig(t)) around

t = 0, whereyy(t) is a generic trajectory of the system for which we know an expansion up to order
two:

In this case:

ds(y*"(t)) = ds(x) +t(Dds(x), v1)
2

+ (3.1)
4 ((D2ds(30,¥9) D) + (D), ¥9) ) + 0x(2).

In order to reach the target, we require two conditions:
1. the trajectory*!(t) for t > 0 small enough must approach the target, and this is implied by:

<Dds(X),V§|(_> <0, <<D2dS(X)7V?I(.>7V§I(.> + <DdS(X)7V)2(> <0.
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2. we can follow the trajectoryx(t) for a certain time until the above condition are satisfied.
Suppose we have reached a point We are approaching the target by (1). Then we choose
another trajectory and restart fosmfollowing the new approaching trajectoyy, (t) and so on. In

order to reach the target in a finite amount of time, we have to require that at each step the rate of
approach is sufficiently large. This will be done by an integral estimate.

Theorem 3.1 (The uniform case)Consider the syster= f(x,u), u€ U. Suppose that the target
Sis such thatds(-) is semiconcave oR" \ int(S) with constanK, and assume thaSis compact.
LetM = 1/(4L 4 14KL?) A 1/(2L +12KL?). Letd > 0 andp > 0,n > 0 be constant. We define for

everyx € B(S,9): T = MpA 2ds(x) /1, T =MnAy/2ds(x)/n.

LetV = B(S &), assume that the following holds:
(S1) for every € V there exists an admissible trajectogy(-) such that:

2
Yu(t) =X+t Vi+ 5 V3 +0x(t?),
with |ox(t?)| < Lt3. and for this trajectory it holds either:

a) if p> 0,30 € 0°ds(X) : (Lx Vi) <~ W(TY) €V
or
b) 3Zx € 7ds(X) : ({x,V¥) <0
and (2, v3) + 2K |Vi|* < —2n,y(T3) e V
(S2) for every € V we havev]|+ |v5| <L

Then® D B(S3), T is continuous ok and we haveT (x) < T(x) for everyx € B(S,8). In
particular, if we can choosp(p) = Cip™ andn(p) = C,p“2, we have thal is Holder continuous
of exponentt = a(ay,ay).

Proof.We give here a sketch of the proof, sdgfpr the complete proof.
1. We use the superdifferential inequalit for the distance function along the trajectory.

2. Conditiong(S1) ensures us that for a fixed amount of titrthe trajectory is approaching the
target and in the final point, conditiqisl) still holds.

3. We give and estimate forand for the rate of approach to the target.

4. We construct a sequence of poirtand timeg; concatenating such trajectories and exploit-
ing conditions(S1).

5. The sequence converges to the target in a finite amount of time. The minimurit tisne
bounded from above by a continuous function of the distalg@and this gives the continuity.

Now we give a more general statement that allows to take noncompstaptds(x)),n = n(ds(x)),
in this case there is an integral condition ensuring convergence to the target in a finite time, and
giving continuity on®s even if R is not a neighborhood of the target.
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Theorem 3.2. Consider the system= f(x,u), u € U. Suppose that the targ& satisfies an
internal sphere condition with uniform radius and ltbe the (global) constant of semiconcavity
of ds(-) onR"\ int(S).

LetM = 1/(4L+ 14KL?) A 1/(2L+ 12KL?). Letd > 0 andy,n : [0,8] — R* be two continuous,
nondecreasing functions, witlip) > 0 andn(p) > 0 whenp > 0, satisfying

5/ 1 1 °( 1 1
/o<u(p)+lvlr12(p)> dp < e /o<u(p)+ pn(p)> Gt B2

We define for every e B(S,d):

Ty = Mp(ds(x)) A 2ds(x) /p(ds(X)), T, = Mn(ds(X)) A v/2ds(x) /n(ds(X),

LetV a subset 0B(S, ) such that the following holds:

(S1) for everi €V there exists an admissible trajectory(-) such that:

2
Yolt) = X+t V4 S S o (t2),

2
with |ox(t?)| < Lt3. and for this trajectory it holds either
3x € 07ds(X) : (U, VE) < —H(ds(x)), Wx(TY) €V (3.3)
or

3Cx € 07ds(X) : (L, Vi) < 0and (Zx, v5) + 2K Vi < —2n(ds(X)), y«(T3) €V (3.4)

(S2) for everyk €V we havevy|+|vs| <L

Then there exists a continuous functibsuch thaff (0) = 0and T (x) < T(ds(x)) for everyx € V.
In particular if conditions (S1) and (S2) hold for evexye X5 we have thafl is continuous on
RsUS. Moreover if (S1) and (S2) hold for evexye B(S 6) we have thatR O B(Sd) andT is
continuous orR ..

Corollary 3.1. In the same hypothesis of Theor@i, assume that/ = X5 and there exist an
optimal controluy for x and a neighborhoodly of x depending o anduy such thaty“*(T (X)) € R
for all ze VxNV. Then we have continuity @f on £ N B(S,d) and we can estimate the modulus
of continuity of T with T. Moreover an estimatey (p) = Cp®, which leads to Hélder continuity
(see f],[14]), can be obtained, for example, if in the Theoidrg we can choosg(p) = C;p%* and
n(p) = Cap.

Proof. The proofs follows the same outline of the previous case. The difference is given by the fact
that now at each step the rate of approach decreases, so integral condition plays a key role to have
convergence in finite time. Sed]for detalils. O
Remarks:

1. The condition on semiconcavity d§ can be satisfied requiring th8satisfies an internal sphere
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condition with uniform radius (se&)])

2. In the case of smooth target, the teBus is related to the curvature. In particular, targets with
negative curvature can be approached better that others.

Example: The following example shows another situation where neither vector fields or Lie
bracket can help, but by geometrical properties of the (smooth) target, such as negative curva-
ture, we can construct a trajectory approaching the target itself. The sysihisn

7= Xo(2) + uXy(2) whereXo(z) = (0,—x?), Xy = (1,0), |u| < 1, and the target is:

Si={lX>2y<1}UB((2,0),1)UB((-2,0),1) U{y < 0} \ B((0,0),1).

We focus our attention on a small neighborhood of the taBg8t6), 6 > 0. The critical set is the
y-axis{x= 0} NB(S ), whereX, vanishes andX;, Dds(0,y)) = 0. Here, the trajectory requested
by TheorenB.2 is simply the one given by choosing= +1. We refer to#l] for a complete study
of this case.

4. Conclusions and open problems

The given condition generalizes both Petrov condition (at first order) and Lie bracket
condition for symmetric systems (at second order) and Kalman rank condition at second order.
The results of ], considering as targ&!-manifolds possibly with border (obtained with PDE
methods), are still not fully covered.

Conditions at higher order encounter some technical problems due to the fact that it cannot be
provided easily an expansion like the one contained in Lel@@dndeed at order higher than 2
the presence of mixed terms involving bracketd af requires additional restrictions on vector
fields.
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