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1. Introduction

We address some results related to the controllability efmtoelastic systems. What means
to study a controllability problem? Consider an evolutigstem described in terms of Partial
Differential Equations. We are allowed to act on the stat¢hefsystem by means of a suitable
choice of controls (source terms of the system or boundangitions): given a time interval
t € (0,T), and initial and final states in a Hilbert space, we look fooatml such that the solution
matches both the initial state at time- 0 and the final one at time=T.

In this note we are interest to present two classes of prablafmermoelastic systems of
memory-type dealing with ‘hyperbolic-like’ dynamics, aidiler-Bernoulli thermoelastic plates
without memory, where the described model is non-hypeclkenrid associated with analyticity of
the underlying generator. For these systems we resume sults®btained in the controllabil-
ity context [8, 11, 22, 23]. We start to recall some defindi@bout this subject. Assume tHat
andU are Hilbert spaces amdl: H — H andB :U — H are linear operators. Consider the linear
differential system

%Z(t) = AzZt)+Bf(t), z0)=ZXecH, t>0. (1.1)

Let us introduce the set of reachable final states as
R(T;?)={z(T): felL?0,T;U)},
whereT > 0. We can list the following types of controllability:

(a) Approximate controllability system (1.1) is said to be approximately controllableraefl if
the set of reachable statR§T;2°) is dense irH for everyZ’ € H.

(b) Exact controllability system (1.1) is said to be exactly controllable at time R(if;2°) = H
for all 2 € H. That is, system (1.1) can be driven from any state to ang sklbnging to the
same space of states where the system evolves.

(c) Null controllability: system (1.1) is said to be null controllable at tifiéf 0 € R(T;2°) for all
2% € H. This means that an arbitrary state can be transferred taulhstate at timeT .

When system (1.1) is reversible in time, null and exact alatpility are equivalent notions. Every
exactly controllable system is null and approximately coligble too. In general, viceversa is not
true (see, for instance, the heat equation with distribatadrol in the domai [26]). Note that
null controllability is a physically interesting notionngie the null state is an equilibrium point for
system (1.1), and for linear systems this is equivalent dqaire the controllability to trajectories.
Recall that system (1.1) is said to bentrollable to trajectoriest timeT > O if for any initial data
2 in a suitable spacH, there exists a control functioh< L?(0,T;U) such that the corresponding
solutionz of (1.1) is defined o0, T| and satisfies

2T)=2T),

whereZis a solution of (1.1) defined 0@, T] associated to given initial dafg in the same space
H and a given functiorf € L(0,T;U).
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Controllability of thermoelastic systems is a subject viahias attracted considerable attention
in the literature. Many efforts have been devoted to stuglyire controllability of thermoelastic
systems (see for instance [2, 4, 5, 10, 20, 25, 27]), undsgtiingaboundary conditions, and with
different choices of control on the boundary or in the cdndimmain. Some results are concerned
with models whose underlying dynamics are governed by &nadgmigroups (see for instance
[8, 11, 17] and references therein). For such systems, bea#ithe smoothing effects associated
with analyticity, the null controllability is a more natuiguestion than for the hyperbolic problems.
In fact for models which exhibit hyperbolic characteristithe notion of exact controllability is a
more natural property to study. In this case, the controkfimhas to be sufficiently large due
to the finite speed of related propagation. For a more carefuéw in some known results on
analogous problems, we refer to [22] and references thekgare, we want recall some results
of controllability for systems with memory. Leugering [2ftfoves the reachability for a plate
equation with a memory. Lasiecka [16] establishes exadralbability with boundary control for
Kirchkoff plates and viscoelastic Kirchkoff plates with ergeral memory kernel depending on time
and space variables. Kim [13, 14] studies controllabilitgldgems for systems with large memory
by a unique continuation property, which is proved by adeptind idea of Bardos, Lebeau, and
Rauch [7]. Barbu and lannelli [6] study the control for thatequation with memory. In particular,
they show the exact controllability of the one-dimensidlira@ar equation for a sufficiently large
interval of time. Pandolfi [24] consider Gurtin-Pipkin e¢joa with control in the Diriclet boundary
condition and he proves exact controllability as a consegai®f the known exact controllability
of the wave equation.

We briefly sketch the plan of this note. In Section 2 boundamntrollability for thermoealstic
systems with thermal memory is recalled. Section 3 is devtiethe internal controllability of
Euler-Bernoulli thermoelastic plate without memory. Iregysection we will introduce suitable
functional setting and notations which will be used in suettign. It has always to be understood
that there is a dependence mneven if, in order to simplify the notation, it will usuallyoh be
written.

