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1. Introduction

The paper describes a work in progress aiming to give sufficient conditions for a bang-singular
Pontryagin extremal to be a strong local optimizer for the Mayer Problem

minimize α(ξ(0))+β(ξ(Tf ))

subject to

ξ̇(t) = f0(ξ(t))+u f1(ξ(t)) t ∈ [0,Tf ]

ξ(0) ∈ N0 , ξ(Tf ) ∈ N f ,

u ∈ [−1,1] .

The state space is a smooth n−dimensional manifold M, and f0, f1 : M → T M are smooth vector
fields, by smooth we mean C∞.

Suppose to have a Pontryagin normal extremal, i.e. a couple (ξ̂, û), with associated adjoint
covector

λ̂ : t ∈ [0,Tf ] → λ̂(t) ∈ T ∗M,

satisfying Pontryagin Maximum Principle (PMP). Recall that

πλ̂(t) = ξ̂(t), ∀t ∈ [0,Tf ],

where π : T ∗M → M is the canonical projection, and λ̂ is a solution of the Hamiltonian system
associated to the reference Hamiltonian - with appropriate transversality conditions - and it satisfies
the maximization property. To be more precise, if we denote by Hi, i = 0,1, the Hamiltonian
function associated to the vector field fi, that is

Hi : ` ∈ T ∗M → 〈` , fi(π`)〉, i = 0,1,

then λ̂ satisfies the Hamiltonian system associated to

Ĥt = H0 + û(t)H1,

and

λ̂(0) = dα(ξ̂(0)) on T̂ξ(0)
N0 , λ̂(Tf ) = −dβ(ξ̂(Tf )) on T̂ξ(Tf )

N f ,

û(t)H1(̂λ(t)) = max
u∈[−1,1]

uH1(̂λ(t)) a.e. t ∈ [0,Tf ].

Therefore if H1(̂λ(t)) 6= 0, then

û(t) = sgn
(

H1(̂λ(t))
)

.

An arc of an extremal is called "bang", if the associated control is either 1 or −1 and it is called
singular if H1 is zero on the associated adjoint covector.

This paper is part of a general research program aiming to extend the use of Hamiltonian
methods in the study of second order sufficient conditions for ξ̂ to be a strong local minimizer for
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the problem. Here strong local optimizer means optimal with respect to a neighborhood of ξ̂ in
C([0,Tf ],M), independently on the value of the control.

If ξ̂ is bang-bang with a finite number of switching times, say t1, . . . , tr, then it is possible to
define a second variation J′′ associated to the finite-dimensional problem obtained by moving the
switching times. In this case PMP implies

H1(̂λ(ti)) = 0 i = 1, . . . ,r,

and, under the strict bang-bang Legendre condition

〈̂λ(ti) , [ f0, f1](ξ̂(ti))〉 6= 0 i = 1, . . . ,r ,

J′′ > 0 is a sufficient condition for the strong local optimality of the trajectory, see [2] and the
reference therein.

If ξ̂ is totally singular, then it is possible to define an extended second variation, whose coer-
civity is again a sufficient condition for the strong local optimality of the trajectory, see [6].

Here we study the case when ξ̂ is the concatenation of a bang and a singular arc, namely we
suppose that there is Tb ∈ (0,Tf ) such that

û(t) ≡ 1 ∀ t ∈ (0,Tb) ,

û(t) ∈ (−1,1) ∀ t ∈ (Tb,Tf ) .

Nothing changes if the bang control is identically equal to −1.

Generally speaking, the Hamiltonian approach to sufficient conditions to strong optimality
consists in using the coercivity of a suitable second variation to construct a field of non-intersecting
state extremals (super-extremals) covering a neighborhood of the given trajectory. Such a field is
obtained by projecting on the state manifold the flow associated to the maximized Hamiltonian
Hmax (of a Hamiltonian H ≥Hmax) emanating from a suitable horizontal Lagrangean sub-manifold.
The sub-manifold can be obtained, if the second variation is coercive, adding a suitable penalty
which allows to reduce the problem to another one without constraints on the initial point. Moreover
the field of extremals can be constructed via the coercivity of the second variation of the free-fixed
problem. In the case of variable final point, the existence of a field of non-intersecting extremals
reduces the problem to a finite dimensional one and further conditions, coming from the coercivity
of the second variation, give the result.

