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1. Introduction

We address some results related to the controllability of thermoelastic systems. What means
to study a controllability problem? Consider an evolution system described in terms of Partial
Differential Equations. We are allowed to act on the state ofthe system by means of a suitable
choice of controls (source terms of the system or boundary conditions): given a time interval
t ∈ (0,T), and initial and final states in a Hilbert space, we look for a control such that the solution
matches both the initial state at timet = 0 and the final one at timet = T.

In this note we are interest to present two classes of problems: thermoelastic systems of
memory-type dealing with ‘hyperbolic-like’ dynamics, andEuler-Bernoulli thermoelastic plates
without memory, where the described model is non-hyperbolic and associated with analyticity of
the underlying generator. For these systems we resume our results obtained in the controllabil-
ity context [8, 11, 22, 23]. We start to recall some definitions about this subject. Assume thatH
andU are Hilbert spaces andA : H → H andB : U → H are linear operators. Consider the linear
differential system

d
dt

z(t) = Az(t)+B f(t), z(0) = z0 ∈ H, t ≥ 0. (1.1)

Let us introduce the set of reachable final states as

R(T;z0) = {z(T) : f ∈ L2(0,T;U)},

whereT > 0. We can list the following types of controllability:

(a) Approximate controllability: system (1.1) is said to be approximately controllable at timeT if
the set of reachable statesR(T;z0) is dense inH for everyz0 ∈ H.

(b) Exact controllability: system (1.1) is said to be exactly controllable at time T ifR(T;z0) = H
for all z0 ∈ H. That is, system (1.1) can be driven from any state to any state belonging to the
same space of states where the system evolves.

(c) Null controllability: system (1.1) is said to be null controllable at timeT if 0 ∈ R(T;z0) for all
z0 ∈ H. This means that an arbitrary state can be transferred to thenull state at timeT.

When system (1.1) is reversible in time, null and exact controllability are equivalent notions. Every
exactly controllable system is null and approximately controllable too. In general, viceversa is not
true (see, for instance, the heat equation with distributedcontrol in the domainΩ [26]). Note that
null controllability is a physically interesting notion since the null state is an equilibrium point for
system (1.1), and for linear systems this is equivalent to require the controllability to trajectories.
Recall that system (1.1) is said to becontrollable to trajectoriesat timeT > 0 if for any initial data
z0 in a suitable spaceH, there exists a control functionf ∈ L2(0,T;U) such that the corresponding
solutionzof (1.1) is defined on[0,T] and satisfies

z(T) = ẑ(T),

whereẑ is a solution of (1.1) defined on[0,T] associated to given initial datâz0 in the same space
H and a given function̂f ∈ L2(0,T ;U).
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Controllability of thermoelastic systems is a subject which has attracted considerable attention
in the literature. Many efforts have been devoted to studying the controllability of thermoelastic
systems (see for instance [2, 4, 5, 10, 20, 25, 27]), under varying boundary conditions, and with
different choices of control on the boundary or in the control domain. Some results are concerned
with models whose underlying dynamics are governed by analytic semigroups (see for instance
[8, 11, 17] and references therein). For such systems, because of the smoothing effects associated
with analyticity, the null controllability is a more natural question than for the hyperbolic problems.
In fact for models which exhibit hyperbolic characteristics, the notion of exact controllability is a
more natural property to study. In this case, the control time T has to be sufficiently large due
to the finite speed of related propagation. For a more carefulreview in some known results on
analogous problems, we refer to [22] and references therein. Here, we want recall some results
of controllability for systems with memory. Leugering [21]proves the reachability for a plate
equation with a memory. Lasiecka [16] establishes exact controllability with boundary control for
Kirchkoff plates and viscoelastic Kirchkoff plates with a general memory kernel depending on time
and space variables. Kim [13, 14] studies controllability problems for systems with large memory
by a unique continuation property, which is proved by adapting and idea of Bardos, Lebeau, and
Rauch [7]. Barbu and Iannelli [6] study the control for the heat equation with memory. In particular,
they show the exact controllability of the one-dimensionallinear equation for a sufficiently large
interval of time. Pandolfi [24] consider Gurtin-Pipkin equation with control in the Diriclet boundary
condition and he proves exact controllability as a consequence of the known exact controllability
of the wave equation.