2. Thermoelastic systemswith memory

In this section we are interested in the study of the exactrolebility of the thermoelastic
system with thermal memory. As well known, in the classiaaadr theory of thermo-elasticity,
the Fourier law is used to describe the heat conduction irbtuy (see, for instance [9]). The
classical theory has two main shortcomings. First, it ishlm#o account for the thermal memory
effect which may prevail in some materials, particularhaat temperatures. Subsequently, the
heat equation of this system is of parabolic type and prediat unrealistic result, namely that
a thermal disturbance at one point of the body is instantlyeiecrywhere in the body. These
observations yield that Fourier law is not a good model, amghsst to look for another more
general constitutive assumption relating the heat flux éattlermal history of the material. Then,
in the model under consideration the Fourier law for the Reatis replaced by the Gurtin-Pipkin
law [12], in order to consider the memory effect which mayvpikin some materials, particularly
at low temperatures. This produces the convolution terneappg in the second equation of (2.1)
that, in particular, entails finite propagation speed ofrfa disturbances, so that in this case the
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thermoelastic system is fully hyperbolic, which, in pautar, implies finite speed of propagation
of thermal disturbances (which is physically more real)stLetQ be a bounded, open, connected
subset ofR", n > 1, with smooth boundary = 9Q. AssumeT > 0 and setQ = (0,T) x Q ,

> =(0,T) xI'. The state system is as follows

Ut (t) — pAU(t) — (U+A) Odivu(t) + a 08(t) =0 in Q,
B(t) — (k+28)(t) +Bdivur(t) =0 inQ,
u(t) = f(t), (kx8)(t)=o0(t) onz,
u(0) =ug, w(0)=vo, 6(0)=80g inQ,

(2.1)

whereu is thedisplacement vectp® is therelative temperaturep, A are theLamé coefficients
satisfyingp > 0 andA 4+ p > 0. The subscript; denotes time derivative. The constantsp > 0
are coupling parameters depending on properties of therialatdy k8 we are denoting the

convolution product, that is
t

(k#0)(t) :/ K(t —1)8(1) dt.

0
In the above system we are assuming thdtas vanishing memory. The case of non-vanishing
memory is similar, since it can be considered as a furthengiunction in the right hand side.

Let us now discuss the exact controllability problem. Denoyv = (v1,...,vn) the unit
normal onl” directed towards the exterior &. Letx° € R" and

mx) =x—x2= (x —x0), To={xel: mx)-v(x) >0}, Zo=(0,T)xTlo.

The following statement holds:
Theorem 1. LetQ be a open, bounded, connected subs@&'lwith boundany™ of class c.

(a) Suppose that(k) € H?(R*) is a positive function anfl is a positive constant. Then, there exist
g > 0and T > 0 such that for any initial and final stat@ig, Vo, 8o), (ur,Vvr,087) € [L3(Q)]" x
[H™1(Q)]" x H~1(Q) there exists a boundary controf,g) € [L?(Zo)]" x L2(Zp) such that the
solution of systen{2.1) satisfies

u(T)=ur, w(T)=vr, O(T)=6r, (2:2)
for any T > To, provided that|K'[| g+ + B < €.

(b) Assume that memory kernel satisfies conditions
KOl _ 1
ko 1+/ap

The coupling parameters, 3 are chosen such that condition

ke HA(R")NC3(RY), ko=k(0)>0,

H+A
(n—1)
is satisfied when & 2. Then, there existgT> 0 such that for any T Ty and for any initial and
final state(Uo, Vo, 80), (U, vr,07) € [L3(Q)]" x [H71(Q)]" x H71(Q) there exists a boundary
control (f,g) € [L2(Z)]" x L2(Z) such that the solution of syste@11) satisfieq(2.2).

ap < (2.3)

014 /4



Control problems in thermoelasticity Maria Grazia Naso

Remarki.

(a) Inthe case considered by Theorem 1-(a), we study theat@mbblem for thermoelastic model
with memory by boundary mechanical and thermal controlstvioein be applied also only in
a partly of the boundary™. The ‘strong’ assumption on the memory kernel is such tlsat it
size, in a suitable norm, has to be sufficiently small. Thegdore follows a direct approach:
first the adjoint system is evaluated; subsequently, tleetdand inverse inequalities are shown.
The hypothesis on the size of the relaxation function isireguo obtain, by energy estimates
and multipliers techniques, the inverse inequality, wigoles the exact controllability result
[22].

(b) In the case proposed by Theorem 1-(b) we use all over l@vynahechanical and thermal
controls, but no restriction on the size of memory kerneegpuired. The inverse inequality is
shown by contradiction by means of the introduction of alkesd kernel and the application
of a unigue continuation property [23].

3. Euler-Bernoulli thermoelastic plates without memory

In this section we investigate the null controllability o@ileér Bernoulli thermoelastic plates
without memory when the control (heat source) acts in therthkequation. The plate, we consider
here, is derived in the light of [15]. Transverse shear ¢fface neglected (Euler-Bernoulli model),
and the plate is hinged on its edge. In addition to interndlexternal heat source, the temperature
dynamics are driven by internal frictional forces causedt®sy motion of the plate. The latter
connection is expressed by the second law of thermodynaimidsreversible processes, which
relates the entropy to the elastic strains. AccountingHerrhal effects, we assume that the heat
flux law involves only the temperature gradient by the Fouee.