The described above Hamiltonian methods suggest to analyze, as a first step, the case when
the initial point is free, therefore in this paper we study the problem

minimize α(ξ(0))+β(ξ(Tf )) (1.1)

subject to

ξ̇(t) = f0(ξ(t))+u(t) f1(ξ(t)) t ∈ [0,T ] ,

ξ(0) ∈ M , ξ(Tf ) ∈ N f ,

u(t) ∈ [−1,1] .

(1.2)
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A consequence of PMP is that

H1(̂λ(t)) = 〈̂λ(t) , f1(ξ(t))〉 ≡ 0 ∀ t ∈ [Tb,Tf ] , (1.3)

H01(̂λ(t)) = 〈̂λ(t) , [ f0, f1](ξ̂(t))〉 ≡ 0 ∀ t ∈ [Tb,Tf ] , (1.4)

where equation (1.4) is obtained from (1.3) differentiating with respect to t.
We state the following regularity assumptions

Assumption 1. The bang arc is regular in the interval [0,Tb), i.e.

H1(̂λ(t)) = 〈̂λ(t) , f1(ξ̂(t))〉 > 0 ∀ t ∈ [0,Tb) . (1.5)

Differentiating with respect to time at t = Tb and using (1.3) and (1.4), we obtain

〈̂λ(Tb) , ([ f0, [ f0, f1]]+ [ f1, [ f0, f1]]) (ξ̂(Tb))〉 ≥ 0 ,

and we strengthen the condition requiring

Assumption 2.
〈̂λ(Tb) , ([ f0, [ f0, f1]]+ [ f0, [ f0, f1]]) (ξ̂(Tb))〉 > 0 .

The optimality of the reference trajectory implies that the singular arc is optimal for the following
problem

minimize α◦ exp
(
−Tb f +

)
(ξ(Tb))+β(ξ(Tf )) (1.6)

subject to

ξ̇(t) = f0(ξ(t))+u(t) f1(ξ(t)) t ∈ [Tb,Tf ]

ξ(Tb) ∈ M , ξ(Tf ) ∈ N f ,

u(t) ∈ [−1,1] .

(1.7)

Remark that the extended second variation of this problem, defined in [6], has to be non-negative if
the adjoint covector is unique up to a positive constant. Therefore a natural assumption is to require
that it is coercive. This last condition ensures that the singular arc is optimal for the problem (1.6)
- (1.7).

Allowing the trajectory to vary only on [0,Tb], we obtain that the bang arc is optimal for the
free-fixed sub-problem

minimize α(ξ(0)) (1.8)

subject to

ξ̇(t) = f0(ξ(t))+u(t) f1(ξ(t)) t ∈ [0,Tb]

ξ(0) ∈ M , ξ(Tb) = x̂b ,

u(t) ∈ [−1,1] .

(1.9)

It is easily seen that this implies
L f1L f1αs(x̂b) ≥ 0 .
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Remark that the strict version of the above inequality is a consequence of the coercivity of the
extended second variation of problem (1.6) - (1.7), see Condition 1 in Section 3. Moreover As-
sumptions 1 - 2 and L f1L f1αs(x̂b) > 0 are sufficient conditions for the local optimality of the bang
arc with respect to problem (1.8) - (1.9), see Proposition 2.

Our sufficient conditions for problem (1.1) - (1.2) include an extra regularity assumption:

Assumption 3. There is a neighborhood V of ξ̂(Tb) in M such that, if y ∈V and
L f1(α◦ exp−Tb f +)(y) = 0, then

L[ f0, f1](α◦ exp−Tb f +)(y) ≤ 0 .

The main result of the paper is the following:

Theorem 1. Assume (ξ̂(·), û(·)) is a bang-singular Pontryagin extremal of the optimal control
problem (1.1) - (1.2). Let Assumptions 1, 2 and 3 be satisfied. If the extended second variation
of the restricted problem (1.6) - (1.7), defined in (3.3) - (3.4), is coercive along the singular arc,
then (ξ̂(·), û(·)) is a strict strong local minimizer.