We briefly sketch the plan of this note. In Section 2 boundary controllability for thermoealstic
systems with thermal memory is recalled. Section 3 is devoted to the internal controllability of
Euler-Bernoulli thermoelastic plate without memory. In every section we will introduce suitable
functional setting and notations which will be used in such section. It has always to be understood
that there is a dependence onx, even if, in order to simplify the notation, it will usually not be
written.

2. Thermoelastic systems with memory

In this section we are interested in the study of the exact controllability of the thermoelastic
system with thermal memory. As well known, in the classical linear theory of thermo-elasticity,
the Fourier law is used to describe the heat conduction in thebody (see, for instance [9]). The
classical theory has two main shortcomings. First, it is unable to account for the thermal memory
effect which may prevail in some materials, particularly atlow temperatures. Subsequently, the
heat equation of this system is of parabolic type and predicts an unrealistic result, namely that
a thermal disturbance at one point of the body is instantly felt everywhere in the body. These
observations yield that Fourier law is not a good model, and suggest to look for another more
general constitutive assumption relating the heat flux to the thermal history of the material. Then,
in the model under consideration the Fourier law for the heatflux is replaced by the Gurtin-Pipkin
law [12], in order to consider the memory effect which may prevail in some materials, particularly
at low temperatures. This produces the convolution term appearing in the second equation of (2.1)
that, in particular, entails finite propagation speed of thermal disturbances, so that in this case the
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thermoelastic system is fully hyperbolic, which, in particular, implies finite speed of propagation
of thermal disturbances (which is physically more realistic). LetΩ be a bounded, open, connected
subset ofRn, n ≥ 1, with smooth boundaryΓ = ∂Ω. AssumeT > 0 and setQ = (0,T)×Ω ,
Σ = (0,T)×Γ . The state system is as follows

utt(t)−µ∆u(t)− (µ+ λ)∇divu(t)+ α∇θ(t) = 0 in Q,

θt(t)− (k∗∆θ)(t)+ βdivut(t) = 0 in Q,

u(t) = f (t), (k∗θ)(t) = g(t) on Σ,

u(0) = u0, ut(0) = v0, θ(0) = θ0 in Ω,

(2.1)

whereu is thedisplacement vector, θ is the relative temperature, µ, λ are theLamé coefficients
satisfyingµ > 0 andλ + µ > 0. The subscript·t denotes time derivative. The constantsα, β > 0
are coupling parameters depending on properties of the material. By k∗ θ we are denoting the
convolution product, that is

(k∗θ)(t) =
Z t

0
k(t − τ)θ(τ) dτ.

In the above system we are assuming thatθ has vanishing memory. The case of non-vanishing
memory is similar, since it can be considered as a further given function in the right hand side.

Let us now discuss the exact controllability problem. Denote by ν = (ν1, . . . ,νn) the unit
normal onΓ directed towards the exterior ofΩ. Let x0 ∈ R

n and

m(x) = x−x0 = (xi −x0
i ), Γ0 = {x∈ Γ : m(x) ·ν(x) > 0} , Σ0 = (0,T)×Γ0.

The following statement holds:

Theorem 1. Let Ω be a open, bounded, connected subset inR
n with boundaryΓ of class C2.

(a) Suppose that k(t)∈H2(R+) is a positive function andβ is a positive constant. Then, there exist
ε > 0 and T0 > 0 such that for any initial and final state(u0,v0,θ0),(uT ,vT ,θT) ∈ [L2(Ω)]n×

[H−1(Ω)]n×H−1(Ω) there exists a boundary control( f ,g) ∈ [L2(Σ0)]
n×L2(Σ0) such that the

solution of system(2.1)satisfies

u(T) = uT , ut(T) = vT , θ(T) = θT , (2.2)

for any T> T0, provided that‖k′‖H1(R+) + β < ε.