Let Q be a bounded, open, connected subs@&%fwith aC boundary ando any open subset
of Q. LetT >0and seQ = (0,T) xQ, %= (0,T) x 0Q. We consider a model which describes
the small vibrations of a homogeneous, elastically andri#ly isotropic Euler-Bernoulli plate,
under the influence of a control functidne L2((0, T) x w). In absence of exterior forces, and with
hinged mechanical and Dirichlet thermal boundary cond#jahe system we are going to study is
the following one

Ut (t) +A%u(t) +A6(t) =0 inQ,
B(t) — AB(t) — AU (t) = Yo F(t) i Q,
ut) =0, Au(t) =0 onz, (3.2)
B(t)=0 onz,
u(0) = up, u(0) =ug, 6(0) =6y on Q.

Here,u is thevertical deflectiorof the plate and is thevariation of temperaturef the plate with
respect to its reference temperature. The subse¢dginotes time derivative, is the characteristic
function ofw, andug, uz, By are initial data in a suitable space.
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Two results are obtained (see [8]). Firstly, we study thesaglsenw = Q, and we show the
null controllability, or equivalently, the controllalii to trajectories at any tim& > 0. Then, we
prove the same result in the case- Q. To do this, letH = (H*(Q) NH}(Q)) x LA(Q) x L%(Q)
be the Hilbert space equipped with the inner product

T
<Z;|_,22>H = / (AulAu2+v1v2+6162)dx, wherez = [Ui,Vi,ei] = 1,2.
JQ

-
The induced norm is denoted Hly ||n. Settingv(t) = u(t) andz(t) = [u(t),v(t),e(t)} 2o =

.
‘[uo,vo,eo} , problem (3.1) can be rewritten as an abstract linear deolwgquation inH of the
orm

z=Az+Bf,
(3.2
20)=2€H,
where we set the operatér: D(A) — H by
O 1 0
A= | —-A%20 -A (3.3)
0O AA

with domainD(A) = {z€ H : Au,v,0 € H(Q) NHg(Q) }, and the control operatd®: L?(w) — H
T
byBf = [0, o, f } . GivenT > 0, the problem of the null controllability of system (3.2)sists

in to prove that, for any, € H, there exists a contral € L?((0,T) x w) such that the solution
Z(t; 20, f) of (3.2) satisfiesz(T; 2, f) = 0. This property is equivalent to (see for instance [26],
Theorem 2.6, p. 213): there exists a positive constarguch that

1€% T yolI7 SCT/O 1B* € o7z, dt,  for anyyo € H. (3.4)

Note that the term in the right-hand side of (3.4) depend$iemorm inL?(w).
We compute now

0 -10
A= A2 0 A,
0 -AA

with domainD(A*) = D(A), andB* = [O 0l } . The adjoint system with respect to (3.1) is

O + A% +Aw=0 inQ,
W —Aw— Ay =0 inQ,
(3.5)
=0 0A0=0,w=0 onz,
$(0) = do, $:(0) = d1, w(0) =wp on Q.
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Its solution can be written as

6000w | = 00,010 36)

and -
B e [¢0,¢1,W0] = Ww(t).

Condition (3.4) is equivalent to require that there exigt®sitive constanCr such that

.
180 (T) 120 + 19t (T 120 + IW(T) P2 SCT/O IW(E) P2 i, (3.7)

for any solution (3.6) of system (3.5).
Then, our main result is

Theorem 2. Problem(3.1)is controllable to trajectories at any time ¥ 0 on the space H within
the class of B((0, T) x w)-controls, when

(@) w=Q;
(b) wc Q.

Remark2.

(&) In the case of Theorem 2-(a), an analogous result wagmebtéy Lasiecka and Triggiani in
[17]. In [8] our technique is supported by introducing a qgqaid function depending on the
time. Multipliers method is applied to construct this fuont[1, 2, 3].

(b) In the case of Theorem 2-(b), by applying an iterativehodtand the observability estimates
on the eigenfunctions of the Laplacian operator due to Lela@a Robbiano in [19] (see also
[20]), we show [8] that system (3.1) is null controllable aydime T > 0. In our proof, the
analyticity property of semigroup associated to the thedamiic system (recall there is no
rotational inertia term, see Lasiecka and Triggiani [181¢d the commutative property of the
operators, which comes from the hinged boundary conditiarescrucial.

(c) In[11]the analysis and construction of the minimizatiocedure related to the controllability
to trajectories for problem (3.1) are considered by appiyiath penalty and duality arguments.
Numerical approximation of the optimality system is catrmut through the use of spectral
element methods in space and finite difference schemesén Nlmmerical results obtained on
several test cases are shown.
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