2. Notation and preliminary remarks

We denote the reference vector field by f̂ , i.e.

f̂t =

{
f + ≡ f0 + f1 if t ∈ [0,Tb]

f0 + û(t) f1 if t ∈ [Tb,Tf ]
(2.1)

and its flow from time 0 by
Ŝ : (x, t) 7→ Ŝt(x) .

We denote the iterated Lie brackets of the vector fields f0 and f1 by

fi1i2...ik ≡ [ fi1 , [. . . [ fik−1 , fik ] . . . ] i j ∈ {0,1} , j = 1, . . . ,k ,

and the associated Hamiltonian functions by

Hi1i2...ik : ` 7→ 〈` , fi1i2...ik(π`)〉 , j = 1, . . . ,k .

The reference time-dependent Hamiltonian function is

Ĥt =

{
H0 +H1 t ∈ [0,Tb]

H0 + û(t)H1 t ∈ [Tb,Tf ]
,

while the maximized Hamiltonian

H : ` 7→ max{H0(`)+uH1(`) , u ∈ [−1,1]}

is given by

H : ` 7→





(H0 +H1)(`) H1(`) > 0

H0(`) = Ĥt(`) H1(`) = 0

(H0 −H1)(`) H1(`) < 0 .
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For each, possibly time-dependent, Hamiltonian function Ht , we denote the associated Hamiltonian
vector field by

−→
H t : T ∗M → T T ∗M .

With this notation λ̂ : [0,Tf ] → T ∗M is solution of

λ̇(t) =
−→
Ĥ t(λ(t)) on [0,Tf ]

and the transversality conditions are

λ̂(0) = dα(x̂0) , λ̂(Tf ) = −dβ(x̂ f ) on Tx̂ f N f ,

where x̂0 ≡ ξ̂(0) and x̂ f ≡ ξ̂(Tf ). Without loss of generality we may assume

λ̂(Tf ) = −dβ(x̂ f ) on Tx̂ f M. (2.2)

Let us also define

̂̀
0 ≡ λ̂(0) , ̂̀

b ≡ λ̂(Tb) , ̂̀
f ≡ λ̂(Tf ) , x̂b ≡ ξ̂(Tb) = π̂̀

b.

Since the assumptions of Theorem 1 imply the strict generalized Legendre condition (SGLC):

H101(̂λ(t)) > 0 , ∀ t ∈ [Tb,Tf ], (2.3)

see Remark 1 in Section 3, then we can describe the following geometric picture near the adjoint
covector. Define

Σ = {` ∈ T ∗M : H1(`) = 0} ,

S = {` ∈ T ∗M : H1(`) = H01(`) = 0 , H101(`) > 0} ,

then λ̂([Tb,Tf ]) ⊂ S ⊂ Σ,
−→
H 1 is tangent to Σ and transversal to S and

−→
H 01 is transversal to Σ.

Moreover, differentiating (1.4), we get

H001(̂λ(t))+ û(t)H101(̂λ(t)) = 0 , ∀ t ∈ [Tb,Tf ] ,

hence
û(t) =

−H001

H101
(̂λ(t)) , ∀ t ∈ [Tb,Tf ].

3. The singular arc

We now consider sub-problem (1.6) - (1.7), namely we consider only the admissible couples
(ξ,u) such that u(t) = û(t) = 1 for any t ∈ [0,Tb]. For this problem we use the results of [6].

Shifting time, denote

Ts = Tf −Tb ,

ûs : t ∈ [0,Ts] → û(t +Ts) ,

ξ̂s : t ∈ [0,Ts] → ξ̂(t +Ts) ,

αs : = exp−Tb f + ,

λ̂s : t ∈ [0,Ts] → λ̂(t +Ts)

β̂s : = β◦ ŜTf ◦ Ŝ−1
Tb

,

γs : = αs + β̂s .
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By the properties of the adjoint covector, using (2.2), we get dγs(x̂b) = 0, so that

γ′′s ≡ d2γs(x̂b)

is a well defined quadratic form on T̂xb
M.