(b) Assume that memory kernel satisfies conditions

k∈ H2(R+)∩C2(R+), k0 = k(0) > 0,
|k′(0)|

k0
<

1

1+
√

αβ
.

The coupling parametersα, β are chosen such that condition

αβ <
µ+ λ

(n−1)2 (2.3)

is satisfied when n≥ 2. Then, there exists T0 > 0 such that for any T> T0 and for any initial and
final state(u0,v0,θ0),(uT ,vT ,θT) ∈ [L2(Ω)]n× [H−1(Ω)]n×H−1(Ω) there exists a boundary
control ( f ,g) ∈ [L2(Σ)]n×L2(Σ) such that the solution of system(2.1)satisfies(2.2).
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Remark1.

(a) In the case considered by Theorem 1-(a), we study the control problem for thermoelastic model
with memory by boundary mechanical and thermal controls which can be applied also only in
a partΓ0 of the boundaryΓ. The ‘strong’ assumption on the memory kernel is such that its
size, in a suitable norm, has to be sufficiently small. The procedure follows a direct approach:
first the adjoint system is evaluated; subsequently, the direct and inverse inequalities are shown.
The hypothesis on the size of the relaxation function is required to obtain, by energy estimates
and multipliers techniques, the inverse inequality, whichgives the exact controllability result
[22].

(b) In the case proposed by Theorem 1-(b) we use all over boundary mechanical and thermal
controls, but no restriction on the size of memory kernel is required. The inverse inequality is
shown by contradiction by means of the introduction of a resolvent kernel and the application
of a unique continuation property [23].

3. Euler-Bernoulli thermoelastic plates without memory

In this section we investigate the null controllability of Euler Bernoulli thermoelastic plates
without memory when the control (heat source) acts in the thermal equation. The plate, we consider
here, is derived in the light of [15]. Transverse shear effects are neglected (Euler-Bernoulli model),
and the plate is hinged on its edge. In addition to internal and external heat source, the temperature
dynamics are driven by internal frictional forces caused bythe motion of the plate. The latter
connection is expressed by the second law of thermodynamicsfor irreversible processes, which
relates the entropy to the elastic strains. Accounting for thermal effects, we assume that the heat
flux law involves only the temperature gradient by the Fourier law.

Let Ω be a bounded, open, connected subset ofR
2, with aC∞ boundary andω any open subset

of Ω. Let T > 0 and setQ = (0,T)×Ω , Σ = (0,T)× ∂Ω. We consider a model which describes
the small vibrations of a homogeneous, elastically and thermally isotropic Euler-Bernoulli plate,
under the influence of a control functionf ∈ L2((0,T)×ω). In absence of exterior forces, and with
hinged mechanical and Dirichlet thermal boundary conditions, the system we are going to study is
the following one






utt(t)+ ∆2u(t)+ ∆θ(t) = 0 in Q,

θt(t)−∆θ(t)−∆ut(t) = χω f (t) in Q,

u(t) = 0, ∆u(t) = 0 onΣ,

θ(t) = 0 onΣ,

u(0) = u0, ut(0) = u1, θ(0) = θ0 on Ω.

(3.1)

Here,u is thevertical deflectionof the plate andθ is thevariation of temperatureof the plate with
respect to its reference temperature. The subscript·t denotes time derivative,χω is the characteristic
function ofω, andu0, u1, θ0 are initial data in a suitable space.
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Two results are obtained (see [8]). Firstly, we study the case whenω ≡ Ω, and we show the
null controllability, or equivalently, the controllability to trajectories at any timeT > 0. Then, we
prove the same result in the caseω ⊂ Ω. To do this, letH =

(
H2(Ω)∩H1

0(Ω)
)
×L2(Ω)×L2(Ω)

be the Hilbert space equipped with the inner product

〈z1,z2〉H =
Z

Ω
(∆u1∆u2 +v1v2 + θ1θ2)dx, wherezi =

[
ui ,vi ,θi

]⊤
, i = 1,2.

The induced norm is denoted by‖ · ‖H . Settingv(t) = ut(t) andz(t) =
[

u(t),v(t),θ(t)
]⊤

, z0 =
[

u0,v0,θ0

]⊤
, problem (3.1) can be rewritten as an abstract linear evolution equation inH of the

form
{

zt = Az+B f,

z(0) = z0 ∈ H,

(3.2)

where we set the operatorA : D(A) → H by

A =





0 I 0

−∆2 0 −∆

0 ∆ ∆



 (3.3)

with domainD(A) =
{

z∈ H : ∆u,v,θ ∈ H2(Ω)∩H1
0(Ω)

}
, and the control operatorB : L2(ω)→H

by B f =
[

0,0, f
]⊤

. GivenT > 0, the problem of the null controllability of system (3.2) consists

in to prove that, for anyz0 ∈ H, there exists a controlf ∈ L2((0,T)×ω) such that the solution
z(t;z0, f ) of (3.2) satisfiesz(T;z0, f ) = 0. This property is equivalent to (see for instance [26],
Theorem 2.6, p. 213): there exists a positive constantCT such that

‖eA∗T y0‖
2
H ≤CT

Z T

0
‖B∗eA∗t y0‖

2
L2(ω)dt , for anyy0 ∈ H. (3.4)

Note that the term in the right-hand side of (3.4) depends on the norm inL2(ω).
We compute now

A∗ =





0 −I 0

∆2 0 ∆

0 −∆ ∆



 ,

with domainD(A∗) = D(A), andB∗ =
[

0 0 I
]
. The adjoint system with respect to (3.1) is






ϕtt + ∆2ϕ+ ∆w= 0 in Q,

wt −∆w−∆ϕt = 0 in Q,

ϕ = 0, ∆ϕ = 0, w = 0 onΣ,

ϕ(0) = ϕ0, ϕt(0) = ϕ1, w(0) = w0 on Ω.

(3.5)
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Its solution can be written as
[

ϕ(t),ϕt(t),w(t)
]⊤

= eA∗t
[

ϕ0,ϕ1,w0

]⊤
, (3.6)

and

B∗eA∗t
[

ϕ0,ϕ1,w0

]⊤
= w(t).

Condition (3.4) is equivalent to require that there exists apositive constantCT such that

‖∆ϕ(T)‖2
L2(Ω) +‖ϕt(T)‖2

L2(Ω) +‖w(T)‖2
L2(Ω) ≤CT

Z T

0
‖w(t)‖2

L2(ω)dt, (3.7)

for any solution (3.6) of system (3.5).
Then, our main result is

Theorem 2. Problem(3.1) is controllable to trajectories at any time T> 0 on the space H within
the class of L2((0,T)×ω)-controls, when

(a) ω ≡ Ω;

(b) ω ⊂ Ω.

Remark2.

(a) In the case of Theorem 2-(a), an analogous result was obtained by Lasiecka and Triggiani in
[17]. In [8] our technique is supported by introducing a quadratic function depending on the
time. Multipliers method is applied to construct this function [1, 2, 3].

(b) In the case of Theorem 2-(b), by applying an iterative method and the observability estimates
on the eigenfunctions of the Laplacian operator due to Lebeau and Robbiano in [19] (see also
[20]), we show [8] that system (3.1) is null controllable at any timeT > 0. In our proof, the
analyticity property of semigroup associated to the thermoelastic system (recall there is no
rotational inertia term, see Lasiecka and Triggiani [18]),and the commutative property of the
operators, which comes from the hinged boundary conditions, are crucial.

(c) In [11] the analysis and construction of the minimization procedure related to the controllability
to trajectories for problem (3.1) are considered by applying both penalty and duality arguments.
Numerical approximation of the optimality system is carried out through the use of spectral
element methods in space and finite difference schemes in time. Numerical results obtained on
several test cases are shown.
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