With the above stated notations, the sub-problem (1.6) - (1.7) is equivalent to

minimize αs(ξ(0))+β(ξ(Ts)) (3.1)

subject to

ξ̇(t) = f0(ξ(t))+u(t) f1(ξ(t)) t ∈ [0,Ts]

ξ(0) free, ξ(Ts) ∈ N f ,

u(t) ∈ [−1,1]

(3.2)

with reference couple (ξ̂s, ûs) and adjoint covector λ̂s. Moreover letting

N̂ f = ŜTb ◦ Ŝ−1
Tf

(N f ) ,

ht(x) =
(
expTb f +

)−1
∗

(
Ŝt+Tb

)−1

∗
f1(Ŝt+Tb ◦ exp(−Tb f +)(x)) t ∈ [0,Ts] ,

the second variation of problem (3.1), (3.2), as defined in [1], is given by the quadratic form on
Tx̂b

M×L2([0,Ts]) defined below.

Proposition 1. For any δe = (δx,v) ∈ Tx̂b
M × L2([0,Ts]) the second order approximation of the

cost is

J′′s [δe]2 =
1
2

γ′′s [δx]2 +
Z Ts

0
v(t)Lη(t)Lht β̂s(x̂b)dt

where η satisfies

η̇(t) = v(t)ht(x̂b) ,

η(0) = δx , η(T ) ∈ Tx̂b
N̂ f .

Remark that J′′s does not depend on the choice of β with the property (2.2).
After the transformation

Φ : v ∈ L2([0,Ts]) → (w0,w) =

(
Z Ts

0
v(s)ds, t →

Z Ts

t
v(s)ds

)
∈ R×L2([0,Ts])

we obtain an equivalent formulation for the second variation. Since Φ is dense and continuous,
we consider its extension to all the space Tx̂b

M ×R× L2([0,Ts], which we call extended second
variation J′′e , and which is given by

J′′e [δese]
2 =

1
2

γ′′s (x̂b)[δx]2 +
w2

0

2
L f1L f1 β̂s(x̂b)+w0 LδxL f1 β̂s(x̂b)

+
1
2

Z Ts

0
w2(t)H101(̂λs(t))dt +

Z Ts

0
Lς(t)Lw(t)ḣt

β̂s(x̂s)dt
(3.3)
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where ς satisfies

ς(0) = δx+w0 f1(x̂b)

ς̇(t) = w(t)ḣt(x̂b) t ∈ [0,Ts]

ς(Ts) ∈ Tx̂b
N̂ f .

(3.4)

Remark that

ḣt =
(
expTb f +

)−1
∗

(
Ŝt+Tb

)−1

∗
[ f0, f1]◦ Ŝt+Tb ◦ exp(−Tb f +) t ∈ [0,Ts] .

It is not difficult to prove, see also [6], that the Assumption “J′′e is coercive” is equivalent to the
following two conditions:

Condition 1. L f1L f1αs(x̂b) > 0.

Condition 2. The coercivity of the quadratic form

J′′[δy,w0,w] =
1
2

γ′′s (x̂b)[δy]2 +
w2

0

2
L f1L f1 β̂s(x̂b)+w0LδyL f1 β̂s(x̂b)

+
1
2

Z Ts

0
w2(t)H101(̂λs(t))dt +

Z Ts

0
Lς(t)Lw(t)ḣt

β̂s(x̂b)dt
(3.5)

where δy and ς satisfy

LδyL f1αs(x̂b) = 0

ς(0) = δy+w0 f1(x̂b) ,

ς̇(t) = w(t)ḣt(x̂b) t ∈ [0,Ts]

ς(Ts) ∈ Tx̂b
N̂ f .

(3.6)

Remark 1. Condition 1 implies that J ′′ is an accessory linear-quadratic problem on Tx̂b
M. More-

over the coercivity of J′′ implies SGLG

H101(̂λs(t)) > 0 ∀t ∈ [0,Ts].

Remark 2. Since the initial point of our problem is free, then the normalized adjoint covector is
unique, hence the conditions

L f1L f1αs(x̂b) ≥ 0 and J′′ ≥ 0

are necessary for the optimality of ξ̂s in problem (3.1) - (3.2), and hence in the original problem.

If we define
Ms ≡

{
x ∈ M : L f1αs(x) = 0

}

it is clear that x̂b ∈ Ms and, by Condition 1, that f1 is transversal to Ms in x̂b. Therefore there exist
a neighborhood O(x̂b) of x̂b in M, a positive number b and a neighborhood Os(x̂b) of x̂b in Ms such
that the functions

b : O(x̂b) → (−b,b) and y : O(x̂b) → Os(x̂b)
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are well defined by
x = expb(x) f1(y(x)) ∀x ∈ O(x̂b) .

In [6] it is proved that definingα̃s : O(x̂b) → R by

α̃s(x) = αs(y(x)) ,

then J′′ turns out to be the standard second variation of the following problem

minimize α̃s(ξ(0))+β(ξ(Ts))

subject to

ξ̇(t) = f̂Tb+t(ξ(t))+w(t)[ f0, f1](ξ(t))+
w2(t)

2
[ f1, [ f0, f1]](ξ(t)) t ∈ [0,Ts]

ξ(0) free, ξ(Ts) ∈ N f ,

u(t) ∈ [−1,1] ,

with reference couple (w,ξ) = (0, ξ̂s).
From the results in [6], the coercivity of J ′′ implies, for any solution of system (3.2) belonging

to a suitable neighborhood of the reference trajectory,

α̃s(ξ(0))+β(ξ(Ts)) ≥ α̃s(x̂b)+β(x̂ f ) = αs(x̂b)+β(x̂ f ) ,

moreover equality holds if and only if ξ = ξ̂s.

Remark 3. Since J′′ is associated to a linear quadratic non singular control problem, then its co-
ercivity can be checked via the non existence of conjugate times or through an appropriate Riccati
equation, see for example [4], [7], [5] and the references therein.

Rewriting the result with respect to Problem (1.1) - (1.2), possibly restricting the neighborhood
O(x̂b) we can state the following

Lemma 1. Let the extended second variation defined in (3.5) - (3.6) be coercive. There is a neigh-
borhood V of the graph of ξ̂|[Tb,Tf ] such that V ∩{Tb}×M = O(x̂0) and for any solution ξ of (1.2)
such that the graph of ξ|[Tb,Tf ] is contained in V the following inequality holds

α̃s(ξ(Tb))+β(ξ(Tf )) ≥ αs(x̂b)+β(x̂ f ) .

Moreover the equality holds if and only if ξ = ξ̂ on [Tb,Tf ].

4. The bang arc

In this section we consider the geometric picture near the bang arc and its lift λ̂|[0,Tb] to the cotangent
bundle.

If for any t ∈ [0,Tb] we define the vector field

gt ≡ Ŝ−1
t∗ f1 ◦ Ŝt ,

then a straightforward calculation gives

ġt = Ŝ−1
t∗ [ f0, f1]◦ Ŝt , g̈t = Ŝ−1

t∗ [ f0 + f1, [ f0, f1]]◦ Ŝt ∀ t ∈ [0,Tb] .
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Remark 4. Since
LgTb

LgTb
α(x̂0) = L f1L f1αs(x̂b) > 0 , (4.1)

gTb is transversal in x̂0 to

M0 ≡ exp
(
−Tb f +

)
(Ms) =

{
z ∈ M : LgTb

α(z) = 0
}

.

Moreover Assumption 2 is equivalent to

Lg̈Tb
α(x̂0) > 0 . (4.2)

As we pointed out in the introduction, LgTb
LgTb

α(x̂0)≥ 0 is a necessary condition for the optimality
of the bang arc for Problem (1.8) - (1.9). This can be easily seen calculating the second variation
of the free-fixed problem on the bang arc constrained to controls u such that

u(t) =

{
1 t ∈ [0,Tb − ε]

−1 t ∈ [Tb − ε,Tb] .

In the following proposition we show that Assumptions 1 and 2, together with (4.1) are sufficient
conditions for ξ̂|[0,Tb] to be a locally optimal trajectory for the free-fixed problem restricted to the
bang arc.

Proposition 2. If Assumptions 1, 2 and inequality (4.1) are verified, then ξ̂|[0,Tb] is a strict strong
local optimizer for Problem (1.8) - (1.9).

Proof: From (4.1) and (4.2), by continuity, there exist ε > 0 and a neighborhood U of x̂0 in M
such that the flow (t,x) → exp t f +(x) is defined on [0,Tb]×U, for all (t,x) ∈ [Tb − ε,Tb]×U the
following inequalities hold

Lgt Lgt α(x) ≥
1
2

LgTb
LgTb

α(x̂0) (4.3)

Lg̈t α(x) ≥
1
2

Lg̈Tb
α(x̂0) (4.4)

4εLgt L ġt α(x) < LgTb
LgTb

α(x̂0) , (4.5)

and
Lgt α(x) = H1(exp t

−→
H +(dα(x))) > 0 ∀(t,x) ∈ [0,Tb − ε)×U . (4.6)

We denote
K ≡ max{|Lgt L ġt α(x)| : (t,x) ∈ [Tb − ε,Tb]×U} .

We want to prove that α(ξ(0))−α(x̂0) ≥ 0 for any couple (ξ,u) such that ξ̂(Tb) = x̂b and ξ(s) ∈
exps f +(U) for any s ∈ [0,Tb]. For such a couple let us define

vε(t) ≡
Z t

Tb−ε
(1−u(s))ds , q(t) ≡ exp(−t f +)(ξ(t)) ,

hence
q̇(t) = −(1−u(t))gt(q(t)) , q(0) = ξ(0) , q(Tb) = x̂0 ,
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and we can evaluate

α(ξ(0))−α(x̂0) =
Z 0

Tb

L q̇(s)α(q(s))ds =
Z Tb

0
(1−u(s))Lgsα(q(s))ds

=
Z Tb

0
(1−u(s))H1(exps

−→
H +(dα(q(s))))ds ≥

Z Tb

Tb−ε
(1−u(s))Lgsα(q(s))ds .

(4.7)

Integrating by parts and recalling that q(Tb) = x̂0 we get

α(ξ(0))−α(x̂0) ≥−
Z Tb

Tb−ε
vε(s) [L ġsα(q(s))− v̇ε(s)LgsLgsα(q(s))] ds

≥
Z Tb

Tb−ε
vε(s)v̇ε(s)

1
2

LgTb
LgTb

α(x̂0)ds−
Z Tb

Tb−ε
vε(s)L ġsα(q(s))ds

≥
v2

ε(Tb)

4
LgTb

LgTb
α(x̂0)+

Lg̈Tb
α(x̂0)

2

Z Tb

Tb−ε

(
Z s

Tb−ε
vε(t)dt

)
ds

−K
Z Tb

Tb−ε

(
Z s

Tb−ε
vε(t)dt

)
v̇ε(s)ds

For the last addendum, we have

K
Z Tb

Tb−ε

(
Z s

Tb−ε
vε(t)dt

)
v̇ε(s)ds = K

Z Tb

Tb−ε
vε(t)

(
Z Tb

t
v̇ε(s)ds

)
dt

≤K
Z Tb

Tb−ε
vε(t)vε(Tb)dt ≤ Kεv2

ε(Tb) ,

so that

α(ξ(0))−α(x̂0) ≥
v2

ε(Tb)

4

(
LgTb

LgTb
α(x̂0)−4Kε

)
≥ 0 (4.8)

because of our choice of ε. To prove that the minimum is strict let us assume α(ξ(0)) = α(x̂0).
If this equality holds, then from (4.8) we get vε(Tb) = 0, i.e. u(s) = 1 for any s ∈ [Tb − ε,Tb], so
that ξ(s) ≡ ξ̂(s) for any s ∈ [Tb − ε,Tb]. Since H1(exp t

−→
H +(dα(q(s)))) > 0 for any s ∈ [0,Tb − ε],

equation (4.7) implies u(s) = 1 also for any s ∈ [0,Tb − ε]. ut

Let us now go back to problem (1.1) - (1.2). Without loss of generality we can assume
that exp(−Tb f +) is well defined on O (̂xb), therefore, defining O (̂x0) = exp(−Tb f +)(O(x̂b)) and
Os(x̂0) = exp(−Tb f +)(Os(x̂b)) we have that for any x ∈ O(x̂0) there exists one and only one couple
(a,z) ∈ (−b,b)×Os(x̂0) such that

x = expagTb(z) .

Remark 5. Possibly restricting Os(x̂0), Assumption 3 is equivalent to

L ġTb
α(z) ≤ 0 ∀z ∈ Os(x̂0) .

The map
α̃ : O(x̂0) → α̃s ◦ expTb f + .

is constant along the integral lines of gTb , so that

LgTb
α̃(x) = 0 for any x ∈ O(x̂0) .
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Moreover it is not difficult to see that Lvα(z) = Lvα̃(z) for any z ∈ Os(x̂0) and for any v ∈ TzM.
Without loss of generality we can assume that O(x̂0) is contained in the neighborhood U, defined
in the proof of Proposition 2; therefore from now on we assume that equations (4.3) - (4.4) - (4.5)
and (4.6) hold. Moreover, possibly restricting ε > 0 and O(x̂0) we assume

1. α(x) ≥ α̃(x) for any x in O(x̂0);

2. LgTb
LgTb

α(z)− εLexp(−agTb )∗gt◦expagTb
LgTb

α(z) > 0 ∀(t,x) ∈ [Tb − ε,Tb)×O(x̂0);

3. Lg̈t α̃(x) > 0 ∀(t,x) ∈ [Tb − ε,Tb)×O(x̂0);

4. L[gTb , ġTb ]α̃(x) > 0 ∀x ∈ O(x̂0).

With such a choice of ε and O(x̂0), let us define

M : (t,a,z) ∈ [0,Tb]× (−b,b)×Os(x̂0) → H1(exp t
−→
H +(dα(expagTb(z)))) ∈ R ,

M̃ : (t,a,z) ∈ [0,Tb]× (−b,b)×Os(x̂0) → H1(exp t
−→
H +(dα̃(expagTb(z)))) ∈ R .

Assumption 3 is crucial in the proofs of the following two “twin” Lemmata.

Lemma 2. If Assumption 3 holds, then

M(t,a,z) ≥ 0 for any (t,a,z) ∈ (Tb − ε,Tb)× [0,b]×Os(x̂0).

Proof: Let us write the Taylor expansion of M in a neighborhood of (t,a,z) = (Tb,0, x̂0).

M(t,a,z) = Lgt α(expagTb(z)) = LgTb
α(expagTb(z))

+(t −Tb)L ġTb
α(expagTb(z))+

(t −Tb)
2

2
Lg̈θα(expagTb(z)) ( for some θ ∈ (t,Tb) )

= LgTb
α(z)+aLgTb

LgTb
α(expβ1gTb(z))+(t −Tb)L ġTb

α(expagTb(z))

+
(t −Tb)

2

2
Lg̈θα(expagTb(z)) ( for some β1 intermediate between 0 and a )

= a
[
LgTb

LgTb
α(expβ1gTb(z))+(t −Tb)LgTb

L ġTb
α(expβ2gTb(z))

]

+(t −Tb)

[
L ġTb

α(z)+
t −Tb

2
Lg̈θα(expagTb(z))

]

( for some β2 intermediate between 0 and a ).

Hence Assumption 3 and equation (4.5) give the result. ut

Lemma 3. If Assumption 3 holds, then

M̃(t,a,z) ≥ 0 for any (t,a,z) ∈ (Tb − ε,Tb)× [−b,0]×Os(x̂0).

Proof: Repeating the proof of Lemma 2 we get

M̃(t,a,z) = (t −Tb)

[
2aL[gTb , ġTb ]α̃(expβ2gTb(z))+

t −Tb

2
Lg̈θα̃(expagTb(z))+2L ġTb

α̃(z)

]
(4.9)

for some θ ∈ (Tb−ε,Tb) and some β2 intermediate between 0 and a. Due to the restriction on ε > 0
and O(x̂0), we get the result. ut
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The following Lemma describes the behaviour of the trajectories of control system (1.2) and its
proof does not require Assumption 3.

Lemma 4. Let (ξ,u) be an admissible couple such that ξ(t) ∈ exp t f +(O(x̂0)) for any t ∈ [0,Tb].
Define q(t)≡ exp(−t f +)(ξ(t)) ∈ O(x̂0) and let (a(t),z(t))∈ (−b,b)×Os(x̂0) be defined by q(t) =

expa(t)gTb(z(t)). Then a : t ∈ [Tb − ε,Tb] → a(t) ∈ R is a monotone non-increasing function.

Proof: Differentiating the identity z(t) = exp(−a(t)gTb)(q(t)) we get

ż(t) = −ȧ(t)gTb(z(t))− (1−u(t))exp(−a(t)gTb)∗gt ◦ expa(t)gTb(z(t))

Also differentiating the identity LgTb
α(z(t)) = 0, we get L ż(t)LgTb

α(z(t)) = 0. Hence we have

−ȧ(t)LgTb
LgTb

α(z(t))− (1−u(t))Lexp(−a(t)gTb )∗gt◦expa(t)gTb
LgTb

α(z(t)) = 0

which gives

ȧ(t) = −(1−u(t))

{
1+(t −Tb)

Lexp(−a(t)gTb )∗gθ(t)◦expa(t)gTb
LgTb

α(z(t))

LgTb
LgTb

α(z(t))

}

which is non-positive due to the restrictions on ε and O(x̂0). ut

5. Proof of Theorem 1

Let (ξ,u) be an admissible couple such that ξ(t) ∈ exp t f +(O(x̂0)) for any t ∈ [0,Tb] and the graph
of ξ|[Tb,Tf ] belongs to the neighborhood V defined in Lemma 1. We want to show

α(ξ(0))−α(x̂0) ≥ α̃s(ξ(Tb))−αs(x̂b) , (5.1)

or, equivalently with the notation of Lemma 4,

α(q(0)) ≥ α̃(q(Tb)) .

Since

α(q(0))−α(q(Tb)) =
Z 0

Tb

d
ds

α(q(s))ds =
Z Tb

0
(1−u(s))M(s,a(s),z(s))ds ,

then, if M(s,a(s),z(s)) ≥ 0, ∀s ∈ [0,Tb], we get

α(q(0)) ≥ α(q(Tb)) ≥ α̃(q(Tb)) .

If there exists t ∈ (Tb − ε,Tb) such that M(t,a(t),z(t)) = 0 then, from Lemma 2, a(t) < 0,

α(q(0)) ≥ α(q(t))+
Z t

0
(1−u(s))M(s,a(s),z(s))ds ≥ α(q(t)) ≥ α̃(q(t))

so that

α̃(q(t))− α̃(q(Tb)) =
Z Tb

t
(1−u(s))M̃(s,a(s),z(s))ds . (5.2)

Since a(s) is decreasing by Lemma 4 and a(t) ≤ 0, applying Lemma 3 equation (5.1) is proved.
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Considering also the result of Lemma 1 we obtain

α(ξ(0))+β(ξ(Tf ))− (α(x̂0)+β(x̂ f )) =

= [α(ξ(0))− α̃s(ξ(Tb))]+ [α̃s(ξ(Tb))+β(ξ(Tf ))−αs(x̂b)−β(x̂ f )] ≥ 0 .
(5.3)

To complete the proof we have to show that the minimum is strict. Assume equality holds in (5.3),
by equation (5.1) and Lemma 1 we obtain

α̃s(ξ(Tb))+β(ξ(Tf ))−αs(x̂b)−β(x̂ f ) = 0 (5.4)

α(ξ(0))− α̃s(ξ(Tb)) = 0 (5.5)

From equation (5.4) and Lemma 1 we obtain

ξ = ξ̂ on [Tb,Tf ]

hence ξ(Tb) = x̂b. Finally, from equation (5.5) and Proposition 2 we obtain

ξ = ξ̂ on [0,Tb] .

6. Final remarks

The result of Theorem 1 is not completely satisfactory because of Assumption 3. Indeed it is
not clear if it is "almost necessary" like the other ones. Assumption 3 allows us to prove that “near”
the singular point λ̂(Tb), the flow associated to the Hamiltonian H+ starting from the union of two
suitable "half Lagrangean sub-manifolds" remains in the region where H+ = Hmax for all t ∈ [0,Tb],
see Lemmata 2, 3. Therefore the flow of the vector field f+ starting from a neighborhood of ξ̂(0)

is a flow of non intersecting extremals covering a neighborhood of the bang arc.
So far we have not been able to find a flow with such properies without Assumption 3. More

investigation is in progress in order to understand the role of Assumption 3. However, by means of
this result it is possible to prove sufficient conditions for a bang-singular arc in the minimum time
problem and in the Bolza problem with fixed end-points requiring the extended second variation
on the singular arc to be coercive on a larger space.
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